

ISSN 2414-3146

Received 30 August 2018 Accepted 18 September 2018

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; flavonol; O—  $H \cdots O$  hydrogen bonds; inversion dimer.

CCDC reference: 1868441

Structural data: full structural data are available from iucrdata.iucr.org

# 2-(2-Fluorophenyl)-3-hydroxy-4H-chromen-4-one

#### **Dongsoo Koh\***

Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea. \*Correspondence e-mail: dskoh@dongduk.ac.kr

The asymmetric unit of the title compound,  $C_{15}H_9FO_3$ , contains two independent molecules in which the fluorine-substituted benzene ring is twisted by 47.64 (3) and 56.02 (4)° relative to the 4*H*-chromenon skeleton. The hydroxyl group in each molecule is tilted from 4*H*-chromenon skeleton by 24.5 (1) and 16.1 (1)°, respectively. In the crystal, pairs of  $O-H\cdots O$  hydrogen bonds form inversion dimers with an  $R_2^2(10)$  graph-set motif.



#### Structure description

Flavonoids, which include flavones, flavanone, flavonols and isoflavones, are one of the secondary metabolites in plants. Among the flavonoids, flavonols have an unique structure that has a hydroxyl group at the 3-position of the flavone backbone as an enol type. As a result of this characteristic structure, these molecules show a broad spectrum of biological activities (Patel *et al.*, 2018; Raffa *et al.*, 2017) and have applications as fluorescent probes for sensing and imaging (Serdiuk *et al.*, 2016). As a part of our studies on flavonoid derivatives (Lee *et al.*, 2014), the title compound was synthesized and its crystal structure was determined.

The title compound has two independent molecules the asymmetric unit (Fig. 1) in which the fluorine-substituted benzene rings are connected at the C8 and C23 positions of the 4*H*-chromenon skeleton. The dihedral angles between these rings and the 4*H*-chromenon skeleton are 47.64 (3) and 56.02 (4)°, respectively. As a consequence of the flavonol structure, the hydroxyl groups are attached at the C9 and C24 positions of the 4*H*-chromenon skeletons and are tilted from 4*H*-chromenon ring system by 24.5 (1)° (C1/C9/O3/H3A) and 16.1 (1)° (C61/C24/O6/H6A).

In the crystal, pairs of intermolecular O–H···O hydrogen bonds form inversion dimers with  $R_2^2(10)$  graph-set motifs (Table 1, Fig. 2).

Examples of other flavonol structures have also been published recently, see Padgett *et al.* (2018) and Narita *et al.* (2015).





Figure 1

The molecular structure of the title compound, showing the atomlabelling scheme, with displacement ellipsoids drawn at the 30% probability level.



Figure 2

Part of the crystal structure with intermolecular hydrogen bonds are shown as dashed lines. For clarity only those H atoms involved in hydrogen bonding are shown.

## Synthesis and crystallization

The starting material, chalcone **I**, was prepared by previously reported methods (Yoo *et al.*, 2014). The final flavonol product was obtained by oxidative cyclization of the **I** with  $H_2O_2$  in an alkaline methanol medium (Fig. 3).

## Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.



Figure 3 Synthetic scheme for the preparation of the title compound.

| Table 1                        |  |
|--------------------------------|--|
| Hydrogen-bond geometry (Å, °). |  |

| $D - H \cdots A$       | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------|-------------|-------------------------|--------------|---------------------------|
| $O3-H3A\cdots O4^{i}$  | 0.83        | 1.91                    | 2.6813 (18)  | 154                       |
| $O6-H6A\cdots O1^{ii}$ | 0.83        | 2.04                    | 2.8112 (18)  | 154                       |

Symmetry codes: (i)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (ii)  $x, -y + \frac{3}{2}, z + \frac{1}{2}$ .

# Table 2 Experimental details.

| Crystal data                                                             |                                           |
|--------------------------------------------------------------------------|-------------------------------------------|
| Chemical formula                                                         | $C_{15}H_9FO_3$                           |
| M <sub>r</sub>                                                           | 256.22                                    |
| Crystal system, space group                                              | Monoclinic, $P2_1/c$                      |
| Temperature (K)                                                          | 223                                       |
| a, b, c (Å)                                                              | 22.3701 (6), 6.8836 (2), 15.7987 (4)      |
| β (°)                                                                    | 106.0575 (13)                             |
| $V(Å^3)$                                                                 | 2337.87 (11)                              |
| Ζ                                                                        | 8                                         |
| Radiation type                                                           | Μο Κα                                     |
| $\mu \ (\mathrm{mm}^{-1})$                                               | 0.11                                      |
| Crystal size (mm)                                                        | $0.19 \times 0.14 \times 0.10$            |
| Data collection                                                          |                                           |
| Diffractometer                                                           | Bruker PHOTON 100 CMOS                    |
| Absorption correction                                                    | Multi-scan ( <i>SADABS</i> ; Bruker 2012) |
| $T_{\min}, T_{\max}$                                                     | 0.979, 0.989                              |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 68936, 5842, 3646                         |
| R <sub>int</sub>                                                         | 0.086                                     |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                     | 0.669                                     |
| Refinement                                                               |                                           |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.049, 0.134, 1.03                        |
| No. of reflections                                                       | 5842                                      |
| No. of parameters                                                        | 345                                       |
| H-atom treatment                                                         | H-atom parameters constrained             |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({ m e}  { m \AA}^{-3})$ | 0.33, -0.30                               |
|                                                                          |                                           |

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

#### **Funding information**

The author acknowledges financial support from Dongduk Women's University.

#### References

- Bruker (2012). *APEX2*, *SAINT* and *SADABS*, Bruker AXS Inc. Madison, Wisconsin, USA.
- Lee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 129–132.

Narita, F., Takura, A. & Fujihara, T. (2015). Acta Cryst. E71, 824–826. Padgett, C. W., Lynch, W. L., Sheriff, K., Dean, R. & Zingales, S.

- (2018). *IUCrData*, **3**, x181138. Patel R V Mistry R M Shinde S K Syed R Singh V & Shin
- Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V. & Shin, H. S. (2018). Eur. J. Med. Chem. 155, 889–904.
- Raffa, D., Maggio, B., Raimondi, M. V., Plescia, F. & Daidone, G. (2017). *Eur. J. Med. Chem.* **142**, 213–228.
- Serdiuk, I. E., Reszka, M., Myszka, H., Krzymiński, K., Liberek, B. & Roshal, A. D. (2016). *RSC Adv.* 6, 42532–42536.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yoo, J. S., Lim, Y. & Koh, D. (2014). Acta Cryst. E70, 0999-01000.

# full crystallographic data

# IUCrData (2018). 3, x181332 [https://doi.org/10.1107/S2414314618013329]

# 2-(2-Fluorophenyl)-3-hydroxy-4H-chromen-4-one

# Dongsoo Koh

2-(2-Fluorophenyl)-3-hydroxy-4H-chromen-4-one

Crystal data

C<sub>15</sub>H<sub>9</sub>FO<sub>3</sub>  $M_r = 256.22$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 22.3701 (6) Å b = 6.8836 (2) Å c = 15.7987 (4) Å  $\beta = 106.0575$  (13)° V = 2337.87 (11) Å<sup>3</sup> Z = 8

## Data collection

Bruker PHOTON 100 CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker 2012)  $T_{\min} = 0.979, T_{\max} = 0.989$ 

## Refinement

| 0                                               |                                                          |
|-------------------------------------------------|----------------------------------------------------------|
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.049$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.134$                               | neighbouring sites                                       |
| <i>S</i> = 1.03                                 | H-atom parameters constrained                            |
| 5842 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0553P)^2 + 0.8816P]$        |
| 345 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                           |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                      |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.33 \ { m e} \ { m \AA}^{-3}$    |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                          |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1056

 $\theta = 2.6 - 27.2^{\circ}$ 

 $\mu = 0.11 \text{ mm}^{-1}$ 

Block, yellow

 $0.19 \times 0.14 \times 0.10 \text{ mm}$ 

 $\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$ 

68936 measured reflections

5842 independent reflections

3646 reflections with  $I > 2\sigma(I)$ 

T = 223 K

 $R_{\rm int} = 0.086$ 

 $h = -29 \rightarrow 29$ 

 $l = -21 \rightarrow 21$ 

 $k = -9 \rightarrow 9$ 

 $D_{\rm x} = 1.456 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 9839 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x            | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| C1  | 0.25573 (8)  | 0.8644 (2)   | 0.03626 (11) | 0.0274 (4)                  |  |
| 01  | 0.21337 (5)  | 0.85797 (19) | -0.03333 (8) | 0.0372 (3)                  |  |
| C2  | 0.24556 (7)  | 0.8811 (2)   | 0.12298 (10) | 0.0261 (3)                  |  |
| C3  | 0.18533 (8)  | 0.8880 (2)   | 0.13403 (12) | 0.0324 (4)                  |  |
| H3  | 0.1504       | 0.8791       | 0.0847       | 0.039*                      |  |
| C4  | 0.17746 (9)  | 0.9077 (3)   | 0.21655 (12) | 0.0372 (4)                  |  |
| H4  | 0.1371       | 0.9133       | 0.2237       | 0.045*                      |  |
| C5  | 0.22892 (9)  | 0.9196 (3)   | 0.28987 (13) | 0.0400 (5)                  |  |
| Н5  | 0.2230       | 0.9312       | 0.3463       | 0.048*                      |  |
| C6  | 0.28829 (9)  | 0.9144 (3)   | 0.28110 (12) | 0.0367 (4)                  |  |
| H6  | 0.3230       | 0.9240       | 0.3307       | 0.044*                      |  |
| C7  | 0.29576 (8)  | 0.8948 (2)   | 0.19709 (11) | 0.0286 (4)                  |  |
| O2  | 0.35602 (5)  | 0.88921 (18) | 0.19202 (7)  | 0.0321 (3)                  |  |
| C8  | 0.36710 (8)  | 0.8753 (2)   | 0.11136 (11) | 0.0279 (4)                  |  |
| C9  | 0.32064 (8)  | 0.8628 (2)   | 0.03648 (11) | 0.0287 (4)                  |  |
| 03  | 0.33412 (6)  | 0.8547 (2)   | -0.04188 (8) | 0.0413 (3)                  |  |
| H3A | 0.3045       | 0.8987       | -0.0811      | 0.062*                      |  |
| C10 | 0.43386 (8)  | 0.8899 (3)   | 0.11802 (11) | 0.0324 (4)                  |  |
| C11 | 0.46360 (9)  | 0.7656 (3)   | 0.07444 (13) | 0.0412 (5)                  |  |
| F1  | 0.43134 (6)  | 0.61549 (18) | 0.02827 (10) | 0.0632 (4)                  |  |
| C12 | 0.52522 (9)  | 0.7845 (4)   | 0.07719 (15) | 0.0533 (6)                  |  |
| H12 | 0.5438       | 0.6974       | 0.0462       | 0.064*                      |  |
| C13 | 0.55925 (10) | 0.9320 (4)   | 0.12567 (15) | 0.0577 (6)                  |  |
| H13 | 0.6013       | 0.9481       | 0.1274       | 0.069*                      |  |
| C14 | 0.53195 (10) | 1.0561 (4)   | 0.17168 (15) | 0.0596 (6)                  |  |
| H14 | 0.5556       | 1.1561       | 0.2056       | 0.072*                      |  |
| C15 | 0.46989 (9)  | 1.0353 (3)   | 0.16852 (13) | 0.0462 (5)                  |  |
| H15 | 0.4518       | 1.1205       | 0.2009       | 0.055*                      |  |
| C16 | 0.22946 (8)  | 0.4205 (2)   | 0.24636 (11) | 0.0308 (4)                  |  |
| O4  | 0.26839 (6)  | 0.4421 (2)   | 0.31850 (8)  | 0.0430 (3)                  |  |
| C17 | 0.24559 (8)  | 0.3890 (2)   | 0.16460 (11) | 0.0291 (4)                  |  |
| C18 | 0.30774 (8)  | 0.3875 (3)   | 0.16103 (13) | 0.0362 (4)                  |  |
| H18 | 0.3402       | 0.4067       | 0.2128       | 0.043*                      |  |
| C19 | 0.32119 (9)  | 0.3584 (3)   | 0.08274 (13) | 0.0409 (5)                  |  |
| H19 | 0.3628       | 0.3583       | 0.0807       | 0.049*                      |  |
| C20 | 0.27342 (10) | 0.3288 (3)   | 0.00602 (13) | 0.0431 (5)                  |  |
| H20 | 0.2832       | 0.3087       | -0.0475      | 0.052*                      |  |
| C21 | 0.21241 (9)  | 0.3284 (3)   | 0.00727 (12) | 0.0387 (4)                  |  |
| H21 | 0.1803       | 0.3077       | -0.0447      | 0.046*                      |  |
| C22 | 0.19908 (8)  | 0.3595 (2)   | 0.08723 (11) | 0.0311 (4)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| 05  | 0.13760 (5)   | 0.35843 (18) | 0.08520 (8)  | 0.0358 (3) |  |
|-----|---------------|--------------|--------------|------------|--|
| C23 | 0.12074 (8)   | 0.3917 (2)   | 0.16077 (11) | 0.0312 (4) |  |
| C24 | 0.16363 (8)   | 0.4237 (2)   | 0.23858 (11) | 0.0316 (4) |  |
| O6  | 0.14504 (6)   | 0.4531 (2)   | 0.31246 (8)  | 0.0426 (3) |  |
| H6A | 0.1745        | 0.4970       | 0.3520       | 0.064*     |  |
| C25 | 0.05281 (8)   | 0.3874 (3)   | 0.14600 (12) | 0.0355 (4) |  |
| C26 | 0.01747 (9)   | 0.2293 (3)   | 0.10776 (13) | 0.0422 (5) |  |
| F2  | 0.04694 (6)   | 0.07393 (19) | 0.08650 (10) | 0.0716 (4) |  |
| C27 | -0.04596 (9)  | 0.2209 (3)   | 0.09268 (14) | 0.0482 (5) |  |
| H27 | -0.0684       | 0.1103       | 0.0669       | 0.058*     |  |
| C28 | -0.07580 (9)  | 0.3772 (3)   | 0.11595 (14) | 0.0487 (5) |  |
| H28 | -0.1193       | 0.3750       | 0.1053       | 0.058*     |  |
| C29 | -0.04274 (10) | 0.5372 (4)   | 0.15475 (15) | 0.0554 (6) |  |
| H29 | -0.0636       | 0.6435       | 0.1708       | 0.066*     |  |
| C30 | 0.02118 (9)   | 0.5420 (3)   | 0.17027 (15) | 0.0490 (5) |  |
| H30 | 0.0435        | 0.6514       | 0.1976       | 0.059*     |  |
|     |               |              |              |            |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C1  | 0.0271 (9)  | 0.0263 (8)  | 0.0275 (9)  | -0.0021 (7)  | 0.0054 (7)  | 0.0013 (7)   |
| O1  | 0.0287 (7)  | 0.0501 (8)  | 0.0295 (6)  | -0.0063 (6)  | 0.0026 (5)  | -0.0006 (6)  |
| C2  | 0.0282 (9)  | 0.0226 (8)  | 0.0279 (8)  | 0.0011 (7)   | 0.0081 (7)  | 0.0030 (7)   |
| C3  | 0.0290 (9)  | 0.0318 (9)  | 0.0376 (10) | -0.0017 (7)  | 0.0112 (8)  | 0.0039 (8)   |
| C4  | 0.0362 (10) | 0.0375 (10) | 0.0439 (11) | 0.0002 (8)   | 0.0209 (9)  | 0.0039 (8)   |
| C5  | 0.0479 (12) | 0.0434 (11) | 0.0352 (10) | 0.0020 (9)   | 0.0225 (9)  | 0.0018 (8)   |
| C6  | 0.0399 (11) | 0.0428 (11) | 0.0271 (9)  | 0.0015 (8)   | 0.0088 (8)  | 0.0021 (8)   |
| C7  | 0.0278 (9)  | 0.0286 (8)  | 0.0297 (9)  | 0.0033 (7)   | 0.0089 (7)  | 0.0041 (7)   |
| O2  | 0.0262 (6)  | 0.0441 (7)  | 0.0254 (6)  | 0.0037 (5)   | 0.0063 (5)  | 0.0031 (5)   |
| C8  | 0.0264 (9)  | 0.0297 (9)  | 0.0280 (9)  | 0.0026 (7)   | 0.0084 (7)  | 0.0026 (7)   |
| C9  | 0.0296 (9)  | 0.0313 (9)  | 0.0266 (8)  | -0.0002 (7)  | 0.0102 (7)  | -0.0001 (7)  |
| O3  | 0.0305 (7)  | 0.0674 (9)  | 0.0271 (6)  | 0.0021 (6)   | 0.0097 (5)  | 0.0011 (6)   |
| C10 | 0.0260 (9)  | 0.0413 (10) | 0.0283 (9)  | 0.0006 (7)   | 0.0050 (7)  | 0.0053 (8)   |
| C11 | 0.0325 (10) | 0.0454 (11) | 0.0465 (11) | 0.0006 (9)   | 0.0124 (9)  | 0.0012 (9)   |
| F1  | 0.0482 (8)  | 0.0545 (8)  | 0.0928 (10) | -0.0020 (6)  | 0.0290 (7)  | -0.0240 (7)  |
| C12 | 0.0358 (11) | 0.0753 (16) | 0.0522 (13) | 0.0082 (11)  | 0.0182 (10) | 0.0014 (12)  |
| C13 | 0.0268 (10) | 0.0963 (19) | 0.0498 (13) | -0.0072 (12) | 0.0106 (10) | 0.0082 (13)  |
| C14 | 0.0369 (12) | 0.0849 (18) | 0.0508 (13) | -0.0174 (12) | 0.0019 (10) | -0.0093 (12) |
| C15 | 0.0332 (11) | 0.0613 (13) | 0.0406 (11) | -0.0052 (10) | 0.0046 (9)  | -0.0061 (10) |
| C16 | 0.0287 (9)  | 0.0280 (9)  | 0.0338 (10) | -0.0002 (7)  | 0.0054 (8)  | -0.0011 (7)  |
| O4  | 0.0313 (7)  | 0.0576 (9)  | 0.0349 (7)  | 0.0013 (6)   | 0.0003 (6)  | -0.0104 (6)  |
| C17 | 0.0291 (9)  | 0.0230 (8)  | 0.0349 (9)  | -0.0001 (7)  | 0.0080 (7)  | 0.0013 (7)   |
| C18 | 0.0322 (10) | 0.0305 (9)  | 0.0455 (11) | -0.0020 (7)  | 0.0101 (8)  | -0.0007 (8)  |
| C19 | 0.0403 (11) | 0.0333 (10) | 0.0553 (12) | 0.0005 (8)   | 0.0234 (10) | 0.0042 (9)   |
| C20 | 0.0558 (13) | 0.0396 (11) | 0.0404 (11) | 0.0072 (9)   | 0.0241 (10) | 0.0088 (9)   |
| C21 | 0.0437 (11) | 0.0399 (10) | 0.0315 (10) | 0.0066 (9)   | 0.0086 (8)  | 0.0044 (8)   |
| C22 | 0.0304 (9)  | 0.0276 (9)  | 0.0356 (9)  | 0.0032 (7)   | 0.0095 (8)  | 0.0040 (7)   |
| O5  | 0.0290 (7)  | 0.0454 (7)  | 0.0307 (6)  | 0.0025 (5)   | 0.0044 (5)  | -0.0013 (6)  |

| C23 | 0.0277 (9)  | 0.0319 (9)  | 0.0328 (9)  | 0.0009 (7)  | 0.0065 (7)  | -0.0009(7)   |  |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|--|
| C24 | 0.0305 (9)  | 0.0320 (9)  | 0.0322 (9)  | -0.0004 (7) | 0.0082 (8)  | -0.0005 (7)  |  |
| O6  | 0.0311 (7)  | 0.0640 (9)  | 0.0334 (7)  | -0.0041 (6) | 0.0098 (6)  | -0.0072 (6)  |  |
| C25 | 0.0281 (9)  | 0.0420 (10) | 0.0335 (10) | 0.0000 (8)  | 0.0039 (8)  | -0.0002 (8)  |  |
| C26 | 0.0314 (10) | 0.0439 (11) | 0.0471 (11) | 0.0032 (8)  | 0.0040 (9)  | -0.0070 (9)  |  |
| F2  | 0.0407 (7)  | 0.0566 (8)  | 0.1086 (12) | 0.0017 (6)  | 0.0058 (7)  | -0.0330 (8)  |  |
| C27 | 0.0313 (11) | 0.0542 (13) | 0.0532 (13) | -0.0062 (9) | 0.0019 (9)  | -0.0053 (10) |  |
| C28 | 0.0266 (10) | 0.0677 (14) | 0.0494 (12) | 0.0016 (10) | 0.0066 (9)  | 0.0003 (11)  |  |
| C29 | 0.0359 (12) | 0.0623 (15) | 0.0674 (15) | 0.0088 (10) | 0.0135 (11) | -0.0127 (12) |  |
| C30 | 0.0370 (11) | 0.0481 (12) | 0.0599 (13) | 0.0022 (9)  | 0.0098 (10) | -0.0133 (10) |  |
|     |             |             |             |             |             |              |  |

# Geometric parameters (Å, °)

| C1—01    | 1.238 (2)   | C16—O4      | 1.237 (2)   |
|----------|-------------|-------------|-------------|
| C1—C9    | 1.451 (2)   | C16—C24     | 1.444 (2)   |
| C1—C2    | 1.454 (2)   | C16—C17     | 1.450 (2)   |
| C2—C7    | 1.383 (2)   | C17—C22     | 1.384 (2)   |
| C2—C3    | 1.406 (2)   | C17—C18     | 1.407 (2)   |
| C3—C4    | 1.370 (2)   | C18—C19     | 1.366 (3)   |
| С3—Н3    | 0.9400      | C18—H18     | 0.9400      |
| C4—C5    | 1.391 (3)   | C19—C20     | 1.391 (3)   |
| C4—H4    | 0.9400      | C19—H19     | 0.9400      |
| C5—C6    | 1.373 (3)   | C20—C21     | 1.370 (3)   |
| С5—Н5    | 0.9400      | C20—H20     | 0.9400      |
| С6—С7    | 1.389 (2)   | C21—C22     | 1.392 (2)   |
| С6—Н6    | 0.9400      | C21—H21     | 0.9400      |
| C7—O2    | 1.3728 (19) | C22—O5      | 1.367 (2)   |
| O2—C8    | 1.3671 (19) | O5—C23      | 1.367 (2)   |
| C8—C9    | 1.344 (2)   | C23—C24     | 1.352 (2)   |
| C8—C10   | 1.471 (2)   | C23—C25     | 1.473 (2)   |
| С9—ОЗ    | 1.3539 (19) | C24—O6      | 1.358 (2)   |
| O3—H3A   | 0.8300      | O6—H6A      | 0.8300      |
| C10-C11  | 1.379 (3)   | C25—C26     | 1.382 (3)   |
| C10—C15  | 1.390 (3)   | C25—C30     | 1.390 (3)   |
| C11—F1   | 1.353 (2)   | C26—F2      | 1.346 (2)   |
| C11—C12  | 1.373 (3)   | C26—C27     | 1.374 (3)   |
| C12—C13  | 1.369 (3)   | C27—C28     | 1.369 (3)   |
| C12—H12  | 0.9400      | C27—H27     | 0.9400      |
| C13—C14  | 1.370 (3)   | C28—C29     | 1.373 (3)   |
| С13—Н13  | 0.9400      | C28—H28     | 0.9400      |
| C14—C15  | 1.383 (3)   | C29—C30     | 1.383 (3)   |
| C14—H14  | 0.9400      | C29—H29     | 0.9400      |
| С15—Н15  | 0.9400      | С30—Н30     | 0.9400      |
| O1—C1—C9 | 121.44 (15) | O4—C16—C24  | 121.22 (16) |
| 01—C1—C2 | 123.96 (15) | O4—C16—C17  | 123.60 (16) |
| C9—C1—C2 | 114.56 (14) | C24—C16—C17 | 115.19 (15) |
| C7—C2—C3 | 118.29 (15) | C22—C17—C18 | 118.26 (16) |
|          |             |             |             |

| C7—C2—C1                   | 120.05 (14)  | C22—C17—C16                                  | 119.82 (15) |
|----------------------------|--------------|----------------------------------------------|-------------|
| C3—C2—C1                   | 121.64 (15)  | C18—C17—C16                                  | 121.92 (16) |
| C4—C3—C2                   | 120.08 (17)  | C19—C18—C17                                  | 120.32 (18) |
| С4—С3—Н3                   | 120.0        | C19—C18—H18                                  | 119.8       |
| С2—С3—Н3                   | 120.0        | C17—C18—H18                                  | 119.8       |
| C3—C4—C5                   | 120.24 (17)  | C18—C19—C20                                  | 120.12 (18) |
| C3—C4—H4                   | 119.9        | C18—C19—H19                                  | 119.9       |
| C5—C4—H4                   | 119.9        | C20-C19-H19                                  | 119.9       |
| C6-C5-C4                   | 121.00 (17)  | $C_{21}$ $C_{20}$ $C_{19}$ $C_{19}$          | 121.04 (18) |
| С6—С5—Н5                   | 119.5        | $C_{21} = C_{20} = H_{20}$                   | 119 5       |
| C4-C5-H5                   | 119.5        | C19 - C20 - H20                              | 119.5       |
| $C_{5}$ $C_{6}$ $C_{7}$    | 119.3        | $C_{20}$ $C_{21}$ $C_{22}$                   | 119.5       |
| $C_{5} = C_{6} = U_{6}$    | 120.0        | $C_{20} = C_{21} = C_{22}$                   | 120.8       |
| $C_{3}$                    | 120.9        | $C_{20} = C_{21} = H_{21}$                   | 120.8       |
| C = C = H O                | 120.9        | $C_{22}$ $C_{21}$ $C_{17}$                   | 120.6       |
| 02 - 07 - 02               | 121.94 (14)  | 05 - 022 - 017                               | 121.83(15)  |
| 02-07-06                   | 115.97 (15)  | 05-022-021                                   | 110.39 (10) |
| $C_2 - C_1 - C_6$          | 122.08 (15)  | C1/-C22-C21                                  | 121./8 (16) |
| C8-02-C7                   | 119.38 (13)  | C22—O5—C23                                   | 119.83 (13) |
| C9—C8—O2                   | 121.96 (14)  | C24—C23—O5                                   | 121.57 (15) |
| C9—C8—C10                  | 126.14 (15)  | C24—C23—C25                                  | 126.09 (16) |
| O2—C8—C10                  | 111.76 (14)  | O5—C23—C25                                   | 112.33 (14) |
| C8—C9—O3                   | 119.60 (15)  | C23—C24—O6                                   | 119.78 (15) |
| C8—C9—C1                   | 122.08 (15)  | C23—C24—C16                                  | 121.71 (16) |
| O3—C9—C1                   | 118.28 (14)  | O6—C24—C16                                   | 118.47 (15) |
| С9—О3—НЗА                  | 109.5        | С24—О6—Н6А                                   | 109.5       |
| C11—C10—C15                | 116.74 (17)  | C26—C25—C30                                  | 116.78 (17) |
| C11—C10—C8                 | 122.85 (17)  | C26—C25—C23                                  | 121.72 (16) |
| C15—C10—C8                 | 120.40 (16)  | C30—C25—C23                                  | 121.50 (17) |
| F1—C11—C12                 | 118.08 (18)  | F2—C26—C27                                   | 118.48 (18) |
| F1-C11-C10                 | 118.95 (16)  | F2—C26—C25                                   | 118.31 (16) |
| C12—C11—C10                | 123.0 (2)    | C27—C26—C25                                  | 123.19 (18) |
| C13—C12—C11                | 119.1 (2)    | C28—C27—C26                                  | 118.5 (2)   |
| C13—C12—H12                | 120.5        | С28—С27—Н27                                  | 120.7       |
| C11—C12—H12                | 120.5        | С26—С27—Н27                                  | 120.7       |
| C12—C13—C14                | 119.91 (19)  | C27—C28—C29                                  | 120.53 (19) |
| C12—C13—H13                | 120.0        | C27—C28—H28                                  | 119.7       |
| C14—C13—H13                | 120.0        | C29—C28—H28                                  | 119.7       |
| C13—C14—C15                | 1204(2)      | $C_{28}$ $C_{29}$ $C_{30}$                   | 1201(2)     |
| C13—C14—H14                | 119.8        | C28—C29—H29                                  | 119.9       |
| C15—C14—H14                | 119.8        | $C_{30}$ $C_{29}$ $H_{29}$                   | 119.9       |
| $C_{14}$ $C_{15}$ $C_{10}$ | 120.8 (2)    | $C_{29}$ $C_{29}$ $C_{25}$ $C_{25}$ $C_{25}$ | 120.9(2)    |
| $C_{14} = C_{15} = C_{10}$ | 110.6        | $C_{29} = C_{30} = C_{29}$                   | 120.9 (2)   |
| $C_{10} = C_{15} = H_{15}$ | 119.6        | $C_{25} = C_{30} = H_{30}$                   | 119.6       |
| C10-C13-III5               | 119.0        | C25—C50—H50                                  | 119.0       |
| O1—C1—C2—C7                | -177.53 (16) | O4—C16—C17—C22                               | 177.76 (16) |
| C9—C1—C2—C7                | 0.3 (2)      | C24—C16—C17—C22                              | -1.7 (2)    |
| O1—C1—C2—C3                | 1.0 (3)      | O4—C16—C17—C18                               | -2.3 (3)    |
| C9—C1—C2—C3                | 178.91 (15)  | C24—C16—C17—C18                              | 178.18 (16) |

| C7—C2—C3—C4     | -0.1 (2)     | C22—C17—C18—C19 | 0.3 (3)      |
|-----------------|--------------|-----------------|--------------|
| C1—C2—C3—C4     | -178.66 (15) | C16—C17—C18—C19 | -179.66 (16) |
| C2—C3—C4—C5     | -0.5 (3)     | C17—C18—C19—C20 | -0.4 (3)     |
| C3—C4—C5—C6     | 0.9 (3)      | C18—C19—C20—C21 | 0.1 (3)      |
| C4—C5—C6—C7     | -0.8 (3)     | C19—C20—C21—C22 | 0.3 (3)      |
| C3—C2—C7—O2     | 179.99 (14)  | C18—C17—C22—O5  | 179.88 (15)  |
| C1—C2—C7—O2     | -1.4 (2)     | C16—C17—C22—O5  | -0.2 (2)     |
| C3—C2—C7—C6     | 0.2 (2)      | C18—C17—C22—C21 | 0.2 (2)      |
| C1—C2—C7—C6     | 178.81 (16)  | C16—C17—C22—C21 | -179.93 (16) |
| C5—C6—C7—O2     | -179.60 (15) | C20—C21—C22—O5  | 179.81 (16)  |
| C5—C6—C7—C2     | 0.2 (3)      | C20—C21—C22—C17 | -0.5 (3)     |
| C2—C7—O2—C8     | 1.9 (2)      | C17—C22—O5—C23  | 1.6 (2)      |
| C6—C7—O2—C8     | -178.26 (15) | C21—C22—O5—C23  | -178.70 (15) |
| C7—O2—C8—C9     | -1.4 (2)     | C22—O5—C23—C24  | -0.8 (2)     |
| C7—O2—C8—C10    | 174.60 (14)  | C22—O5—C23—C25  | 179.34 (14)  |
| O2—C8—C9—O3     | 178.22 (15)  | O5—C23—C24—O6   | -178.93 (15) |
| C10—C8—C9—O3    | 2.8 (3)      | C25—C23—C24—O6  | 0.9 (3)      |
| O2—C8—C9—C1     | 0.4 (3)      | O5—C23—C24—C16  | -1.3 (3)     |
| C10—C8—C9—C1    | -175.02 (16) | C25—C23—C24—C16 | 178.54 (16)  |
| O1—C1—C9—C8     | 178.06 (16)  | O4—C16—C24—C23  | -177.03 (17) |
| C2-C1-C9-C8     | 0.1 (2)      | C17—C16—C24—C23 | 2.5 (2)      |
| O1—C1—C9—O3     | 0.2 (3)      | O4—C16—C24—O6   | 0.7 (3)      |
| C2—C1—C9—O3     | -177.70 (14) | C17—C16—C24—O6  | -179.83 (15) |
| C9—C8—C10—C11   | -49.9 (3)    | C24—C23—C25—C26 | -124.8 (2)   |
| O2-C8-C10-C11   | 134.25 (17)  | O5—C23—C25—C26  | 55.0 (2)     |
| C9—C8—C10—C15   | 128.9 (2)    | C24—C23—C25—C30 | 54.9 (3)     |
| O2—C8—C10—C15   | -46.9 (2)    | O5—C23—C25—C30  | -125.27 (19) |
| C15-C10-C11-F1  | 176.51 (17)  | C30—C25—C26—F2  | -177.54 (18) |
| C8—C10—C11—F1   | -4.6 (3)     | C23—C25—C26—F2  | 2.2 (3)      |
| C15—C10—C11—C12 | -2.0 (3)     | C30—C25—C26—C27 | 0.6 (3)      |
| C8—C10—C11—C12  | 176.81 (19)  | C23—C25—C26—C27 | -179.67 (19) |
| F1-C11-C12-C13  | -178.09 (19) | F2-C26-C27-C28  | 178.68 (19)  |
| C10-C11-C12-C13 | 0.5 (3)      | C25—C26—C27—C28 | 0.5 (3)      |
| C11—C12—C13—C14 | 1.1 (3)      | C26—C27—C28—C29 | -1.0 (3)     |
| C12—C13—C14—C15 | -0.9 (4)     | C27—C28—C29—C30 | 0.3 (4)      |
| C13—C14—C15—C10 | -0.7 (3)     | C28—C29—C30—C25 | 0.9 (4)      |
| C11—C10—C15—C14 | 2.1 (3)      | C26—C25—C30—C29 | -1.3 (3)     |
| C8-C10-C15-C14  | -176.75 (19) | C23—C25—C30—C29 | 179.0 (2)    |

# Hydrogen-bond geometry (Å, °)

| D—H···A                           | D—H  | H···A | D···A       | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|------|-------|-------------|-------------------------|
| O3—H3 <i>A</i> ···O4 <sup>i</sup> | 0.83 | 1.91  | 2.6813 (18) | 154                     |
| 06—H6A…O1 <sup>ii</sup>           | 0.83 | 2.04  | 2.8112 (18) | 154                     |

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2.