ISSN 2414-3146

Received 19 September 2018
Accepted 19 October 2018

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; diazene; a doubtful polymorph; hydrogen bonds; $\pi-\pi$ stacking.

CCDC reference: 1874263
Structural data: full structural data are available from iucrdata.iucr.org

(Z)-1,2-Bis(3-bromophenyl)diazene 1-oxide

Shailesh K. Goswami, Lyall R. Hanton, C. John McAdam, Stephen C. Moratti and Jim Simpson*

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand. *Correspondence e-mail: jsimpson@alkali.otago.ac.nz

The title compound $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$, lies on an inversion centre in the space group $P 2_{1} / n$. Doubts are cast on the report of a polymorph of this structure in the noncentrosymmetric space group $P 2_{1}$ [Zhu, R.-T., Liu, J.-C., Jin, S., Liu, B. \& Guo J.P. (2006). Hecheng Huaxue (Chin. J. Synth. Chem.) 14, 591] as ADDSYM alerts point strongly to a centrosymmetric structure. In the crystal, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds together with offset $\pi-\pi$ interactions stack the molecules along the a-axis direction.

Chemical scheme

Structure description

The title azoxybenzene was prepared by the reduction of 1-bromo-3-nitrobenzene. It readily undergoes a benzidine rearrangement to provide a useful precursor for substituted biphenyl diamines (Chen et al., 2011; Li et al., 2012).

The Cambridge Structural Database (CSD, version 5.39, November 2017, with four updates; Groom et al., 2016) reveals what appears to be a polymorph of the title compound, SIYHAK, with data collected at 293 (2) K in the non-centrosymmetric spacegroup $P 2_{1}$ (Zhu et al., 2006). However, the CIF from this deposition generates significant ADDSYM alerts, suggesting that the correct spacegroup is $P 2_{1} / n$ as was found in the refinement reported here. It appears, therefore, that the earlier report is not a polymorph of the structure reported here but that they are in fact the same structures.

The title (Z)-diazene derivative, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$ (I), lies about an inversion centre located at the mid-point of the $\mathrm{N} 1=\mathrm{N} 1$ diazene bond with the oxide O 1 atom disordered in equal occupancy about this centre. Each diazene nitrogen atom also carries a 3-bromobenzene ring (Fig. 1). The $\mathrm{BrC}_{6} \mathrm{NO}$ half of the molecule is almost planar with an r.m.s. deviation of only $0.0009 \AA$. Furthermore, the coplanar benzene rings are inclined to the $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 1$ plane by $9.7(7)^{\circ}$. An intramolecular $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bond (Table 1) supports this planarity. The $\mathrm{N} 1=\mathrm{N} 1^{i}$ distance observed here $[1.274$ (9) \AA,

Figure 1
The molecular structure of (I) showing the atom numbering with ellipsoids drawn at the 50% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operation $-x+1,-y+1,-z+1$. An intramolecular hydrogen bond is drawn as a dotted black line. In this and subsequent figures, the equivalent disorder component of the O1 atom is not shown.
symmetry code: (i) $1-x, 1-y, 1-z]$ is not strikingly different from those observed in the two unique molecules of the supposed monoclinic polymorph $[1.263$ (5) and 1.264 (5) Å; Zhu et al., 2006], especially taking into account the significant variation in the temperatures at which the data were collected. Furthermore, this distance is also similar to the mean value, 1.27 (5) \AA, observed for the 42 other similar diazene structures found in the CSD. These include the structure of the chloro analogue of (I), (Z)-1,2-bis(3-chlorophenyl)diazene 1-oxide (Jose Kavitha et al., 2003).

In the crystal structure, $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$ contacts link the molecules into $C(6)$ chains along the b-axis direction and combine with weaker $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Br} 3$ hydrogen bonds that form $C(12)$ chains, generating sheets of molecules along the $a c$ diagonal (Table 1, Fig. 2). Offset $\pi-\pi$ stacking interactions with centroid-to-centroid distances of 3.894 (3) \AA occur between adjacent bromobenzene rings, generating a threedimensional network of molecules stacked along the a-axis direction (Fig. 3).

Figure 2
Sheets of molecules of (I) with hydrogen bonds shown as blue dashed lines.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {i }}$	0.95	2.07	$2.722(7)$	124
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{\text {ii }}$	0.95	2.39	3.199 (8)	143
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Br}^{\text {iii }}$	0.95	3.11	3.974 (5)	151
Symmetry codes:	(i)	$-x+1,-y+1,-z+1 ;$	(ii) $-x,-y,-z+1 ;$	(iii)
$-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.				

Table 2
Experimental details.

Crystal data

Chemical formula $M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, b, c(\mathrm{~A})$
$\beta\left({ }^{\circ}{ }^{\circ}{ }^{3}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.049,0.137,1.00$
No. of reflections 1171
No. of parameters
82
H -atom treatment
H -atom parameters constrained $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$
356.02
Monoclinic, $P 2_{1} / n$
90
3.8938 (2), 5.8223 (3), 25.8645 (16)
92.044 (5)
586.00 (6)
2
$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
8.65
$0.38 \times 0.19 \times 0.08$

Agilent SuperNova, Dual, Cu at
\quad zero, Atlas
Multi-scan $(C r y s$ Alis $P R O$;
\quad Agilent, 2014)
$0.334,1.000$
$3440,1171,1128$
0.036
0.626

$0.049,0.137,1.00$
1171
82
H-atom parameters constrained
$0.85,-0.99$

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), TITAN (Hunter \& Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

Figure 3
Overall packing of (I) viewed along the a-axis direction. Representative $\pi-\pi$ contacts are shown as dotted green lines with ring centroids drawn as red spheres.

Synthesis and crystallization

The title compound was synthesized from 1-bromo-3-nitrobenzene following a literature procedure (Chen et al., 2011). Crystals suitable for the X-ray analysis were grown by evaporation from diethyl ether solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The molecule of (I) lies about an inversion centre located at the midpoint of the $\mathrm{N} 1=\mathrm{N} 1$ bond with the oxide O 1 atom disordered in equal occupancy about this centre.

Funding information

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOOX1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago, for the support of his work.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Chen, J.-C., Liu, Y.-C., Ju, J.-J., Chiang, C.-J. \& Chern, Y.-T. (2011). Polymer, 52, 954-964.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hunter, K. A. \& Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
Jose Kavitha, S., Chandrasekar, S. \& Panchanatheswaran, K. (2003). Acta Cryst. E59, o947-o949.
Li, Y., Chu, Y., Fang, R., Ding, S., Wang, Y., Shen, Y. \& Zheng, A. (2012). Polymer, 53, 229-240.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhu, R.-T., Liu, J.-C., Jin, S., Liu, B. \& Guo, J.-P. (2006). Hecheng Ниахие, 14, 591-593.

full crystallographic data

IUCrData (2018). 3, x181486 [https://doi.org/10.1107/S2414314618014864]

(Z)-1,2-Bis(3-bromophenyl)diazene 1-oxide

Shailesh K. Goswami, Lyall R. Hanton, C. John McAdam, Stephen C. Moratti and Jim Simpson

(Z)-1,2-Bis(3-bromophenyl)diazene 1-oxide

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=356.02$
Monoclinic, $P 2_{1} / n$
$a=3.8938$ (2) À
$b=5.8223$ (3) \AA
$c=25.8645(16) \AA$
$\beta=92.044$ (5) ${ }^{\circ}$
$V=586.00(6) \AA^{3}$
$Z=2$

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer
Radiation source: SuperNova (Cu) X-ray Source
Detector resolution: 5.1725 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
$T_{\min }=0.334, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.137$
$S=1.00$
1171 reflections
82 parameters
0 restraints
$F(000)=344$
$D_{\mathrm{x}}=2.018 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 2305 reflections
$\theta=7.6-74.4^{\circ}$
$\mu=8.65 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Plate, yellow
$0.38 \times 0.19 \times 0.08 \mathrm{~mm}$

3440 measured reflections
1171 independent reflections
1128 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=74.9^{\circ}, \theta_{\text {min }}=6.9^{\circ}$
$h=-4 \rightarrow 4$
$k=-7 \rightarrow 5$
$l=-31 \rightarrow 30$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$	Occ. (<1)
O1	$0.224(2)$	$0.2546(11)$	$0.4785(2)$	$0.0334(16)$	0.5
N1	$0.4136(12)$	$0.4117(7)$	$0.50608(16)$	$0.0311(9)$	
C1	$0.3955(13)$	$0.3550(8)$	$0.56013(19)$	$0.0275(10)$	
C2	$0.5144(10)$	$0.4990(6)$	$0.60040(15)$	$0.0184(8)$	
H2	0.618227	0.642861	0.593489	0.022^{*}	

C3	$0.4750(11)$	$0.4241(7)$	$0.65016(17)$	$0.0211(8)$
Br3	$0.63666(13)$	$0.61575(9)$	$0.70533(2)$	$0.0335(3)$
C4	$0.3228(12)$	$0.2162(8)$	$0.6618(2)$	$0.0321(11)$
H4	0.298842	0.170406	0.696715	0.038^{*}
C5	$0.2071(14)$	$0.0774(8)$	$0.6218(3)$	$0.0407(14)$
H5	0.102440	-0.065852	0.629059	0.049^{*}
C6	$0.2435(14)$	$0.1471(8)$	$0.5705(3)$	$0.0391(14)$
H6	0.163488	0.051244	0.542931	0.047^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.049(4)$	$0.030(3)$	$0.020(3)$	$-0.021(3)$	$-0.008(3)$	$-0.003(2)$
N1	$0.036(2)$	$0.0327(19)$	$0.024(2)$	$0.0138(16)$	$-0.0080(17)$	$-0.0113(15)$
C1	$0.025(2)$	$0.028(2)$	$0.029(2)$	$0.0114(18)$	$-0.0094(18)$	$-0.0117(17)$
C2	$0.020(2)$	$0.0133(17)$	$0.0217(19)$	$0.0007(14)$	$-0.0023(15)$	$-0.0010(14)$
C3	$0.018(2)$	$0.0245(19)$	$0.021(2)$	$0.0052(16)$	$0.0023(15)$	$-0.0020(15)$
Br3	$0.0287(4)$	$0.0520(4)$	$0.0192(4)$	$0.0121(2)$	$-0.0056(2)$	$-0.01095(18)$
C4	$0.026(2)$	$0.024(2)$	$0.047(3)$	$0.0106(18)$	$0.0119(19)$	$0.019(2)$
C5	$0.021(3)$	$0.0147(19)$	$0.087(5)$	$-0.0004(17)$	$0.008(3)$	$0.006(2)$
C6	$0.022(2)$	$0.025(2)$	$0.069(4)$	$0.0057(18)$	$-0.013(2)$	$-0.022(2)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{N} 1$	1.360 (7)	C3-C4	1.385 (6)
$\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	1.274 (9)	$\mathrm{C} 3-\mathrm{Br} 3$	1.901 (4)
N1-C1	1.440 (7)	$\mathrm{C} 4-\mathrm{C} 5$	1.375 (9)
C1-C6	1.378 (8)	C4-H4	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	1.403 (6)	C5-C6	1.399 (10)
C2-C3	1.373 (6)	C5-H5	0.9500
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	C6-H6	0.9500
N1 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{O} 1$	134.0 (6)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 3$	118.9 (4)
N1 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{C} 1$	118.0 (5)	C5-C4-C3	118.8 (5)
O1-N1-C1	108.0 (5)	C5-C4-H4	120.6
C6- $\mathrm{C} 1-\mathrm{C} 2$	120.8 (5)	C3-C4-H4	120.6
C6-C1-N1	115.3 (4)	C4-C5-C6	120.0 (4)
C2-C1-N1	123.9 (4)	C4-C5-H5	120.0
C3-C2-C1	117.5 (4)	C6-C5-H5	120.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	121.3	C1-C6-C5	119.9 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.3	C1-C6-H6	120.0
C2-C3-C4	122.9 (4)	C5-C6-H6	120.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	118.2 (3)		
N1- ${ }^{\text {i }} 1$ 1- ${ }^{\text {C1- }}$ - 6	-172.0 (5)	C1-C2-C3-Br3	179.7 (3)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	9.0 (6)	C2-C3-C4-C5	0.3 (7)
N1 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	9.4 (8)	Br3-C3-C4-C5	-179.8 (4)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-169.6 (5)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	-0.1 (7)

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.4(6)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.1(7)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.9(4)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.8(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.5(6)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.0(7)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.07	$2.722(7)$	124
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{\mathrm{ii}}$	0.95	2.39	$3.199(8)$	143
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{Br}^{\mathrm{iii}}{ }^{\mathrm{ii}}$	0.95	3.11	$3.974(5)$	151

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y,-z+1$; (iii) $-x+1 / 2, y-1 / 2,-z+3 / 2$.

