IUCrData

ISSN 2414-3146

Received 26 September 2018 Accepted 28 September 2018

Edited by J. Simpson, University of Otago, New Zealand

‡ Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Keywords: crystal structure; indole; thiazole; hydrogen bonds.

CCDC reference: 1870513

Structural data: full structural data are available from iucrdata.iucr.org

5-[(4-Bromophenyl)diazenyl]-2-{2-[1-(1*H*-indol-3yl)ethylidene]hydrazinyl}-4-methylthiazole dimethylformamide hemisolvate

Gamal A. El-Hiti,^a* Bakr F. Abdel-Wahab,^{b,c} Mohammad Hayal Alotaibi,^d Emad Yousif,^e Amany S. Hegazy^f and Benson M. Kariuki^f‡

^aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, ^bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, ^dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, ^eDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq, and ^fSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK. *Correspondence e-mail: gelhiti@ksu.edu.sa

The asymmetric unit of the title compound, $2C_{20}H_{17}BrN_6S\cdot C_3H_7NO$, comprises two molecules of the thiazole derivative and one molecule of dimethylformamide (DMF) solvent. The twist angles between the planes through the bromophenyl, methylthiazolyl and indolyl groups are 10.1 (1) and 44.2 (1)°, respectively, for one molecule and 11.3 (1) and 1.6 (1)° for the other. In the crystal, N-H···N hydrogen bonds link four of the main molecules into tetramers. N-H···O bonds involving the DMF solvent molecule also occur.

Structure description

Heterocycles containing both thiazole and indole moieties have various biological activities (Gu *et al.*, 1999; Guggilapu *et al.*, 2017; Tantak *et al.*, 2017; Vaddula *et al.*, 2016). The crystal structure reported here was obtained as part of a study of this class of compounds.

The asymmetric unit of the title compound comprises two molecules of the thiazole $C_{20}H_{17}BrN_6S$, and one molecule of dimethylformamide (DMF) solvent (Fig. 1). The twist angles between the planes through the bromophenyl, methylthiazolyl and indolyl groups are 10.1 (1)° and 44.2 (1)° respectively for one molecule (C1–C20) and 11.3 (1)° and 1.6 (1)° for the other (C21–C40). N–H···N hydrogen-bonding contacts form rings of

An ORTEP representation of the asymmetric unit showing 50% probability ellipsoids.

four molecules within the crystal (Table 1, Fig. 2) with two of the molecules also forming N-H···O hydrogen bonds with neighbouring DMF solvent molecules.

Synthesis and crystallization

The title compound was synthesized by the reaction of 2-[1-(1H-indol-3-yl)ethylidene]hydrazinecarbothioamide and N'-(4-bromophenyl)-2-oxopropanehydrazonoyl chloride in refluxing ethanol (4 h) containing triethylamine as a base. Crystallization of the crude product using dimethylformamide as solvent gave colourless crystals (65%), m.p. 260°C (lit m.p. 260-261°C; Abdel-Gawad et al., 2010).

Figure 2

A segment of the crystal structure showing hydrogen-bonding contacts as dotted lines.

Table 1			
Hvdrogen-bond	geometry (Å.	°).

	•	·		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1\cdots O1$	0.86	2.08	2.782 (4)	138
$N6-H6A\cdots N9^{i}$	0.86	2.62	3.292 (4)	136
$N6-H6A\cdots N10^{i}$	0.86	2.42	3.234 (4)	159
$N12-H12\cdots N3^{ii}$	0.86	2.15	3.011 (4)	177

2C20H17BrN6S·C3H7NO

9.9957 (6), 14.5325 (9), 15.8353 (10)

 $0.25 \times 0.09 \times 0.04$

OD, 2015) 0.827, 1.000

19885, 10602, 5116

81.671 (5), 81.344 (5), 80.469 (5)

Rigaku Oxford Diffraction Super-

Gaussian (CrysAlis PRO; Rigaku

Nova, Dual, Cu at zero, Atlas

979.83

203

2

Triclinic, $P\overline{1}$

2225.7 (2)

Μο Κα

1.97

Symmetry codes: (i) -x, -y + 2, -z; (ii) x + 2, y, z.

Table 2 Experimental details.

Crystal data Chemical formula M_{r} Crystal system, space group Temperature (K) a, b, c (Å) γ (°) α. β $V(\mathring{A}^{3})$ Z Radiation type μ (mm⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R

R _{int}	0.036
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.701
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.145, 1.01
No. of reflections	10602
No. of parameters	556
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.49, -0.57

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

MHA thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (award No. 020-0180).

References

- Abdel-Gawad, H., Mohamed, H. A., Dawood, K. M. & Badria, F. A. (2010). Chem. Pharm. Bull. 58, 1529-1531.
- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Gu, X. H., Wan, X. Z. & Jiang, B. (1999). Bioorg. Med. Chem. Lett. 9, 569-572.

- Guggilapu, S. D., Guntuku, L., Reddy, T. S., Nagarsenkar, A., Sigalapalli, D. K., Naidu, V. G. M., Bhargava, S. K. & Bathini, N. B. (2017). *Eur. J. Med. Chem.* **138**, 83–95.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tantak, M. P., Mukherjee, D. D., Kumar, A., Chakrabarti, G. & Kumar, D. (2017). Anticancer Agents Med. Chem. 17, 442–455.
- Vaddula, B. R., Tantak, M. P., Sadana, R., Gonzalez, M. A. & Kumar, D. (2016). *Sci. Rep.* 6, 23401.

full crystallographic data

IUCrData (2018). **3**, x181378 [https://doi.org/10.1107/S2414314618013780]

5-[(4-Bromophenyl)diazenyl]-2-{2-[1-(1*H*-indol-3-yl)ethylidene]hydrazinyl}-4methylthiazole dimethylformamide hemisolvate

Gamal A. El-Hiti, Bakr F. Abdel-Wahab, Mohammad Hayal Alotaibi, Emad Yousif, Amany S. Hegazy and Benson M. Kariuki

5-[(4-Bromophenyl)diazenyl]-2-{2-[1-(1*H*-indol-3-yl)ethylidene]hydrazinyl}-4-methylthiazole dimethylformamide hemisolvate

Crystal data

 $2C_{20}H_{17}BrN_6S \cdot C_3H_7NO$ $M_r = 979.83$ Triclinic, *P*1 a = 9.9957 (6) Å b = 14.5325 (9) Å c = 15.8353 (10) Å $a = 81.671 (5)^{\circ}$ $\beta = 81.344 (5)^{\circ}$ $\gamma = 80.469 (5)^{\circ}$ $V = 2225.7 (2) Å^3$

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2015) $T_{\min} = 0.827, T_{\max} = 1.000$ 19885 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.145$ S = 1.0110602 reflections 556 parameters 0 restraints Z = 2 F(000) = 1000 $D_x = 1.462 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3549 reflections $\theta = 3.3-24.0^{\circ}$ $\mu = 1.97 \text{ mm}^{-1}$ T = 293 K Needle, colourless $0.25 \times 0.09 \times 0.04 \text{ mm}$

10602 independent reflections 5116 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 29.9^{\circ}, \ \theta_{min} = 1.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -18 \rightarrow 17$ $l = -20 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0515P)^2 + 0.5647P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.49$ e Å⁻³ $\Delta\rho_{min} = -0.57$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3683 (4)	0.4890 (3)	0.2966 (3)	0.0661 (11)	
C2	0.3605 (4)	0.5387 (3)	0.2167 (3)	0.0725 (12)	
H2	0.439015	0.542822	0.177384	0.087*	
C3	0.2340 (4)	0.5828 (3)	0.1951 (3)	0.0690 (12)	
Н3	0.227696	0.616794	0.141065	0.083*	
C4	0.1170 (3)	0.5764 (3)	0.2536 (2)	0.0553 (10)	
C5	0.1270 (4)	0.5278 (3)	0.3346 (2)	0.0686 (12)	
Н5	0.049302	0.524021	0.374718	0.082*	
C6	0.2539 (4)	0.4849 (3)	0.3554 (3)	0.0755 (13)	
H6	0.261508	0.452795	0.410069	0.091*	
C7	-0.2388 (3)	0.6543 (3)	0.2642 (2)	0.0503 (9)	
C8	-0.3603 (3)	0.6609 (3)	0.3284 (2)	0.0500 (9)	
C9	-0.3516 (4)	0.6225 (3)	0.4198 (2)	0.0662 (11)	
H9A	-0.296376	0.657467	0.443928	0.099*	
H9B	-0.310921	0.557619	0.423143	0.099*	
H9C	-0.441742	0.627509	0.451411	0.099*	
C10	-0.4547 (3)	0.7334 (3)	0.2135 (2)	0.0503 (9)	
C11	-0.7037 (4)	0.9302 (3)	0.0909 (3)	0.0775 (13)	
H11A	-0.787420	0.911240	0.081728	0.116*	
H11B	-0.702207	0.994822	0.067657	0.116*	
H11C	-0.697737	0.922945	0.151532	0.116*	
C12	-0.5837 (3)	0.8696 (3)	0.0466 (2)	0.0532 (9)	
C13	-0.5446 (3)	0.8901 (3)	-0.0446 (2)	0.0527 (9)	
C14	-0.5892 (4)	0.9712 (3)	-0.0958 (2)	0.0653 (11)	
H14	-0.649707	1.021779	-0.076243	0.078*	
C15	-0.4560 (3)	0.8309 (3)	-0.1020 (2)	0.0529 (9)	
C16	-0.4509 (4)	0.8814 (3)	-0.1848 (2)	0.0582 (10)	
C17	-0.3895 (4)	0.7384 (3)	-0.0925 (3)	0.0678 (11)	
H17	-0.389359	0.703829	-0.038236	0.081*	
C18	-0.3240 (4)	0.6987 (3)	-0.1647 (3)	0.0839 (14)	
H18	-0.281517	0.636563	-0.159192	0.101*	
C19	-0.3210 (4)	0.7514 (4)	-0.2458 (3)	0.0817 (14)	
H19	-0.275533	0.723225	-0.293336	0.098*	
C20	-0.3824 (4)	0.8428 (4)	-0.2583 (3)	0.0717 (12)	
H20	-0.378876	0.877400	-0.312612	0.086*	
C21	0.0369 (4)	0.8433 (3)	0.8874 (2)	0.0685 (12)	
C22	0.1724 (4)	0.8075 (3)	0.8889 (3)	0.0677 (11)	
H22	0.205456	0.785496	0.941102	0.081*	
C23	0.2595 (4)	0.8043 (3)	0.8127 (2)	0.0627 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Н73	0 351116	0 7780/0	0.813263	0.075*
C24	0.331110 0.2104 (4)	0.778949 0.8386 (3)	0.813203 0.7357(2)	0.075°
C25	0.2104(4)	0.8708(3)	0.7337(2) 0.7344(3)	0.0502(10)
U25	0.0725 (4)	0.801244	0.7344 (3)	0.0093 (12)
1125 C26	-0.0152(4)	0.871244	0.082330 0.8116 (3)	0.085°
U26	-0.108272	0.8723 (3)	0.8110 (3)	0.0752 (15)
П20 С27	-0.108272	0.893379	0.611442 0.5102 (2)	0.090°
C27	0.3334(3)	0.8955(5)	0.3193(2)	0.0314(9)
C28	0.5155(5)	0.9414(3)	0.4309(2)	0.0540(9)
C29	0.1725 (4)	0.9801(3)	0.4279 (3)	0.0703 (12)
H29A	0.14/110	1.035898	0.463550	0.105*
H29B	0.111992	0.939995	0.445346	0.105*
H29C	0.166113	1.011312	0.368891	0.105*
C30	0.5383 (3)	0.9026 (3)	0.3979 (2)	0.0514 (9)
C31	0.8812 (4)	0.8946 (3)	0.2322 (2)	0.0685 (12)
H31A	0.843492	0.855589	0.200746	0.103*
H31B	0.974539	0.898512	0.208218	0.103*
H31C	0.829083	0.956467	0.228339	0.103*
C32	0.8760 (4)	0.8529 (3)	0.3249 (2)	0.0523 (9)
C33	1.0005 (3)	0.8060 (3)	0.3569 (2)	0.0526 (9)
C34	1.1291 (4)	0.7972 (3)	0.3090 (2)	0.0624 (11)
H34	1.147138	0.821149	0.251346	0.075*
C35	1.0228 (3)	0.7596 (3)	0.4419 (2)	0.0507 (9)
C36	1.1629 (3)	0.7248 (3)	0.4387 (2)	0.0571 (10)
C37	0.9387 (4)	0.7430 (3)	0.5204 (2)	0.0646 (11)
H37	0.845420	0.765264	0.525577	0.077*
C38	0.9978 (4)	0.6929 (3)	0.5895 (3)	0.0821 (15)
H38	0.943053	0.681269	0.641737	0.099*
C39	1.1368 (4)	0.6592 (4)	0.5834 (3)	0.0864 (15)
H39	1.172934	0.625797	0.631515	0.104*
C40	1.2216 (4)	0.6739 (3)	0.5084 (3)	0.0726 (12)
H40	1.314643	0.650980	0.504184	0.087*
C41	0.0191 (5)	0.6113 (3)	-0.0223 (3)	0.0853 (14)
H41	-0.068023	0.636238	-0.035812	0.102*
C42	0.0817 (7)	0.5992 (4)	-0.1745 (3)	0.119 (2)
H42A	-0.012251	0.626721	-0.175802	0.178*
H42B	0.096583	0.539015	-0.195353	0.178*
H42C	0.139772	0.639613	-0.210323	0.178*
C43	0.2499 (6)	0.5465 (4)	-0.0693(4)	0.127 (2)
H43A	0.311572	0.591228	-0.090221	0.191*
H43B	0.278569	0.491202	-0.097807	0.191*
H43C	0.250381	0 529812	-0.008373	0 191*
N1	-0.0093(3)	0.6186(2)	0.22832(19)	0.0587(8)
H1	-0.015244	0.643112	0.175984	0.070*
N2	-0.1210(3)	0.6202(2)	0.28697 (18)	0.0538 (8)
N3	-0.4736(3)	0.0202(2) 0.7028(2)	0 30121 (17)	0.0531(8)
N4	-0 5533 (3)	0.7020(2) 0.7801(2)	0.17471(18)	0.0551(0)
N5	-0.5105(3)	0.7001(2)	0.08630 (18)	0.0556 (8)
NG	-0.5323(3)	0.7557(2)	-0.1780(2)	0.0550(0)
INU	0.3323 (3)	0.9008 (2)	0.1/09 (2)	0.0007 (9)

H6A	-0.545184	1.010379	-0.220975	0.080*	
N7	0.3037 (3)	0.8407 (2)	0.66017 (18)	0.0615 (9)	
H7	0.386501	0.813022	0.661312	0.074*	
N8	0.2636 (3)	0.8859(2)	0.58613 (19)	0.0547 (8)	
N9	0.4131 (3)	0.9447 (2)	0.37360 (18)	0.0552 (8)	
N10	0.6473 (3)	0.9013 (2)	0.34273 (18)	0.0553 (8)	
N11	0.7640 (3)	0.8559 (2)	0.37912 (17)	0.0543 (8)	
N12	1.2240 (3)	0.7495 (2)	0.3570 (2)	0.0676 (9)	
H12	1.309808	0.736557	0.339169	0.081*	
N13	0.1136 (4)	0.5873 (3)	-0.0864(2)	0.0866 (12)	
01	0.0371 (4)	0.6034 (3)	0.0529 (2)	0.1044 (12)	
S1	-0.28472 (9)	0.70423 (7)	0.16186 (5)	0.0551 (3)	
S2	0.53169 (9)	0.85338 (7)	0.50777 (6)	0.0563 (3)	
Br1	0.53923 (5)	0.42261 (4)	0.32500 (4)	0.0973 (2)	
Br2	-0.07975 (6)	0.84842 (4)	0.99418 (3)	0.1142 (3)	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.044 (2)	0.079 (3)	0.075 (3)	0.004 (2)	-0.0138 (19)	-0.018 (2)
0.046 (2)	0.094 (3)	0.073 (3)	-0.002 (2)	-0.0002 (19)	-0.013 (2)
0.048 (2)	0.089 (3)	0.061 (2)	0.000(2)	-0.0017 (18)	0.003 (2)
0.043 (2)	0.066 (3)	0.054 (2)	0.0027 (18)	-0.0023 (16)	-0.0114 (18)
0.049 (2)	0.098 (3)	0.053 (2)	0.001 (2)	-0.0032 (17)	-0.005 (2)
0.062 (3)	0.095 (3)	0.065 (3)	0.002 (2)	-0.016 (2)	-0.002 (2)
0.045 (2)	0.057 (2)	0.045 (2)	0.0013 (17)	-0.0023 (15)	-0.0073 (16)
0.046 (2)	0.055 (2)	0.042 (2)	0.0010 (17)	0.0028 (15)	-0.0020 (16)
0.062 (2)	0.085 (3)	0.042 (2)	0.007 (2)	-0.0015 (17)	-0.0022 (19)
0.0437 (19)	0.058 (2)	0.044 (2)	-0.0044 (17)	0.0026 (15)	-0.0010 (16)
0.063 (3)	0.092 (3)	0.060 (3)	0.015 (2)	0.0027 (19)	0.006 (2)
0.046 (2)	0.063 (3)	0.048 (2)	-0.0009 (18)	-0.0086 (16)	-0.0009 (18)
0.050(2)	0.062 (3)	0.042 (2)	-0.0020 (18)	-0.0095 (15)	0.0040 (17)
0.071 (3)	0.070 (3)	0.049 (2)	0.002 (2)	-0.0030 (19)	-0.0037 (19)
0.0446 (19)	0.064 (3)	0.048 (2)	-0.0047 (18)	-0.0088 (15)	-0.0014 (18)
0.051 (2)	0.076 (3)	0.048 (2)	-0.010 (2)	-0.0048 (17)	-0.0084 (19)
0.062 (2)	0.074 (3)	0.064 (3)	0.000 (2)	-0.006 (2)	-0.009 (2)
0.075 (3)	0.084 (3)	0.087 (4)	0.008 (3)	-0.002 (2)	-0.023 (3)
0.064 (3)	0.111 (4)	0.069 (3)	-0.010 (3)	0.010 (2)	-0.033 (3)
0.061 (2)	0.102 (4)	0.053 (3)	-0.019 (3)	-0.0021 (19)	-0.012 (2)
0.075 (3)	0.067 (3)	0.052 (2)	-0.004 (2)	0.014 (2)	-0.003 (2)
0.073 (3)	0.078 (3)	0.052 (2)	-0.018 (2)	-0.006 (2)	-0.004 (2)
0.048 (2)	0.085 (3)	0.054 (2)	-0.017 (2)	-0.0049 (17)	0.000 (2)
0.050 (2)	0.067 (3)	0.048 (2)	-0.0084 (19)	0.0041 (16)	-0.0063 (18)
0.055 (2)	0.084 (3)	0.058 (2)	0.007 (2)	-0.0014 (18)	0.001 (2)
0.055 (2)	0.088 (3)	0.066 (3)	0.008 (2)	0.010 (2)	0.002 (2)
0.0433 (19)	0.059 (2)	0.049 (2)	-0.0037 (17)	0.0014 (15)	-0.0069 (17)
0.045 (2)	0.062 (3)	0.054 (2)	-0.0048 (18)	-0.0076 (17)	-0.0051 (18)
0.047 (2)	0.085 (3)	0.072 (3)	0.000 (2)	-0.0087 (19)	0.003 (2)
	$\begin{array}{c} U^{11} \\ \hline 0.044 \ (2) \\ 0.046 \ (2) \\ 0.048 \ (2) \\ 0.043 \ (2) \\ 0.049 \ (2) \\ 0.062 \ (3) \\ 0.045 \ (2) \\ 0.062 \ (2) \\ 0.062 \ (2) \\ 0.063 \ (3) \\ 0.046 \ (2) \\ 0.063 \ (3) \\ 0.046 \ (2) \\ 0.050 \ (2) \\ 0.071 \ (3) \\ 0.0446 \ (19) \\ 0.051 \ (2) \\ 0.062 \ (2) \\ 0.075 \ (3) \\ 0.064 \ (3) \\ 0.064 \ (3) \\ 0.061 \ (2) \\ 0.075 \ (3) \\ 0.073 \ (3) \\ 0.048 \ (2) \\ 0.055 \ (2) \\ 0.055 \ (2) \\ 0.0433 \ (19) \\ 0.047 \ (2) \\ \end{array}$	U^{11} U^{22} 0.044 (2) 0.079 (3) 0.046 (2) 0.094 (3) 0.048 (2) 0.089 (3) 0.043 (2) 0.089 (3) 0.043 (2) 0.098 (3) 0.049 (2) 0.098 (3) 0.042 (3) 0.095 (3) 0.045 (2) 0.057 (2) 0.046 (2) 0.055 (2) 0.062 (2) 0.085 (3) 0.0437 (19) 0.058 (2) 0.063 (3) 0.092 (3) 0.046 (2) 0.063 (3) 0.050 (2) 0.062 (3) 0.071 (3) 0.070 (3) 0.046 (19) 0.064 (3) 0.051 (2) 0.076 (3) 0.064 (3) 0.111 (4) 0.064 (3) 0.111 (4) 0.064 (3) 0.111 (4) 0.075 (3) 0.078 (3) 0.048 (2) 0.085 (3) 0.050 (2) 0.067 (3) 0.055 (2) 0.088 (3) 0.0433 (19) 0.059 (2) 0.047 (2) 0.085 (3)	U^{11} U^{22} U^{33} 0.044 (2)0.079 (3)0.075 (3)0.046 (2)0.094 (3)0.073 (3)0.048 (2)0.089 (3)0.061 (2)0.043 (2)0.066 (3)0.054 (2)0.049 (2)0.098 (3)0.053 (2)0.062 (3)0.095 (3)0.065 (3)0.045 (2)0.057 (2)0.045 (2)0.046 (2)0.055 (2)0.042 (2)0.062 (2)0.085 (3)0.042 (2)0.063 (3)0.092 (3)0.044 (2)0.063 (3)0.092 (3)0.060 (3)0.046 (2)0.063 (3)0.048 (2)0.050 (2)0.062 (3)0.042 (2)0.071 (3)0.070 (3)0.049 (2)0.0446 (19)0.064 (3)0.048 (2)0.051 (2)0.076 (3)0.048 (2)0.062 (2)0.074 (3)0.064 (3)0.075 (3)0.084 (3)0.087 (4)0.064 (3)0.111 (4)0.069 (3)0.075 (3)0.067 (3)0.052 (2)0.073 (3)0.078 (3)0.052 (2)0.073 (3)0.078 (3)0.052 (2)0.055 (2)0.084 (3)0.058 (2)0.055 (2)0.088 (3)0.066 (3)0.0433 (19)0.059 (2)0.049 (2)0.045 (2)0.062 (3)0.054 (2)0.045 (2)0.062 (3)0.054 (2)0.045 (2)0.055 (2)0.088 (3)0.055 (2)0.088 (3)0.066 (3)0.045 (2)0.055 (2)0.085 (3)0.055 (2)0.088 (3)0.054 (2)0.045 (2) <td>$U^{11}$$U^{22}$$U^{33}$$U^{12}$0.044 (2)0.079 (3)0.075 (3)0.004 (2)0.046 (2)0.094 (3)0.073 (3)$-0.002 (2)$0.048 (2)0.089 (3)0.061 (2)0.000 (2)0.043 (2)0.066 (3)0.054 (2)0.0027 (18)0.049 (2)0.098 (3)0.053 (2)0.001 (2)0.062 (3)0.095 (3)0.065 (3)0.002 (2)0.045 (2)0.057 (2)0.045 (2)0.0010 (17)0.062 (2)0.055 (2)0.042 (2)0.0010 (17)0.062 (2)0.085 (3)0.042 (2)0.007 (2)0.0437 (19)0.058 (2)0.044 (2)$-0.0044 (17)$0.063 (3)0.092 (3)0.060 (3)0.015 (2)0.046 (2)0.062 (3)0.042 (2)$-0.0009 (18)$0.050 (2)0.062 (3)0.048 (2)$-0.0009 (18)$0.051 (2)0.076 (3)0.048 (2)$-0.0047 (18)$0.051 (2)0.076 (3)0.048 (2)$-0.010 (2)$0.064 (3)0.111 (4)0.069 (3)$-0.010 (3)$0.064 (3)0.111 (4)0.069 (3)$-0.010 (3)$0.064 (3)0.078 (3)0.052 (2)$-0.004 (2)$0.073 (3)0.078 (3)0.054 (2)$-0.0084 (19)$0.055 (2)0.084 (3)0.058 (2)$-0.007 (2)$0.055 (2)0.088 (3)0.066 (3)0.008 (2)0.043 (19)0.059 (2)0.049 (2)$-0.0037 (17)$0.045 (2)0.062 (3)0.054 (2)$-0.0037 (17)$0.045 (2)0.062 (3)</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	U^{11} U^{22} U^{33} U^{12} 0.044 (2)0.079 (3)0.075 (3)0.004 (2)0.046 (2)0.094 (3)0.073 (3) $-0.002 (2)$ 0.048 (2)0.089 (3)0.061 (2)0.000 (2)0.043 (2)0.066 (3)0.054 (2)0.0027 (18)0.049 (2)0.098 (3)0.053 (2)0.001 (2)0.062 (3)0.095 (3)0.065 (3)0.002 (2)0.045 (2)0.057 (2)0.045 (2)0.0010 (17)0.062 (2)0.055 (2)0.042 (2)0.0010 (17)0.062 (2)0.085 (3)0.042 (2)0.007 (2)0.0437 (19)0.058 (2)0.044 (2) $-0.0044 (17)$ 0.063 (3)0.092 (3)0.060 (3)0.015 (2)0.046 (2)0.062 (3)0.042 (2) $-0.0009 (18)$ 0.050 (2)0.062 (3)0.048 (2) $-0.0009 (18)$ 0.051 (2)0.076 (3)0.048 (2) $-0.0047 (18)$ 0.051 (2)0.076 (3)0.048 (2) $-0.010 (2)$ 0.064 (3)0.111 (4)0.069 (3) $-0.010 (3)$ 0.064 (3)0.111 (4)0.069 (3) $-0.010 (3)$ 0.064 (3)0.078 (3)0.052 (2) $-0.004 (2)$ 0.073 (3)0.078 (3)0.054 (2) $-0.0084 (19)$ 0.055 (2)0.084 (3)0.058 (2) $-0.007 (2)$ 0.055 (2)0.088 (3)0.066 (3)0.008 (2)0.043 (19)0.059 (2)0.049 (2) $-0.0037 (17)$ 0.045 (2)0.062 (3)0.054 (2) $-0.0037 (17)$ 0.045 (2)0.062 (3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C30	0.047 (2)	0.061 (2)	0.042 (2)	-0.0024 (18)	-0.0027 (15)	-0.0036 (17)
C31	0.059 (2)	0.091 (3)	0.050 (2)	-0.012 (2)	0.0064 (17)	-0.002 (2)
C32	0.050 (2)	0.056 (2)	0.048 (2)	-0.0083 (17)	0.0035 (16)	-0.0056 (17)
C33	0.0415 (19)	0.063 (3)	0.051 (2)	-0.0071 (17)	0.0041 (15)	-0.0095 (18)
C34	0.050 (2)	0.077 (3)	0.054 (2)	-0.007 (2)	0.0087 (18)	-0.007 (2)
C35	0.0411 (19)	0.062 (2)	0.048 (2)	-0.0073 (17)	0.0018 (15)	-0.0093 (17)
C36	0.042 (2)	0.070 (3)	0.056 (2)	-0.0045 (18)	0.0043 (17)	-0.0122 (19)
C37	0.044 (2)	0.088 (3)	0.055 (2)	0.002 (2)	0.0014 (17)	-0.005 (2)
C38	0.054 (2)	0.127 (4)	0.053 (3)	0.002 (3)	0.0039 (19)	0.002 (2)
C39	0.057 (3)	0.122 (4)	0.070 (3)	0.008 (3)	-0.013 (2)	0.004 (3)
C40	0.046 (2)	0.094 (3)	0.072 (3)	0.007 (2)	-0.007 (2)	-0.012 (2)
C41	0.099 (4)	0.082 (3)	0.069 (3)	-0.011 (3)	0.001 (3)	-0.005 (3)
C42	0.177 (6)	0.129 (5)	0.061 (3)	-0.060 (4)	-0.002 (3)	-0.019 (3)
C43	0.117 (5)	0.124 (5)	0.121 (5)	0.018 (4)	0.016 (4)	-0.023 (4)
N1	0.0427 (17)	0.076 (2)	0.0501 (18)	0.0044 (15)	-0.0012 (13)	-0.0040 (15)
N2	0.0424 (17)	0.063 (2)	0.0523 (18)	0.0013 (15)	-0.0014 (13)	-0.0090 (14)
N3	0.0461 (17)	0.064 (2)	0.0405 (17)	0.0002 (15)	0.0037 (12)	0.0017 (14)
N4	0.0459 (17)	0.072 (2)	0.0462 (18)	0.0031 (16)	-0.0017 (13)	0.0045 (15)
N5	0.0464 (16)	0.069 (2)	0.0433 (17)	0.0012 (15)	-0.0023 (13)	0.0034 (14)
N6	0.078 (2)	0.067 (2)	0.048 (2)	-0.0081 (19)	-0.0084 (16)	0.0102 (15)
N7	0.0465 (17)	0.082 (2)	0.0475 (19)	-0.0003 (16)	0.0031 (13)	-0.0008 (16)
N8	0.0475 (17)	0.064 (2)	0.0500 (19)	-0.0058 (15)	0.0004 (14)	-0.0064 (15)
N9	0.0444 (17)	0.070 (2)	0.0475 (18)	-0.0042 (15)	-0.0061 (13)	0.0009 (15)
N10	0.0461 (17)	0.071 (2)	0.0439 (17)	-0.0053 (15)	-0.0013 (13)	0.0015 (14)
N11	0.0433 (16)	0.072 (2)	0.0419 (16)	-0.0020 (15)	0.0003 (13)	-0.0008 (14)
N12	0.0408 (17)	0.088 (3)	0.065 (2)	-0.0022 (17)	0.0134 (15)	-0.0103 (18)
N13	0.105 (3)	0.092 (3)	0.060 (2)	-0.019 (2)	0.004 (2)	-0.011 (2)
01	0.112 (3)	0.133 (3)	0.055 (2)	0.007 (2)	-0.0013 (17)	-0.0048 (19)
S1	0.0430 (5)	0.0724 (7)	0.0417 (5)	0.0009 (4)	0.0030 (4)	0.0005 (4)
S2	0.0450 (5)	0.0737 (7)	0.0425 (5)	0.0020 (5)	-0.0005 (4)	0.0007 (4)
Br1	0.0541 (3)	0.1219 (5)	0.1132 (4)	0.0158 (3)	-0.0292 (3)	-0.0197 (3)
Br2	0.1249 (5)	0.1113 (5)	0.0695 (3)	0.0243 (4)	0.0413 (3)	0.0070 (3)

Geometric parameters (Å, °)

C1—C6	1.365 (6)	С25—Н25	0.9300
C1—C2	1.369 (6)	C26—H26	0.9300
C1—Br1	1.901 (3)	C27—N8	1.284 (4)
С2—С3	1.387 (5)	C27—C28	1.461 (5)
С2—Н2	0.9300	C27—S2	1.771 (3)
C3—C4	1.384 (5)	C28—N9	1.292 (4)
С3—Н3	0.9300	C28—C29	1.485 (5)
C4—C5	1.382 (5)	C29—H29A	0.9600
C4—N1	1.398 (4)	C29—H29B	0.9600
С5—С6	1.382 (5)	C29—H29C	0.9600
С5—Н5	0.9300	C30—N10	1.290 (4)
С6—Н6	0.9300	C30—N9	1.382 (4)
C7—N2	1.283 (4)	C30—S2	1.778 (3)

C7—C8	1.461 (4)	C31—C32	1.501 (5)
C7—S1	1.771 (3)	C31—H31A	0.9600
C8—N3	1.297 (4)	C31—H31B	0.9600
C8—C9	1.484 (5)	C31—H31C	0.9600
С9—Н9А	0.9600	C32—N11	1.303 (4)
С9—Н9В	0.9600	C32—C33	1.443 (5)
С9—Н9С	0.9600	C33—C34	1.387 (5)
C10—N4	1.284 (4)	C33—C35	1.447 (5)
C10—N3	1.390 (4)	C34—N12	1.344 (5)
C10—S1	1.783 (3)	C34—H34	0.9300
C11—C12	1.510 (5)	C35—C36	1.404 (5)
C11—H11A	0.9600	C35—C37	1.406 (5)
С11—Н11В	0.9600	C36—N12	1.370 (5)
C11—H11C	0.9600	C36—C40	1.388 (5)
C12—N5	1.292 (4)	C37—C38	1.378 (5)
C12—C13	1.441 (5)	C37—H37	0.9300
C13—C14	1.379 (5)	C38—C39	1.389 (5)
C13—C15	1.442 (5)	C38—H38	0.9300
C14—N6	1.358 (5)	C39—C40	1.363 (6)
C14—H14	0.9300	C39—H39	0.9300
C15—C17	1.396 (5)	C40—H40	0.9300
C15—C16	1.405 (5)	C41—O1	1.217 (5)
C16—N6	1.373 (5)	C41—N13	1.321 (6)
C16—C20	1.400 (5)	C41—H41	0.9300
C17—C18	1.382 (6)	C42—N13	1.458 (6)
C17—H17	0.9300	C42—H42A	0.9600
C18-C19	1,397 (6)	C42—H42B	0.9600
C18—H18	0.9300	C42—H42C	0.9600
$C_{19} - C_{20}$	1 367 (6)	C43—N13	1 442 (6)
C19—H19	0.9300	C43—H43A	0.9600
C20—H20	0.9300	C43—H43B	0.9600
C_{21} C_{26}	1 363 (6)	C43 - H43C	0.9600
C21—C22	1.370 (6)	N1—N2	1.340 (4)
C_{21} —Br ²	1 908 (4)	N1—H1	0.8600
C^{22} C^{23}	1.300(1) 1.380(5)	N4—N5	1403(4)
C22—H22	0.9300	N6—H6A	0.8600
C23—C24	1.378 (5)	N7—N8	1.341 (4)
C23—H23	0.9300	N7—H7	0.8600
C_{24} C_{25}	1.382 (5)	N10—N11	1.401 (4)
C24—N7	1401(4)	N12—H12	0.8600
C_{25} C_{26}	1 394 (5)		0.0000
025 020	1.591 (5)		
C6-C1-C2	120.7 (3)	C28—C27—S2	109.2(2)
C6-C1-Br1	119.6 (3)	N9—C28—C27	116.2 (3)
C2-C1-Br1	119.7 (3)	N9—C28—C29	122.4(3)
C1-C2-C3	119.1 (4)	C27-C28-C29	121.3 (3)
C1—C2—H2	120.4	C28—C29—H29A	109.5
C3—C2—H2	120.4	C28—C29—H29B	109.5

C4—C3—C2	120.4 (4)	H29A—C29—H29B	109.5
С4—С3—Н3	119.8	С28—С29—Н29С	109.5
С2—С3—Н3	119.8	H29A—C29—H29C	109.5
C5—C4—C3	119.7 (3)	H29B—C29—H29C	109.5
C5—C4—N1	121.5 (3)	N10—C30—N9	120.3 (3)
C3—C4—N1	118.8 (3)	N10-C30-S2	125.4 (3)
C4—C5—C6	119.1 (4)	N9—C30—S2	114.4 (2)
C4—C5—H5	120.4	C32—C31—H31A	109.5
C6-C5-H5	120.4	C32—C31—H31B	109.5
C1 - C6 - C5	120.8 (4)	H31A-C31-H31B	109.5
C1-C6-H6	119.6	C_{32} C_{31} $H_{31}C$	109.5
C5—C6—H6	119.6	$H_{31}A = C_{31} = H_{31}C$	109.5
N_{2} C_{7} C_{8}	120.3 (3)	H_{31B} C_{31} H_{31C}	109.5
$N_2 - C_7 - S_1$	120.3(3) 130.1(3)	N11-C32-C33	107.5 117.2(3)
C8-C7-S1	109.5(2)	N11 - C32 - C33	117.2(3) 123.7(3)
N3-C8-C7	109.5(2) 116 5 (3)	C_{33} C_{32} C_{31}	123.7(3) 1191(3)
N3 - C8 - C9	122 6 (3)	C_{34} C_{33} C_{32}	119.1(3) 125.2(3)
C7 - C8 - C9	122.0(3) 120.8(3)	$C_{34} = C_{33} = C_{35}$	123.2(3) 1049(3)
$C_{1} = C_{2} = C_{2}$	109.5	C_{32} C_{33} C_{35} C_{35}	104.9(3) 130.0(3)
$C_8 - C_9 - H_9B$	109.5	N12-C34-C33	110.0(3)
H9A - C9 - H9B	109.5	N12-C34-H34	174.6
$C_8 - C_9 - H_9C$	109.5	C_{33} C_{34} H_{34}	124.0
$H_{0}A = C_{0} = H_{0}C$	109.5	$C_{35} = C_{35} = C_{37}$	127.0 117.9(3)
HOR CO HOC	109.5	$C_{36} = C_{35} = C_{37}$	107.1(3)
N_{4} C10 N3	107.5 121.4(3)	$C_{30} = C_{33} = C_{33}$	107.1(3) 135.0(3)
N4 C10 S1	121.4(3) 123.9(3)	$N_{12} C_{36} C_{40}$	133.0(3) 128.8(3)
$N_3 = C_{10} = S_1$	125.7(3) 114.7(2)	N12 C36 C35	120.0(3) 107.7(3)
13 - 10 - 31	109.5	C_{40} C_{36} C_{35}	107.7(3) 123.4(3)
$C_{12} = C_{11} = H_{11}R$	109.5	$C_{+0} = C_{-0} = C$	123.4(3) 118.4(3)
$H_{11A} = C_{11} = H_{11B}$	109.5	$C_{38} = C_{37} = C_{35}$	120.8
C_{12} C_{11} $H_{11}C$	109.5	$C_{35} = C_{37} = H_{37}$	120.0
	109.5	$C_{35} = C_{37} = H_{37}$	120.0 121.8(A)
H11B C11 H11C	109.5	$C_{37} = C_{38} = C_{39}$	121.0 (4)
N5 C12 C13	1167(3)	$C_{30} C_{38} H_{38}$	119.1
N5 C12 C11	110.7(3) 123.7(3)	$C_{39} = C_{38} = 1138$	119.1 121.6(A)
$C_{12} = C_{12} = C_{11}$	123.7(3) 110.6(3)	$C_{40} = C_{39} = C_{38}$	121.0 (4)
$C_{13} = C_{12} = C_{11}$	119.0 (3)	$C_{40} = C_{59} = H_{59}$	119.2
$C_{14} = C_{13} = C_{12}$	120.1(3) 105.7(3)	$C_{30} = C_{40} = C_{36}$	119.2 116.0 (3)
$C_{12} = C_{13} = C_{15}$	105.7(3) 128.2(3)	$C_{39} = C_{40} = C_{30}$	121.5
N6 C14 C13	120.2(3) 1104(3)	$C_{35} = C_{40} = H_{40}$	121.5
N6 C14 H14	124.8	$C_{30} - C_{40} - 1140$	121.3 125.2(5)
110 - 14 - 1114	124.8	01 - C41 - H41	123.2(3)
$C_{13} - C_{14} - 1114$	124.0	N12 C41 H41	117.4
$C_{17} = C_{13} = C_{10}$	134.2 (3)	N13 C_{42} H A_{24}	11/.4
$C_{1} = C_{1} = C_{1} = C_{1}$	107.2(3)	N13 = C42 = H42P	109.5
N6 C16 C20	100.9(3)	$H_{13} = C_{42} = H_{13} = C_{42} = H_{13} = H$	109.5
10 - 0.10 - 0.20	129.0(4) 107.0(2)	$\mathbf{H}_{42}\mathbf$	109.3
10 - 0.10 - 0.15	107.9 (3)	$H_{13} = C_{42} = H_{42}C$	109.5
C20—C16—C15	122.9 (4)	H42A—C42—H42C	109.5

C18—C17—C15	119.2 (4)	H42B—C42—H42C	109.5
C18—C17—H17	120.4	N13—C43—H43A	109.5
С15—С17—Н17	120.4	N13—C43—H43B	109.5
C17—C18—C19	120.4 (4)	H43A—C43—H43B	109.5
C17—C18—H18	119.8	N13—C43—H43C	109.5
C19—C18—H18	119.8	H43A—C43—H43C	109.5
C20—C19—C18	122.6 (4)	H43B—C43—H43C	109.5
С20—С19—Н19	118.7	N2—N1—C4	118.9 (3)
C18—C19—H19	118.7	N2—N1—H1	120.5
C19—C20—C16	116.3 (4)	C4—N1—H1	120.5
С19—С20—Н20	121.8	C7—N2—N1	119.9 (3)
С16—С20—Н20	121.8	C8—N3—C10	111.6 (3)
C26—C21—C22	121.3 (4)	C10—N4—N5	110.8 (3)
C26—C21—Br2	120.2 (3)	C12—N5—N4	115.3 (3)
C22—C21—Br2	118.4 (3)	C14—N6—C16	109.1 (3)
C21—C22—C23	119.6 (4)	C14—N6—H6A	125.5
C21—C22—H22	120.2	C16—N6—H6A	125.5
С23—С22—Н22	120.2	N8—N7—C24	119.9 (3)
C24—C23—C22	119.9 (4)	N8—N7—H7	120.1
С24—С23—Н23	120.1	C24—N7—H7	120.1
С22—С23—Н23	120.1	C27—N8—N7	118.7 (3)
C23—C24—C25	120.0 (3)	C28—N9—C30	112.3 (3)
C23—C24—N7	118.3 (3)	C30—N10—N11	112.1 (3)
C25—C24—N7	121.7 (3)	C32—N11—N10	113.7 (3)
C24—C25—C26	119.7 (4)	C34—N12—C36	109.4 (3)
С24—С25—Н25	120.2	C34—N12—H12	125.3
С26—С25—Н25	120.2	C36—N12—H12	125.3
C21—C26—C25	119.3 (4)	C41—N13—C43	120.0 (4)
C21—C26—H26	120.4	C41—N13—C42	121.1 (5)
С25—С26—Н26	120.4	C43—N13—C42	118.9 (4)
N8—C27—C28	121.0 (3)	C7—S1—C10	87.65 (16)
N8—C27—S2	129.7 (3)	C27—S2—C30	87.89 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A
N1—H1…O1	0.86	2.08	2.782 (4)	138
N6—H6A····N9 ⁱ	0.86	2.62	3.292 (4)	136
N6—H6A····N10 ⁱ	0.86	2.42	3.234 (4)	159
N12—H12…N3 ⁱⁱ	0.86	2.15	3.011 (4)	177

Symmetry codes: (i) -x, -y+2, -z; (ii) x+2, y, z.