ISSN 2414-3146

Received 1 October 2018
Accepted 4 October 2018

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; palladium(II) complex; pyridine; thiocyanate.

CCDC reference: 1871326

Structural data: full structural data are available from iucrdata.iucr.org

trans-Bis(pyridine- κN)bis(thiocyanato- κ S)palladium(II)

Kwang Ha*

Chonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea. *Correspondence e-mail: hakwang@chonnam.ac.kr

In the title complex, $\left[\mathrm{Pd}(\mathrm{SCN})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ ion has a trans $-\mathrm{N}_{2} \mathrm{~S}_{2}$ squareplanar coordination sphere defined by two pyridine ligands and two S -bound SCN^{-}anions. The $\mathrm{Pd}^{\mathrm{II}}$ cation lies on an inversion centre, thus the asymmetric unit contains one half of the complex, the $\mathrm{PdN}_{2} \mathrm{~S}_{2}$ moiety is exactly planar and the two pyridine rings are parallel. In the crystal, the complex molecules are stacked in columns along the a-axis direction.

Chemical scheme

Structure description

With reference to the title complex, $\left[\mathrm{Pd}(\mathrm{SCN})_{2}(\mathrm{py})_{2}\right]$, the crystal structures of related trans-dipyridine- $\mathrm{Pd}^{\mathrm{II}}$ complexes $\left[\mathrm{Pd} X_{2}(\text { py })_{2}\right](X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$; py $=$ pyridine $)$ have been determined previously. The chlorido complex $\left[\mathrm{PdCl}_{2}(\mathrm{py})_{2}\right]$ has three polymorphic forms, crystallizing in space groups $C 2 / c$ (Viossat et al., 1993), $P 1$ (Liao \& Lee, 2006) and $P 2_{1} / n$ (Lee \& Liao, 2008). The bromido complex $\left[\mathrm{PdBr}_{2}(\mathrm{py})_{2}\right]$ has one polymorph in space group $P \overline{1}(\mathrm{Ha}, 2016)$, and the iodido complex $\left[\mathrm{PdI}_{2}(\mathrm{py})_{2}\right]$ has two polymorphs in space groups C2/m (Lord et al., 2001; Grushin \& Marshall, 2009) and C2/c (Grushin \& Marshall, 2009).

In the title complex, the central $\mathrm{Pd}^{\mathrm{II}}$ ion has a trans $-\mathrm{N}_{2} \mathrm{~S}_{2}$ square-planar coordination geometry defined by two N atoms from two pyridine ligands and two S atoms derived from two SCN^{-}anions (Fig. 1). The complex crystallizes in the triclinic space group $P \overline{1}$ and the asymmetric unit contains one half of the complex molecule: the Pd atom is located on an inversion centre. Therefore, the $\mathrm{PdN}_{2} \mathrm{~S}_{2}$ moiety is exactly planar and the two pyridine rings are parallel. The dihedral angle between the $\mathrm{PdS}_{2} \mathrm{~N}_{2}$ plane and the pyridine ring [maximum deviation $=0.008(1) \AA$] is $89.32(5)^{\circ}$. The thiocyanato ligand is almost linear displaying a $\mathrm{S}-\mathrm{C}-\mathrm{N}$ bond angle of $177.9(2)^{\circ}$, and the S atoms are coordinated to the $\mathrm{Pd}^{\mathrm{II}}$ cation with the nearly tetrahedral $\mathrm{Pd}-\mathrm{S}-\mathrm{C}$ bond angle of $104.89(7)^{\circ}$, characteristic of an S-bonded conformation (Ha, 2013).

Figure 1
The molecular structure of the title complex showing the atom labelling and with displacement ellipsoids drawn at the 50% probability level for non-H atoms. [Symmetry code: (i) $2-x, 2-y,-z$.]

In the crystal structure (Fig. 2), the complex molecules are stacked in columns along [100] with $d(\mathrm{Pd} \cdots \mathrm{Pd})=$ 5.2931 (4) \AA, corresponding to the length of the a axis. In the columns, intermolecular $\pi-\pi$ interactions between adjacent pyridine rings are present. For $C g 1$ (the centroid of ring N1C5) and $C g 1^{\text {i }}$ [symmetry code: (i) $2-x, 2-y, 1-z$], the centroid-centroid distance is $5.116(1) \AA$, the planes are parallel and shifted by $4.11 \AA$.

Synthesis and crystallization

A reaction mixture of $\mathrm{K}_{2} \mathrm{Pd}(\mathrm{SCN})_{4}(0.1835 \mathrm{~g}, 0.440 \mathrm{mmol})$ and pyridine $(2 \mathrm{ml})$ in ethyl acetate $(30 \mathrm{ml})$ was stirred for 1 h at room temperature. After evaporation of the solvent, the residue was washed with water and acetone, and dried at 323 K , to give a yellow powder (0.1141 g). Yellow crystals suitable for X-ray analysis were obtained by slow evaporation from a $\mathrm{CH}_{3} \mathrm{CN}$ solution at room temperature.

Figure 2
The packing in the crystal of the title complex, viewed approximately along the a axis.

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.015,0.040,1.10$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

1397
$\left[\mathrm{Pd}(\mathrm{SCN})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
380.76

Triclinic, $P \overline{1}$
223
5.2931 (4), 6.8101 (6), 10.5213 (9)
96.994 (3), 98.754 (3), 107.293 (3)
352.24 (5)

1
Mo $K \alpha$
1.60
$0.19 \times 0.15 \times 0.09$

Bruker PHOTON 100 CMOS detector
Multi-scan (SADABS; Bruker, 2016)
0.685, 0.745

8943, 1397, 1383
0.019
0.619

88
H -atom parameters constrained $0.38,-0.35$

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This study was supported financially by Chonnam National University (grant No. 2017-2777).

References

Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Grushin, V. V. \& Marshall, W. J. (2009). J. Am. Chem. Soc. 131, 918919.

Ha, K. (2013). Z. Kristallogr. New Cryst. Struct. 228, 249-250.
Ha, K. (2016). Z. Kristallogr. New Cryst. Struct. 231, 333-334.
Lee, H. M. \& Liao, C.-Y. (2008). Acta Cryst. E64, m1447.
Liao, C.-Y. \& Lee, H. M. (2006). Acta Cryst. E62, m680-m681.
Lord, P. A., Noll, B. C., Olmstead, M. M. \& Balch, A. L. (2001). J. Am. Chem. Soc. 123, 10554-10559.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Viossat, B., Dung, N.-H. \& Robert, F. (1993). Acta Cryst. C49, 84-85.

full crystallographic data

trans-Bis(pyridine- κN)bis(thiocyanato- κ S) palladium(II)

Kwang Ha

trans-Bis(pyridine- κN)bis(thiocyanato- κ S) palladium(II)

Crystal data

$\left[\mathrm{Pd}(\mathrm{SCN})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=380.76$
Triclinic, $P \overline{1}$
$a=5.2931$ (4) Å
$b=6.8101$ (6) \AA
$c=10.5213(9) \AA$
$\alpha=96.994(3)^{\circ}$
$\beta=98.754$ (3) ${ }^{\circ}$
$\gamma=107.293(3)^{\circ}$
$V=352.24(5) \AA^{3}$

Data collection

Bruker PHOTON 100 CMOS detector diffractometer
Radiation source: sealed tube
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\text {min }}=0.685, T_{\text {max }}=0.745$
8943 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.040$
$S=1.10$
1397 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
Z=1
$$

$$
F(000)=188
$$

$$
D_{\mathrm{x}}=1.795 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

Cell parameters from 8652 reflections
$\theta=3.2-28.4^{\circ}$
$\mu=1.60 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Block, yellow
$0.19 \times 0.15 \times 0.09 \mathrm{~mm}$

1397 independent reflections
1383 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.1^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-6 \rightarrow 6$
$k=-8 \rightarrow 8$
$l=-13 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0212 P)^{2}+0.1471 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms: $\mathrm{C}-\mathrm{H}$ $=0.94 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Pd1	1.0000	1.0000	0.0000	$0.02642(7)$
S1	$0.61794(10)$	$0.72043(8)$	$-0.10502(5)$	$0.03935(12)$
N1	$0.9587(3)$	$0.8677(2)$	$0.16016(14)$	$0.0278(3)$
N2	$0.5443(4)$	$0.7580(3)$	$-0.37129(17)$	$0.0466(4)$
C1	$0.8137(4)$	$0.9263(3)$	$0.24251(18)$	$0.0347(4)$
H1	0.7276	1.0240	0.2219	0.042^{*}
C2	$0.7869(4)$	$0.8482(3)$	$0.35602(18)$	$0.0372(4)$
H2	0.6825	0.8908	0.4116	0.045^{*}
C3	$0.9145(4)$	$0.7075(3)$	$0.38689(19)$	$0.0401(4)$
H3	0.9014	0.6537	0.4647	0.048^{*}
C4	$1.0622(4)$	$0.6460(3)$	$0.3025(2)$	$0.0427(5)$
H4	1.1507	0.5492	0.3219	0.051^{*}
C5	$1.0794(4)$	$0.7273(3)$	$0.18928(18)$	$0.0344(4)$
H5	1.1782	0.6832	0.1312	0.041^{*}
C6	$0.5790(4)$	$0.7453(3)$	$-0.26277(18)$	$0.0335(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	$0.03078(11)$	$0.03002(11)$	$0.02182(10)$	$0.01194(8)$	$0.00732(7)$	$0.00903(7)$
S1	$0.0429(3)$	$0.0392(3)$	$0.0295(2)$	$0.0031(2)$	$0.0042(2)$	$0.01138(19)$
N1	$0.0295(7)$	$0.0306(7)$	$0.0237(7)$	$0.0094(6)$	$0.0051(6)$	$0.0072(6)$
N2	$0.0519(10)$	$0.0501(10)$	$0.0309(9)$	$0.0071(8)$	$0.0066(8)$	$0.0070(8)$
C1	$0.0367(9)$	$0.0420(10)$	$0.0311(9)$	$0.0175(8)$	$0.0104(7)$	$0.0104(8)$
C2	$0.0375(10)$	$0.0444(11)$	$0.0278(9)$	$0.0079(8)$	$0.0119(8)$	$0.0064(8)$
C3	$0.0459(11)$	$0.0409(10)$	$0.0289(9)$	$0.0043(9)$	$0.0058(8)$	$0.0152(8)$
C4	$0.0514(12)$	$0.0395(10)$	$0.0432(11)$	$0.0191(9)$	$0.0087(9)$	$0.0191(9)$
C5	$0.0394(10)$	$0.0332(9)$	$0.0350(10)$	$0.0149(8)$	$0.0110(8)$	$0.0097(7)$
C6	$0.0336(9)$	$0.0302(9)$	$0.0346(10)$	$0.0080(7)$	$0.0067(7)$	$0.0040(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Pd} 1-\mathrm{N} 1{ }^{\text {i }}$	2.0159 (14)	C1-H1	0.9400
$\mathrm{Pd} 1-\mathrm{N} 1$	2.0159 (14)	C2-C3	1.369 (3)
Pd1-S1 ${ }^{\text {i }}$	2.3353 (5)	C2-H2	0.9400
Pd1-S1	2.3353 (5)	C3-C4	1.375 (3)
S1-C6	1.6766 (19)	C3-H3	0.9400
N1-C5	1.338 (2)	C4-C5	1.377 (3)
N1-C1	1.341 (2)	C4-H4	0.9400
N2-C6	1.147 (3)	C5-H5	0.9400
C1-C2	1.375 (3)		
$\mathrm{N} 1{ }^{\mathrm{i}}$-Pd1-N1	180.0	C3-C2-C1	118.98 (18)
N1 ${ }^{\text {i }}$-Pd1- $\mathrm{Sl}^{\text {i }}$	85.36 (4)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.5
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{S} 1^{\text {i }}$	94.64 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5

N1 ${ }^{\text {i }}$-Pd1-S1	94.64 (4)	C2-C3-C4	119.03 (17)
N1—Pd1-S1	85.36 (4)	C2-C3-H3	120.5
S1 ${ }^{\text {i }}$ - Pd1-S 1	180.0	C4-C3-H3	120.5
C6-S1-Pd1	104.89 (7)	C3-C4-C5	119.52 (18)
C5-N1-C1	118.73 (15)	C3-C4-H4	120.2
C5-N1-Pd1	121.84 (12)	C5-C4-H4	120.2
C1-N1-Pd1	119.39 (12)	N1-C5-C4	121.49 (17)
N1-C1-C2	122.23 (17)	N1-C5-H5	119.3
N1-C1-H1	118.9	C4-C5-H5	119.3
C2-C1-H1	118.9	N2-C6-S1	177.86 (18)
C5-N1-C1-C2	0.5 (3)	C2-C3-C4-C5	0.2 (3)
$\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-177.35 (14)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	-1.3 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.7 (3)	$\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	176.46 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.0 (3)	C3-C4-C5-N1	1.0 (3)

Symmetry code: (i) $-x+2,-y+2,-z$.

