Received 31 October 2018 Accepted 31 October 2018

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

IUCrData

Keywords: crystal structure; dithiobis(-formamidinium) salt; hydrogen bonds.

CCDC reference: 1876435

Structural data: full structural data are available from iucrdata.iucr.org

Dithiobis(formamidinium) bis(hydrogen sulfate)

data reports

Hafid Zouihri,^a* Khadija El Korchi,^b Khalid Yamni^a and Najib Tijani^a

^aLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S, Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco, and ^bCenter of Nuclear Studies of Maamora (CENM) (CNESTEN), POB 1382, 10001 Kenitra, Morocco. *Correspondence e-mail: hafid.zouihri@gmail.com

The crystal structure of the title salt, dithiobis(formamidinium) bis(hydrogen sulfate), $C_2H_8N_4S_2^{2+}\cdot 2HSO_4^{-}$, is built up from dithiobis(formamidinium) cations and hydrogensulfate anions. The anion is an almost regular tetrahedron. In the crystal, the anions and cations are linked by $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, generating a three-dimensional network.

Structure description

The asymmetric unit of the title compound comprises one dithiobis(formamidinium) cation and two hydrogensulfate anions (Fig. 1). The bond distances and angles in the organic cations show no significant differences from those in a related compound involving the same organic groups (Zouihri, 2012). In the sulfate anion, the S–O bond lengths range from 1.436 (2) to 1.540 (2) Å. It is worth noting that the S3–O3 and S4–O7 distances are the longest because O4 and O7 are bonded to an H atom. The construction of the three-dimensional architecture (Fig. 2) is consolidated by $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 1).

Synthesis and crystallization

Equimolar solutions of thiourea dissolved in methanol and aqueous sulfuric acid were mixed together and stirred for about 1 h. Crystals of the title compound were formed as the solvent evaporated over a few days at room temperature. They were filtered off, dried and repeatedly recrystallized as colourless prisms to enhance the purity of the product.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N4 $-$ H4 A \cdots O6 ⁱ	0.83 (2)	2.33 (3)	2.860 (3)	123 (3)
N3−H3A···O5	0.86(2)	2.24 (2)	3.032 (3)	153 (3)
N3-H3A···O7 ⁱⁱ	0.86(2)	2.48 (3)	3.048 (3)	125 (3)
$N1 - H1A \cdots O4$	0.85(2)	2.03 (2)	2.866 (3)	170 (3)
$N1 - H1B \cdots O4^{iii}$	0.85(2)	2.14 (3)	2.813 (3)	136 (3)
N3-H3 B ···O2 ^{iv}	0.85(2)	2.02(2)	2.861(3)	173 (3)
$N2-H2A\cdots O5^{v}$	0.85(2)	2.03 (2)	2.868 (3)	169 (3)
$N2-H2B\cdots O1$	0.86(2)	2.10(2)	2.955 (3)	172 (3)
$O3-H3\cdots O1^{vi}$	0.84(2)	1.79 (2)	2.628 (2)	175 (5)
$N4 - H4B \cdots O6$	0.86(2)	1.97 (2)	2.815 (3)	168 (4)
$O7-H7\cdots O8^{vii}$	0.85(2)	1.76 (2)	2.602(3)	168 (5)
$N4-H4A\cdots O6^{i}$	0.83 (2)	2.33 (3)	2.860 (3)	123 (3)
$N3-H3A\cdots O5$	0.86(2)	2.24 (2)	3.032 (3)	153 (3)
$N3-H3A\cdots O7^{ii}$	0.86(2)	2.48 (3)	3.048 (3)	125 (3)
$N1 - H1A \cdots O4$	0.85 (2)	2.03 (2)	2.866 (3)	170 (3)
$N1 - H1B \cdots O4^{iii}$	0.85 (2)	2.14 (3)	2.813 (3)	136 (3)
$N3-H3B\cdots O2^{iv}$	0.85 (2)	2.02 (2)	2.861 (3)	173 (3)
$N2-H2A\cdots O5^{v}$	0.85 (2)	2.03 (2)	2.868 (3)	169 (3)
$N2 - H2B \cdots O1$	0.86(2)	2.10(2)	2.955 (3)	172 (3)
$O3-H3\cdots O1^{vi}$	0.84 (2)	1.79 (2)	2.628 (2)	175 (5)
$N4 - H4B \cdots O6$	0.86 (2)	1.97 (2)	2.815 (3)	168 (4)
$O7-H7\cdots O8^{vii}$	0.85 (2)	1.76 (2)	2.602 (3)	168 (5)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 2, -y + 1, -z + 1; (v) x, y - 1, z; (vi) -x, -y, -z + 1; (vii) -x + 1, -y + 2, -z.

Figure 1

Molecular view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zouihri, H. (2012). Acta Cryst. E68, 0257.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_2H_8N_4S_2^{2+}\cdot 2HO_4S^{-}$
M _r	346.38
Crystal system, space group	Triclinic, P1
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.1371 (2), 9.5237 (4), 12.9884 (6)
α, β, γ (°)	106.521 (2), 96.067 (2), 95.618 (2)
$V(Å^3)$	600.32 (4)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.83
Crystal size (mm)	$0.21 \times 0.17 \times 0.12$
Data collection	
Diffractometer	Bruker X8 APEXII CCD area- detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.844, 0.905
No. of measured, independent and	14082, 2892, 2625
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.031
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.661
(), (),	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.100, 1.11
No. of reflections	2892
No. of parameters	203
No. of restraints	10
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.34, -0.53

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

full crystallographic data

IUCrData (2018). **3**, x181540 [https://doi.org/10.1107/S2414314618015407]

Dithiobis(formamidinium) bis(hydrogen sulfate)

Hafid Zouihri, Khadija El Korchi, Khalid Yamni and Najib Tijani

Dithiobis(formamidinium) bis(hydrogen sulfate)

Crystal data $C_{2}H_{8}N_{4}S_{2}^{2+}\cdot 2HO_{4}S^{-}$ Z = 2F(000) = 356 $M_r = 346.38$ Triclinic, P1 $D_{\rm x} = 1.916 {\rm Mg m^{-3}}$ a = 5.1371 (2) ÅMo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 278 reflections b = 9.5237 (4) Åc = 12.9884 (6) Å $\theta = 1.2 - 31.2^{\circ}$ $\alpha = 106.521 (2)^{\circ}$ $\mu = 0.83 \text{ mm}^{-1}$ $\beta = 96.067 \ (2)^{\circ}$ T = 293 K $\gamma = 95.618 \ (2)^{\circ}$ Prism, colourless V = 600.32 (4) Å³ $0.21 \times 0.17 \times 0.12 \text{ mm}$

Data collection

Bruker X8 APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.844, T_{\max} = 0.905$

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.0418P)^2 + 0.7302P]$
$wR(F^2) = 0.100$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
2892 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
203 parameters	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$
10 restraints	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

14082 measured reflections

 $\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$

 $R_{\rm int} = 0.031$

 $h = -6 \rightarrow 6$

 $k = -12 \rightarrow 12$

 $l = -17 \rightarrow 17$

2892 independent reflections

2625 reflections with $I > 2\sigma(I)$

Refinement. H atoms were located from a difference map and were allowed to refine with O—H and N—H restrained to 0.86 (2) Å.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S3	0.22662 (11)	0.20042 (6)	0.54402 (4)	0.02342 (14)
S4	0.65664 (11)	0.82235 (6)	0.03004 (5)	0.02686 (14)
S1	0.98932 (13)	0.25348 (7)	0.22595 (5)	0.03335 (16)
S2	1.16936 (12)	0.46501 (7)	0.28680 (5)	0.03345 (16)
O3	-0.0718 (3)	0.19092 (19)	0.55064 (15)	0.0307 (4)
O6	0.6665 (5)	0.6659 (2)	-0.01074 (18)	0.0465 (5)
O1	0.2632 (4)	0.07584 (18)	0.45047 (15)	0.0346 (4)
O4	0.2952 (4)	0.33873 (18)	0.52202 (16)	0.0368 (4)
N2	0.6532 (5)	0.1055 (2)	0.30371 (18)	0.0327 (5)
O5	0.8279 (4)	0.8898 (2)	0.13095 (16)	0.0428 (5)
O2	0.3620 (4)	0.1912 (2)	0.64396 (17)	0.0461 (5)
N3	1.1645 (5)	0.6848 (3)	0.20735 (19)	0.0372 (5)
N1	0.6973 (4)	0.3550 (2)	0.38724 (18)	0.0298 (4)
07	0.3693 (4)	0.8386 (3)	0.0499 (2)	0.0522 (6)
N4	0.8166 (5)	0.5039 (3)	0.1312 (2)	0.0454 (6)
08	0.7077 (5)	0.8946 (3)	-0.05202 (18)	0.0538 (6)
C2	1.0307 (5)	0.5578 (3)	0.19805 (19)	0.0283 (5)
C1	0.7569 (5)	0.2408 (2)	0.31604 (18)	0.0250 (4)
H4A	0.744 (6)	0.418 (2)	0.117 (3)	0.047 (10)*
H3A	1.112 (6)	0.743 (3)	0.173 (2)	0.039 (8)*
H1A	0.585 (5)	0.340 (3)	0.427 (2)	0.027 (7)*
H1B	0.767 (6)	0.442 (2)	0.394 (3)	0.041 (9)*
H3B	1.303 (5)	0.715 (4)	0.254 (2)	0.051 (10)*
H2A	0.710 (6)	0.036 (3)	0.259 (2)	0.040 (8)*
H2B	0.530 (5)	0.091 (4)	0.341 (2)	0.042 (9)*
Н3	-0.139 (9)	0.108 (3)	0.553 (4)	0.087 (15)*
H4B	0.749 (8)	0.553 (4)	0.091 (3)	0.073 (13)*
H7	0.329 (9)	0.925 (3)	0.057 (4)	0.081 (15)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S3	0.0233 (3)	0.0185 (2)	0.0279 (3)	-0.00014 (18)	0.0047 (2)	0.0066 (2)
S4	0.0270 (3)	0.0264 (3)	0.0278 (3)	0.0039 (2)	0.0031 (2)	0.0091 (2)
S 1	0.0396 (3)	0.0294 (3)	0.0326 (3)	0.0053 (2)	0.0146 (3)	0.0081 (2)
S2	0.0308 (3)	0.0365 (3)	0.0343 (3)	-0.0032 (2)	-0.0046 (2)	0.0182 (3)
O3	0.0252 (8)	0.0272 (8)	0.0410 (10)	0.0020 (7)	0.0101 (7)	0.0110 (7)
06	0.0561 (13)	0.0266 (9)	0.0483 (12)	0.0042 (8)	-0.0073 (10)	0.0035 (8)
01	0.0395 (10)	0.0209 (8)	0.0425 (10)	0.0032 (7)	0.0172 (8)	0.0040 (7)
04	0.0423 (10)	0.0188 (8)	0.0522 (11)	0.0004 (7)	0.0196 (9)	0.0120 (7)
N2	0.0431 (12)	0.0221 (10)	0.0320 (11)	0.0024 (9)	0.0103 (9)	0.0057 (8)
05	0.0462 (11)	0.0388 (10)	0.0338 (10)	0.0094 (9)	-0.0043 (8)	-0.0021 (8)
02	0.0399 (11)	0.0582 (13)	0.0386 (11)	-0.0044 (9)	-0.0085 (8)	0.0207 (10)
N3	0.0403 (13)	0.0347 (11)	0.0361 (12)	-0.0055 (9)	-0.0085 (10)	0.0183 (10)
N1	0.0386 (12)	0.0211 (9)	0.0327 (11)	0.0069 (8)	0.0135 (9)	0.0086 (8)

data reports

07	0.0286 (10)	0.0588 (14)	0.0850 (17)	0.0120 (9)	0.0161 (10)	0.0416 (13)
N4	0.0394 (13)	0.0433 (14)	0.0488 (15)	-0.0068 (11)	-0.0173 (11)	0.0188 (12)
08	0.0746 (16)	0.0570 (13)	0.0477 (12)	0.0240 (12)	0.0308 (11)	0.0312 (11)
C2	0.0271 (11)	0.0331 (12)	0.0252 (11)	0.0022 (9)	0.0011 (9)	0.0109 (9)
C1	0.0286 (11)	0.0246 (10)	0.0239 (10)	0.0065 (8)	0.0028 (8)	0.0100 (8)

Geometric parameters (Å, °)

S3—O2	1.436 (2)	N2—H2A	0.846 (18)
S3—O4	1.4441 (17)	N2—H2B	0.861 (18)
S3—O1	1.4803 (18)	N3—C2	1.299 (3)
S3—O3	1.5397 (18)	N3—H3A	0.858 (18)
S4—O5	1.4393 (19)	N3—H3B	0.849 (18)
S4—O6	1.440 (2)	N1—C1	1.298 (3)
S4—O8	1.456 (2)	N1—H1A	0.847 (17)
S4—O7	1.540 (2)	N1—H1B	0.845 (18)
S1—C1	1.777 (2)	O7—H7	0.851 (19)
S1—S2	2.0282 (9)	N4—C2	1.289 (3)
S2—C2	1.774 (2)	N4—H4A	0.828 (18)
О3—Н3	0.840 (19)	N4—H4B	0.859 (19)
N2C1	1.304 (3)		
O2—S3—O4	114.18 (13)	H2A—N2—H2B	123 (3)
O2—S3—O1	111.76 (13)	C2—N3—H3A	123 (2)
O4—S3—O1	109.77 (11)	C2—N3—H3B	119 (2)
O2—S3—O3	108.85 (12)	H3A—N3—H3B	118 (3)
O4—S3—O3	104.91 (11)	C1—N1—H1A	117.7 (19)
O1—S3—O3	106.89 (10)	C1—N1—H1B	122 (2)
O5—S4—O6	112.33 (12)	H1A—N1—H1B	121 (3)
O5—S4—O8	112.41 (15)	S4—O7—H7	114 (3)
O6—S4—O8	110.66 (14)	C2—N4—H4A	124 (2)
O5—S4—O7	108.55 (14)	C2—N4—H4B	121 (3)
O6—S4—O7	105.97 (14)	H4A—N4—H4B	114 (4)
O8—S4—O7	106.52 (13)	N4—C2—N3	123.5 (2)
C1—S1—S2	103.40 (8)	N4—C2—S2	122.9 (2)
C2—S2—S1	104.56 (9)	N3—C2—S2	113.63 (18)
S3—O3—H3	113 (3)	N1—C1—N2	123.5 (2)
C1—N2—H2A	118 (2)	N1-C1-S1	123.21 (18)
C1—N2—H2B	119 (2)	N2-C1-S1	113.31 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
N4—H4 <i>A</i> ···O6 ⁱ	0.83 (2)	2.33 (3)	2.860 (3)	123 (3)	
N3—H3 <i>A</i> ···O5	0.86 (2)	2.24 (2)	3.032 (3)	153 (3)	
N3—H3A····O7 ⁱⁱ	0.86 (2)	2.48 (3)	3.048 (3)	125 (3)	
N1—H1A····O4	0.85 (2)	2.03 (2)	2.866 (3)	170 (3)	
N1—H1 <i>B</i> ····O4 ⁱⁱⁱ	0.85 (2)	2.14 (3)	2.813 (3)	136 (3)	

N3—H3 B ···O2 ^{iv}	0.85 (2)	2.02 (2)	2.861 (3)	173 (3)
N2—H2 <i>A</i> ···O5 ^v	0.85 (2)	2.03 (2)	2.868 (3)	169 (3)
N2—H2 <i>B</i> …O1	0.86 (2)	2.10 (2)	2.955 (3)	172 (3)
O3—H3…O1 ^{vi}	0.84 (2)	1.79 (2)	2.628 (2)	175 (5)
N4—H4 <i>B</i> …O6	0.86 (2)	1.97 (2)	2.815 (3)	168 (4)
O7—H7···O8 ^{vii}	0.85 (2)	1.76 (2)	2.602 (3)	168 (5)
N4—H4A···O6 ⁱ	0.83 (2)	2.33 (3)	2.860 (3)	123 (3)
N3—H3 <i>A</i> ···O5	0.86 (2)	2.24 (2)	3.032 (3)	153 (3)
N3—H3A····O7 ⁱⁱ	0.86 (2)	2.48 (3)	3.048 (3)	125 (3)
N1—H1A…O4	0.85 (2)	2.03 (2)	2.866 (3)	170 (3)
N1—H1 <i>B</i> …O4 ⁱⁱⁱ	0.85 (2)	2.14 (3)	2.813 (3)	136 (3)
N3—H3 <i>B</i> ···O2 ^{iv}	0.85 (2)	2.02 (2)	2.861 (3)	173 (3)
N2—H2 <i>A</i> ···O5 ^v	0.85 (2)	2.03 (2)	2.868 (3)	169 (3)
N2—H2 <i>B</i> …O1	0.86 (2)	2.10 (2)	2.955 (3)	172 (3)
O3—H3…O1 ^{vi}	0.84 (2)	1.79 (2)	2.628 (2)	175 (5)
N4—H4 <i>B</i> ···O6	0.86 (2)	1.97 (2)	2.815 (3)	168 (4)
O7—H7···O8 ^{vii}	0.85 (2)	1.76 (2)	2.602 (3)	168 (5)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) x, y-1, z; (vi) -x, -y, -z+1; (vii) -x+1, -y+2, -z.