ISSN 2414-3146

Received 15 November 2018 Accepted 19 November 2018

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; hydrogen bond; heterocycle; nicotinamide.

CCDC reference: 1879746

Structural data: full structural data are available from iucrdata.iucr.org

data reports

N,1-Bis(4-ethoxyphenyl)-2,6-dimethyl-4-oxo-1,4-dihydropyridine-3-carboxamide

Heiner Detert,* Peter Bachon and Dieter Schollmeyer

University of Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

Condensation of ethyl acetoacetate and phenetidine gives the title compound, $C_{24}H_{26}N_2O_4$. The planar ethoxyphenyl group attached to the pyridine ring is twisted about 77.96 (11)° out of the plane of the *N*-ethoxycarboxamidopyridine unit. The carboxamide unit forms a dihedral angle of about 28.1 (2)° with the pyridine ring.

Structure description

Two molecules of the title compound (Fig. 1) fill the triclinic unit cell. The compound is composed of three planar rings with an intramolecular hydrogen bridge N21–H21···O17 (Table 1). The amide group is essentially planar [torsion angle O20–C19–N21–C22: 0.6 (3)°] but is twisted [O20-C19-C5-C6: -26.9 (3)°; C19-N21-C22-C27: 27.8 (3)°] out of the plane of the nearly coplanar pyridine and phenyl rings [dihedral angle between the mean planes of the pyridine and phenyl rings: 2.77 (10)°]. On the other hand, the *N*-phenyl pyridone linkage shows a large torsion angle [C12-C7-N1-C6: 76.0 (3)°]. Both ethoxy groups are nearly coplanar with the phenyl rings to which they are attached: the angle between the mean planes of the ethoxy groups and the aromatic ring on the amide side is 6.0 (2)° and on the pyridine side only 5.2 (2)°.

Synthesis and crystallization

The title compound was isolated as a side product in the formation of p-ethoxy acetoacetanilide, an intermediate in the 4-hydroxyquinoline synthesis according to Konrad– Limpach (Eicher & Hauptmann, 1994). A mixture of ethyl acetoacetate (40 ml) was heated in an open flask to 433 K and phenetidine (10 ml) was added slowly. After complete addition of the amine, strirring and heating was continued for 3 h. After cooling to ambient temperature, about 5 ml of diluted hydrochloric acid was added and the

data reports

Table 1 Hydrogen-bond geometry (Å, °).						
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
N21-H21···O17	0.93 (2)	1.84 (2)	2.636 (2)	142.3 (18)		
Table 2 Experimental details	i.					
Crystal data Chemical formula M_r Crystal system, space Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm)	group	C ₂₄ H ₂ 406.47 Triclin 193 8.5516 64.268 1023.0 2 Cu Ko 0.73 0.17 >	$h_{16}N_2O_4$ 7 hic, $P\overline{1}$ 5 (5), 11.5937 (7) 3 (4), 79.206 (5) 17 (12) α $< 0.11 \times 0.04$	7), 11.6637 (8) , 84.288 (5)		
Data collection Diffractometer No. of measured, inde observed $[I > 2\sigma(I)$ R_{int} $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)	ependent and] reflections	Stoe 1 10018 0.020 0.599	IPDS 2T , 3512, 2627			
Refinement $R[F^2 > 2\sigma(F^2)], wR(H)$ No. of reflections No. of parameters H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	7 ²), <i>S</i>	0.047, 3512 280 H ato ind refi 0.24,	0.133, 1.07 ms treated by a ependent and c nement -0.22	a mixture of constrained		

Computer programs: X-RED and X-AREA (Stoe & Cie, 1996), SIR2004 (Altomare et al., 1999), SHELXL2018 (Sheldrick, 2015) and PLATON (Spek, 2009).

mixture heated for further 3 h. After standing at 255 K for two weeks, the product crystallized as off-white crystals, m.p. = 484 K.

H-NMR (300 MHz; CDCl₃): δ **H** = δ [ppm] = 12.57 (*s*, 1H, N–H), 7.63–7.57 (*m*, 2H, Ph-2,6-H), 7.10–6.99 (*m*, 4H, Ph-2,3,5,6-H), 6.88–6.83 (*m*, 2H, Ph-3,5-H), 6.49 (*d*, 1H, ⁴*J* = 0.88 Hz, 3-H py), 4.09 (*q*, 2H, ³*J* = 6.98 Hz, O–CH₂–), 4.01 (*q*,

Figure 1

Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is drawn with a dashed line.

2H, ${}^{3}J = 6.96$ Hz, O-CH₂), 2.53 (*s*, 3H, CH₃, 18-H), 1.93 (*d*, 3H, ${}^{4}J = 0.81$ Hz, CH₃, 16-H), 1.47 (*t*, 3H, ${}^{3}J = 6.97$ Hz, OEt-CH₃), 1.39 (*t*, 3H, ${}^{3}J = 6.97$ Hz, OEt-CH₃); C-NMR (100 MHz; CDCl₃) δ C (75 MHz, CDCl₃): δ [ppm] = 178.11, 164.12, 159.81, 156.85, 155.36, 149.03, 132.31, 132.16, 128.83 (2 C, Ph), 122.34 (2 C, Ph), 119.01, 118.89 (=CH-), 115.95 (2 C, Ph), 114.73 (2 C, Ph), 64.14 (O-CH₂-), 63.77 (O-CH₂-), 21.93 (CH₃, C-16), 20.93 (CH₃, C-18), 15.03 (OEt-CH₃), 14.85 (OEt-CH₃). HR-ESI:[C₂₄H₂₆N₂O₄ + H]⁺: calculated: 407.1966; found: 407.1962: IR: 3053, 2982, 2360, 2341, 1665, 1507, 1394, 1265, 1242, 1116, 1042, 825, 733, 703, 568 cm⁻¹.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Eicher, T. & Hauptmann, S. (1994). *Chemie der Heterocyclen*, pp. 330–331. Stuttgart: Thieme.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.

full crystallographic data

IUCrData (2018). **3**, x181640 [https://doi.org/10.1107/S2414314618016401]

N,1-Bis(4-ethoxyphenyl)-2,6-dimethyl-4-oxo-1,4-dihydropyridine-3-carboxamide

Heiner Detert, Peter Bachon and Dieter Schollmeyer

N,1-Bis(4-ethoxyphenyl)-2,6-dimethyl-4-oxo-1,4-dihydropyridine-3-carboxamide

Crystal data

 $C_{24}H_{26}N_{2}O_{4}$ $M_{r} = 406.47$ Triclinic, *P*1 *a* = 8.5516 (5) Å *b* = 11.5937 (7) Å *c* = 11.6637 (8) Å *a* = 64.268 (4)° *β* = 79.206 (5)° *γ* = 84.288 (5)° *V* = 1023.07 (12) Å³

Data collection

Stoe IPDS 2T diffractometer Radiation source: Incoatec microSource Cu Detector resolution: 6.67 pixels mm⁻¹ rotation method scans 10018 measured reflections 3512 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.133$ S = 1.073512 reflections 280 parameters 0 restraints Hydrogen site location: mixed Z = 2 F(000) = 432 $D_x = 1.319 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 15045 reflections $\theta = 4.2-68.5^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 193 K Column, colourless $0.17 \times 0.11 \times 0.04 \text{ mm}$

2627 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 67.4^{\circ}, \ \theta_{min} = 4.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -13 \rightarrow 12$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0612P)^2 + 0.4717P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³ Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}Extinction coefficient: 0.0077 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the ridingmodel approximation with isotropic displacement parameters set to 1.2 $U_{eq}(C)$ or 1.5 $U_{eq}(C_{methyl})$. The hydrogen atom attached to N21 was localized in difference fourier maps and freely refined.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.6114 (2)	0.24526 (15)	0.58878 (15)	0.0341 (4)
C2	0.6827 (2)	0.35960 (18)	0.50480 (19)	0.0356 (5)
C3	0.6196 (2)	0.43617 (19)	0.3985 (2)	0.0378 (5)
H3	0.670348	0.514570	0.341388	0.045*
C4	0.4809 (2)	0.40539 (19)	0.36765 (19)	0.0361 (5)
C5	0.4176 (2)	0.27997 (18)	0.45280 (19)	0.0335 (5)
C6	0.4808 (2)	0.20510 (19)	0.56345 (19)	0.0358 (5)
C7	0.6766 (2)	0.16369 (19)	0.70529 (19)	0.0348 (5)
C8	0.6408 (3)	0.1903 (2)	0.8123 (2)	0.0398 (5)
H8	0.580126	0.264802	0.808302	0.048*
C9	0.6944 (3)	0.1071 (2)	0.9247 (2)	0.0419 (5)
H9	0.670703	0.124694	0.998513	0.050*
C10	0.7829 (3)	-0.00222 (19)	0.9311 (2)	0.0378 (5)
C11	0.8215 (3)	-0.0266 (2)	0.8232 (2)	0.0400 (5)
H11	0.884886	-0.099712	0.826294	0.048*
C12	0.7667 (3)	0.05662 (19)	0.7103 (2)	0.0374 (5)
H12	0.791426	0.039818	0.636068	0.045*
013	0.8246 (2)	-0.07885 (14)	1.04879 (14)	0.0477 (4)
C14	0.9102 (3)	-0.1947 (2)	1.0638 (2)	0.0496 (6)
H14A	1.015694	-0.176305	1.008020	0.059*
H14B	0.850697	-0.247989	1.040183	0.059*
C15	0.9292 (3)	-0.2628 (2)	1.2037 (2)	0.0594 (7)
H15A	0.985524	-0.207879	1.226178	0.089*
H15B	0.990547	-0.342686	1.218401	0.089*
H15C	0.824002	-0.282321	1.257452	0.089*
C16	0.8280 (3)	0.3941 (2)	0.5366 (2)	0.0435 (5)
H16A	0.869917	0.474611	0.466589	0.065*
H16B	0.909150	0.325945	0.546832	0.065*
H16C	0.800155	0.404506	0.617015	0.065*
O17	0.42020 (18)	0.48431 (13)	0.27114 (14)	0.0426 (4)
C18	0.4110 (3)	0.0813 (2)	0.6649 (2)	0.0464 (6)
H18A	0.419455	0.074301	0.750386	0.070*
H18B	0.469156	0.009603	0.652010	0.070*
H18C	0.298650	0.079179	0.658792	0.070*
C19	0.2854 (3)	0.22908 (19)	0.42149 (19)	0.0365 (5)
O20	0.26641 (19)	0.11429 (13)	0.45822 (15)	0.0474 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

N21	0.1883 (2)	0.32054 (16)	0.34782 (17)	0.0366 (4)	
H21	0.232 (3)	0.401 (2)	0.308 (2)	0.036 (6)*	
C22	0.0552 (2)	0.29886 (19)	0.30477 (19)	0.0339 (5)	
C23	0.0072 (2)	0.39391 (19)	0.19478 (19)	0.0384 (5)	
H23	0.067046	0.469869	0.148539	0.046*	
C24	-0.1265 (3)	0.3808 (2)	0.1505 (2)	0.0403 (5)	
H24	-0.158216	0.447781	0.075200	0.048*	
C25	-0.2137 (2)	0.26991 (19)	0.2161 (2)	0.0371 (5)	
C26	-0.1668 (2)	0.17523 (19)	0.3272 (2)	0.0380 (5)	
H26	-0.227335	0.099665	0.374036	0.046*	
C27	-0.0346 (2)	0.18856 (19)	0.3710 (2)	0.0371 (5)	
H27	-0.004113	0.122027	0.447092	0.044*	
O28	-0.34753 (18)	0.24578 (14)	0.18180 (15)	0.0459 (4)	
C29	-0.4047 (3)	0.3416 (2)	0.0713 (2)	0.0445 (6)	
H29A	-0.327421	0.353552	-0.007505	0.053*	
H29B	-0.419571	0.424171	0.078337	0.053*	
C30	-0.5609 (3)	0.2979 (2)	0.0643 (2)	0.0477 (6)	
H30A	-0.596022	0.355939	-0.017299	0.071*	
H30B	-0.640747	0.298195	0.136424	0.071*	
H30C	-0.547805	0.210922	0.069383	0.071*	

Atomic displacement parameters $(Å^2)$

	I 711	I 122	<i>I</i> 733	I 712	<i>T</i> 713	I 123
	U	U	0.1	0	U	U
N1	0.0388 (9)	0.0323 (9)	0.0310 (9)	-0.0029 (7)	-0.0072 (7)	-0.0122 (7)
C2	0.0415 (11)	0.0308 (10)	0.0336 (11)	-0.0052 (8)	-0.0036 (9)	-0.0129 (9)
C3	0.0413 (12)	0.0326 (10)	0.0381 (11)	-0.0049 (9)	-0.0041 (9)	-0.0139 (9)
C4	0.0421 (12)	0.0320 (10)	0.0331 (11)	-0.0007 (9)	-0.0048 (9)	-0.0132 (9)
C5	0.0375 (11)	0.0300 (10)	0.0331 (11)	-0.0009 (8)	-0.0067 (9)	-0.0131 (9)
C6	0.0412 (12)	0.0327 (10)	0.0336 (11)	-0.0032 (9)	-0.0053 (9)	-0.0141 (9)
C7	0.0395 (11)	0.0318 (10)	0.0317 (11)	-0.0030 (8)	-0.0082 (9)	-0.0107 (9)
C8	0.0452 (12)	0.0383 (11)	0.0358 (11)	0.0037 (9)	-0.0070 (9)	-0.0166 (9)
C9	0.0517 (13)	0.0414 (12)	0.0350 (11)	0.0048 (10)	-0.0082 (10)	-0.0191 (10)
C10	0.0432 (12)	0.0356 (11)	0.0330 (11)	-0.0012 (9)	-0.0092 (9)	-0.0118 (9)
C11	0.0453 (12)	0.0360 (11)	0.0394 (12)	0.0003 (9)	-0.0067 (10)	-0.0171 (10)
C12	0.0435 (12)	0.0371 (11)	0.0341 (11)	-0.0019 (9)	-0.0057 (9)	-0.0175 (9)
O13	0.0617 (10)	0.0406 (8)	0.0379 (8)	0.0087 (7)	-0.0162 (7)	-0.0126 (7)
C14	0.0609 (15)	0.0351 (11)	0.0542 (14)	0.0060 (10)	-0.0234 (12)	-0.0162 (11)
C15	0.0764 (18)	0.0391 (13)	0.0550 (15)	0.0018 (12)	-0.0259 (14)	-0.0074 (11)
C16	0.0447 (13)	0.0418 (12)	0.0429 (12)	-0.0083 (10)	-0.0071 (10)	-0.0152 (10)
O17	0.0490 (9)	0.0327 (8)	0.0392 (8)	-0.0026 (6)	-0.0129 (7)	-0.0064 (7)
C18	0.0524 (14)	0.0405 (12)	0.0383 (12)	-0.0118 (10)	-0.0124 (10)	-0.0052 (10)
C19	0.0430 (12)	0.0315 (10)	0.0337 (11)	-0.0009 (9)	-0.0074 (9)	-0.0121 (9)
O20	0.0582 (10)	0.0300 (8)	0.0545 (10)	-0.0028 (7)	-0.0234 (8)	-0.0124 (7)
N21	0.0394 (10)	0.0276 (9)	0.0393 (10)	-0.0016 (7)	-0.0087 (8)	-0.0099 (8)
C22	0.0339 (11)	0.0332 (10)	0.0341 (11)	0.0016 (8)	-0.0041 (9)	-0.0148 (9)
C23	0.0416 (12)	0.0334 (11)	0.0341 (11)	-0.0063 (9)	-0.0049 (9)	-0.0083 (9)
C24	0.0462 (12)	0.0347 (11)	0.0341 (11)	0.0003 (9)	-0.0083 (9)	-0.0087 (9)

data reports

C25	0.0266 (11)	0.0251(11)	0.0284(11)	-0.0012(0)	-0.0062(0)	-0.0146(0)
C25	0.0300(11)	0.0331(11)	0.0364(11)	-0.0012(9)	-0.0002(9)	-0.0140(9)
C26	0.0362 (11)	0.0315 (10)	0.0411 (12)	-0.0012(8)	-0.0054 (9)	-0.0109 (9)
C27	0.0394 (11)	0.0294 (10)	0.0361 (11)	0.0005 (8)	-0.0064 (9)	-0.0083 (9)
O28	0.0437 (9)	0.0394 (8)	0.0479 (9)	-0.0048 (7)	-0.0162 (7)	-0.0082 (7)
C29	0.0497 (13)	0.0392 (11)	0.0421 (12)	0.0003 (10)	-0.0152 (10)	-0.0120 (10)
C30	0.0430 (13)	0.0515 (13)	0.0526 (14)	0.0028 (10)	-0.0117 (11)	-0.0251 (11)

Geometric parameters (Å, °)

N1—C6	1.378 (3)	С15—Н15С	0.9800
N1—C2	1.378 (2)	C16—H16A	0.9800
N1—C7	1.455 (2)	C16—H16B	0.9800
C2—C3	1.348 (3)	C16—H16C	0.9800
C2—C16	1.497 (3)	C18—H18A	0.9800
C3—C4	1.421 (3)	C18—H18B	0.9800
С3—Н3	0.9500	C18—H18C	0.9800
C4—O17	1.266 (2)	C19—O20	1.226 (2)
C4—C5	1.447 (3)	C19—N21	1.362 (3)
C5—C6	1.380 (3)	N21—C22	1.411 (3)
C5—C19	1.495 (3)	N21—H21	0.93 (2)
C6—C18	1.499 (3)	C22—C23	1.381 (3)
C7—C12	1.379 (3)	C22—C27	1.392 (3)
C7—C8	1.386 (3)	C23—C24	1.386 (3)
C8—C9	1.377 (3)	С23—Н23	0.9500
С8—Н8	0.9500	C24—C25	1.385 (3)
C9—C10	1.390 (3)	C24—H24	0.9500
С9—Н9	0.9500	C25—O28	1.371 (3)
C10—O13	1.364 (2)	C25—C26	1.385 (3)
C10—C11	1.382 (3)	C26—C27	1.372 (3)
C11—C12	1.386 (3)	С26—Н26	0.9500
C11—H11	0.9500	С27—Н27	0.9500
C12—H12	0.9500	O28—C29	1.421 (2)
O13—C14	1.421 (3)	C29—C30	1.503 (3)
C14—C15	1.506 (3)	С29—Н29А	0.9900
C14—H14A	0.9900	С29—Н29В	0.9900
C14—H14B	0.9900	С30—Н30А	0.9800
C15—H15A	0.9800	С30—Н30В	0.9800
C15—H15B	0.9800	С30—Н30С	0.9800
C6—N1—C2	121.30 (17)	C2—C16—H16A	109.5
C6—N1—C7	119.08 (16)	C2C16H16B	109.5
C2—N1—C7	119.62 (17)	H16A—C16—H16B	109.5
C3—C2—N1	119.37 (19)	C2—C16—H16C	109.5
C3—C2—C16	122.52 (18)	H16A—C16—H16C	109.5
N1—C2—C16	118.11 (18)	H16B—C16—H16C	109.5
C2—C3—C4	123.21 (19)	C6-C18-H18A	109.5
С2—С3—Н3	118.4	C6-C18-H18B	109.5
С4—С3—Н3	118.4	H18A—C18—H18B	109.5

O17—C4—C3	120.80 (19)	C6—C18—H18C	109.5
O17—C4—C5	123.77 (19)	H18A—C18—H18C	109.5
C3—C4—C5	115.44 (18)	H18B—C18—H18C	109.5
C6-C5-C4	120.07 (19)	O20—C19—N21	122.6 (2)
C6-C5-C19	119.21 (17)	020-C19-C5	122.82(18)
C4-C5-C19	120 72 (17)	N21-C19-C5	114.62.(17)
N1-C6-C5	120.25(18)	C19 - N21 - C22	126.21(18)
N1-C6-C18	115 91 (18)	C19 - N21 - H21	1130(13)
C5-C6-C18	123.79 (19)	C_{22} N21 H21	118.8 (13)
C12-C7-C8	120.58 (19)	C_{23} C_{22} C_{27} C_{27}	118 25 (19)
C12 - C7 - N1	119 52 (19)	$C_{23} = C_{22} = N_{21}$	118 56 (18)
C8-C7-N1	119.81 (18)	$C_{27} = C_{22} = N_{21}$	123 13 (18)
C9-C8-C7	119.1 (2)	$C_{22} = C_{23} = C_{24}$	121 41 (19)
C9-C8-H8	120.5	$C_{22} = C_{23} = C_{24}$	1193
C7 - C8 - H8	120.5	C_{24} C_{23} H_{23}	119.3
$C_{8} - C_{9} - C_{10}$	120.3 120.7(2)	$C_{24} = C_{23} = H_{23}$	119.5
	110.7	$C_{25} = C_{24} = C_{25}$	119.87 (19)
C_{10} C_{0} H_{0}	119.7	$C_{23} = C_{24} = H_{24}$	120.1
$C_{10} - C_{2} - 11_{2}$	117.7	$C_{23} = C_{24} = 1124$	120.1 125.27(10)
013 - 010 - 011	124.90(19) 115.05(10)	028 - 025 - 024	123.27(19)
$C_{11} = C_{10} = C_{9}$	113.03(19) 120.00(10)	$C_{28} = C_{25} = C_{26}$	113.94(10) 118.8(2)
C10 - C10 - C9	120.00(19)	$C_{24} = C_{25} = C_{20}$	110.0(2)
C10 - C11 - C12	119.5 (2)	$C_{27} = C_{20} = C_{23}$	121.21 (19)
	120.3	$C_{27} = C_{20} = H_{20}$	119.4
	120.3	$C_{25} = C_{26} = H_{26}$	119.4
C/-C12-C11	120.3 (2)	$C_{26} = C_{27} = C_{22}$	120.47 (19)
C/C12H12	119.8	$C_{26} = C_{27} = H_{27}$	119.8
C11—C12—H12	119.8	C22—C27—H27	119.8
C10—013—C14	118.15 (18)	C25—O28—C29	118.43 (16)
013	106.4 (2)	028-029-030	107.59 (18)
013—C14—H14A	110.4	028—029—H29A	110.2
C15—C14—H14A	110.4	С30—С29—Н29А	110.2
O13—C14—H14B	110.4	O28—C29—H29B	110.2
C15—C14—H14B	110.4	С30—С29—Н29В	110.2
H14A—C14—H14B	108.6	H29A—C29—H29B	108.5
С14—С15—Н15А	109.5	С29—С30—Н30А	109.5
C14—C15—H15B	109.5	С29—С30—Н30В	109.5
H15A—C15—H15B	109.5	H30A—C30—H30B	109.5
C14—C15—H15C	109.5	С29—С30—Н30С	109.5
H15A—C15—H15C	109.5	H30A—C30—H30C	109.5
H15B—C15—H15C	109.5	H30B—C30—H30C	109.5
C6—N1—C2—C3	2.8 (3)	O13—C10—C11—C12	177.6 (2)
C7—N1—C2—C3	-178.49 (19)	C9—C10—C11—C12	-2.1 (3)
C6—N1—C2—C16	-177.64 (19)	C8—C7—C12—C11	0.6 (3)
C7—N1—C2—C16	1.1 (3)	N1-C7-C12-C11	-175.92 (19)
N1—C2—C3—C4	0.2 (3)	C10—C11—C12—C7	0.9 (3)
C16—C2—C3—C4	-179.4 (2)	C11—C10—O13—C14	-1.9 (3)
C2—C3—C4—O17	175.3 (2)	C9—C10—O13—C14	177.8 (2)

C2—C3—C4—C5	-5.0 (3)	C10-013-C14-C15	-176.1 (2)
O17—C4—C5—C6	-173.2 (2)	C6—C5—C19—O20	-26.9 (3)
C3—C4—C5—C6	7.1 (3)	C4—C5—C19—O20	152.3 (2)
O17—C4—C5—C19	7.7 (3)	C6—C5—C19—N21	153.68 (19)
C3—C4—C5—C19	-171.97 (19)	C4—C5—C19—N21	-27.2 (3)
C2—N1—C6—C5	-0.5 (3)	O20-C19-N21-C22	0.6 (3)
C7—N1—C6—C5	-179.22 (18)	C5-C19-N21-C22	-179.97 (18)
C2-N1-C6-C18	-177.83 (19)	C19—N21—C22—C23	-155.2 (2)
C7—N1—C6—C18	3.5 (3)	C19—N21—C22—C27	27.8 (3)
C4—C5—C6—N1	-4.6 (3)	C27—C22—C23—C24	-0.1 (3)
C19—C5—C6—N1	174.49 (18)	N21—C22—C23—C24	-177.27 (19)
C4—C5—C6—C18	172.5 (2)	C22—C23—C24—C25	-0.8 (3)
C19—C5—C6—C18	-8.4 (3)	C23—C24—C25—O28	-180.0 (2)
C6—N1—C7—C12	76.0 (3)	C23—C24—C25—C26	1.6 (3)
C2—N1—C7—C12	-102.7 (2)	O28—C25—C26—C27	179.93 (19)
C6—N1—C7—C8	-100.6 (2)	C24—C25—C26—C27	-1.5 (3)
C2—N1—C7—C8	80.7 (2)	C25—C26—C27—C22	0.6 (3)
C12—C7—C8—C9	-1.0 (3)	C23—C22—C27—C26	0.2 (3)
N1—C7—C8—C9	175.53 (19)	N21—C22—C27—C26	177.24 (19)
C7—C8—C9—C10	-0.2 (3)	C24—C25—O28—C29	-0.8 (3)
C8—C9—C10—O13	-178.0 (2)	C26—C25—O28—C29	177.67 (19)
C8—C9—C10—C11	1.7 (3)	C25—O28—C29—C30	-173.54 (18)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N21—H21…O17	0.93 (2)	1.84 (2)	2.636 (2)	142.3 (18)