IUCrData

ISSN 2414-3146

Received 14 November 2018 Accepted 18 November 2018

Edited by A. J. Lough, University of Toronto, Canada

Keywords: Schiff base; crystal structure; pyridine; dihedral angle; hydrogen bonding..

CCDC reference: 1871634

Structural data: full structural data are available from iucrdata.iucr.org

Polymorph of (*E*)-*N*'-(4-chlorobenzylidene)isonicotinohydrazide monohydrate

Jigmat Stondus,^a Sumati Anthal,^a A. Jayashree,^b B. Narayana,^b B. K. Sarojini^c and Rajni Kant^a*

^aX-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu 180 006, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangothri 574 199, India, and ^cDepartment of Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, India. *Correspondence e-mail: rkant.ju@gmail.com

The title hydrate, $C_{13}H_{10}ClN_3O\cdot H_2O$, is the orthorhombic polymorph of the previously reported monoclinic compound [Fun *et al.* (2012). *Acta Cryst.* E68, o2303–o2304). In the title compound, the dihedral angle between the pyridine and benzene rings is 18.0 (2)°. In the crystal, the Schiff base molecules and water molecules are linked via $O-H\cdots O$, $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds, forming a two-dimensional network parallel to (001). In addition, the Schiff base molecules are linked end-to-end by weak $C-H\cdots Cl$ hydrogen along the *c*-axis direction, forming an overall three-dimensional network. Weak $C-H\cdots \pi$ interactions are also observed.

Structure description

Compounds that contain an azomethine group (-HC=N-), have gained increasing attention because of their broad spectrum of biological activities (da Silva *et al.*, 2011; Kumar *et al.*, 2011). Hydrazones derived from the reactions of aldehydes with hydrazides show potential biological properties (El-Tabl *et al.*, 2008; Chen *et al.*, 2008; Álvarez *et al.*, 2008; Ventura & Martins, 2008) and have been reported to be anticancer, antifungal, antimicrobial, antiviral and antimalarial agents (Bhat *et al.*, 2015; Maccari *et al.*, 2005; Mallikarjuna *et al.*, 2009; Bekhit *et al.*, 2015). In recent years, a large number of hydrazones have been reported (*e.g.* Peng & Hou, 2008*a*; Shan *et al.*, 2008). As a part of our studies in this area, we describe herein the synthesis and crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1. The monoclinic polymorph has already been reported (Fun *et al.*, 2012). The C7=N1 bond length of 1.273 (7) Å indicates a typical C=N double bond. The Schiff base molecule has an *E* configuration with

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

respect to the hydrazone bridge (C7=N1), as observed in similar compounds (Han *et al.*, 2006, Lu *et al.*, 2008, Peng & Hou 2008*b*). The dihedral angle between the benzene (A) and pyridine (B) rings is $18.0 (2)^{\circ}$. The bond lengths are in normal ranges.

In the crystal, the water molecules and Schiff base molecules are linked via $O-H\cdots O$, $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds, forming a two-dimensional network parallel to (001) (Fig. 2). In addition, the Schiff base molecules are linked end-to-end along the *c*-axis direction by weak $C-H\cdots C$ l hydrogen bonds (Fig. 3) to form an overall three-dimensional network. Weak $C-H\cdots \pi$ interactions are also observed (Table 1).

Synthesis and crystallization

A mixture of isoniazid (0.138 g, 1 mmol), 4-chlorobenzaldehyde (0.140 g, 1 mmol) and catalytic amount of ceric ammonium nitrate (2 mol %) in 5 ml of H_2O was sonicated at 60 W for 10 minutes. After completion of the reaction, as indicated by TLC, the reaction mixture was filtered and washed with distilled water. The pure title compound was obtained by recrystallization by a slow evaporation of an aqqueous alcohol solution (m.p. 455–457 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2 Part of the crystal structure with hydrogen bonds shown as dashed lines.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2 \cdots O2$	0.86	2.01	2.814 (7)	156
$O2-H1O\cdotsO1^{i}$	0.80(7)	2.19(7)	2.907 (7)	149 (6)
$O2-H2O\cdots N3^{ii}$	0.87 (8)	2.02 (9)	2.841 (8)	158 (8)
C4−H4···Cl1 ⁱⁱⁱ	0.93	2.81	3.667 (7)	153
$C5-H5\cdots Cg1^{iv}$	0.93	2.98	3.6350 (7)	129
$C12 - H12 \cdots Cg2^{v}$	0.93	2.99	3.6489 (7)	129

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 3, y - \frac{1}{2}, -z - \frac{1}{2}$; (iii) $-x + \frac{3}{2}, -y + 2, z - \frac{1}{2}$; (iv) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{13}H_{10}CIN_3O\cdot H_2O$
M _r	277.71
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	293
a, b, c (Å)	6.4405 (9), 7.2660 (14), 28.081 (4)
$V(Å^3)$	1314.1 (4)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.29
Crystal size (mm)	$0.4 \times 0.2 \times 0.2$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur Sapphire3
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010)
T_{\min}, T_{\max}	0.421, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3321, 2323, 1471
R _{int}	0.034
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.067, 0.148, 1.02
No. of reflections	2323
No. of parameters	181
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.23, -0.25
Absolute structure	Flack x determined using 359 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.02 (14)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Funding information

Rajni Kant acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/ 2003 and for funding under grant No. EMR/204/000467. BN thanks the UGC for financial assistance through a BSR onetime grant for the purchase of chemicals. AJ thanks the UGC for a Senior Research Fellowship.

References

- Álvarez, C., Álvarez, R., Corchete, P., López, J. L., Pérez-Melero, C., Peláez, R. & Medarde, M. (2008). *Bioorg. Med. Chem.* **16**, 5952– 5961.
- Bekhit, A. A., Hassan, A. M. M., Abd El Razik, H. A., El-Miligy, M. M. M., El-Agroudy, E. J. & Bekhit, A. E. A. (2015). *Eur. J. Med. Chem.* 94, 30–44.
- Bhat, M. A., Iqbal, M., Al-Dhfyan, A. & Shakeel, F. (2015). J. Mol. Liq. 203, 111–119.
- Chen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). *Chin. J. Org. Chem.* **28**, 894–898.
- El-Tabl, A. S., El-Saied, F. A. & al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380-2401.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Fun, H.-K., Loh, W.-S., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2303–o2304.
- Han, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). *Acta Cryst.* E62, 05572–05573.
- Kumar, P. P. & Rani, B. L. (2011). Int. J. Chem Tech Res. 3, 155–160.Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, 01695.
- Maccari, R., Ottanà, R. & Vigorita, M. G. (2005). *Bioorg. Med. Chem. Lett.* **15**, 2509–2513.
- Mallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739–4746.
- Oxford Diffraction (2010). *CrysAlis PRO* and *CrysAlis RED*. Oxford Diffraction Ltd, Yarnton, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Peng, S.-J. & Hou, H.-Y. (2008a). Acta Cryst. E64, o1864.
- Peng, S.-J. & Hou, H.-Y. (2008b). Acta Cryst. E64, 01996-01997.
- Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, 01363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). *J. Adv. Res.* 2, 1–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Ventura, C. & Martins, F. (2008). J. Med. Chem. 51, 612-624.

full crystallographic data

IUCrData (2018). **3**, x181634 [https://doi.org/10.1107/S2414314618016346]

Polymorph of (E)-N'-(4-chlorobenzylidene)isonicotinohydrazide monohydrate

Jigmat Stondus, Sumati Anthal, A. Jayashree, B. Narayana, B. K. Sarojini and Rajni Kant

(E)-N'-(4-Chlorobenzylidene)isonicotinohydrazide monohydrate

Crystal data

C₁₃H₁₀ClN₃O·H₂O $M_r = 277.71$ Orthorhombic, $P2_12_12_1$ a = 6.4405 (9) Å b = 7.2660 (14) Å c = 28.081 (4) Å V = 1314.1 (4) Å³ Z = 4F(000) = 576

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1049 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) $T_{\min} = 0.421, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.148$ S = 1.022323 reflections 181 parameters 0 restraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $D_x = 1.404 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 945 reflections $\theta = 3.8-27.0^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.4 \times 0.2 \times 0.2 \text{ mm}$

3321 measured reflections 2323 independent reflections 1471 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 26.0^\circ, \theta_{min} = 3.6^\circ$ $h = -4 \rightarrow 7$ $k = -8 \rightarrow 6$ $l = -29 \rightarrow 34$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0492P)^{2} + 0.2991P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.23 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.25 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc²\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.007 (2) Absolute structure: Flack *x* determined using 359 quotients [(*I*⁺)-(*I*)]/[(*I*⁺)+(*I*)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.02 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms (H1O and H2O) attached to O2 were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their corresponding non hydrogen atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.2U_{eq}(N)$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.7005 (3)	0.7850 (3)	0.11474 (6)	0.0706 (7)
01	0.8317 (7)	1.3265 (8)	-0.16937 (15)	0.0632 (16)
02	1.5258 (8)	1.0974 (9)	-0.12165 (18)	0.0489 (13)
N1	1.0024 (8)	1.1807 (7)	-0.09043 (16)	0.0386 (13)
N2	1.1179 (7)	1.2331 (8)	-0.12955 (15)	0.0380 (14)
H2	1.251082	1.224610	-0.129120	0.046*
N3	1.3838 (9)	1.3963 (9)	-0.29400 (19)	0.0555 (17)
C1	1.0203 (10)	1.2970 (10)	-0.1680 (2)	0.0406 (16)
C2	1.1515 (9)	1.3320 (9)	-0.2110 (2)	0.0376 (16)
C3	1.0683 (10)	1.2994 (11)	-0.2556 (2)	0.0527 (19)
Н3	0.933810	1.254560	-0.258866	0.063*
C4	1.1891 (12)	1.3348 (11)	-0.2953 (2)	0.062 (2)
H4	1.130033	1.314197	-0.325006	0.074*
C5	1.4597 (10)	1.4252 (10)	-0.2506 (2)	0.0480 (18)
Н5	1.593842	1.471847	-0.248316	0.058*
C6	1.3554 (9)	1.3914 (10)	-0.2087 (2)	0.0428 (17)
H6	1.420595	1.408204	-0.179516	0.051*
C7	1.1053 (10)	1.1320 (9)	-0.0539 (2)	0.0384 (16)
H7	1.248760	1.146679	-0.053660	0.046*
C8	1.0029 (9)	1.0537 (9)	-0.01233 (19)	0.0335 (15)
C9	1.1064 (10)	1.0381 (10)	0.0308 (2)	0.0443 (17)
Н9	1.240781	1.083767	0.033398	0.053*
C10	1.0157 (12)	0.9569 (10)	0.0699 (2)	0.0464 (18)
H10	1.087477	0.947944	0.098500	0.056*
C11	0.8155 (11)	0.8887 (9)	0.0657 (2)	0.0439 (17)
C12	0.7077 (10)	0.9055 (9)	0.0242 (2)	0.0446 (17)
H12	0.571976	0.862446	0.022230	0.054*
C13	0.7993 (10)	0.9861 (9)	-0.0151 (2)	0.0404 (16)
H13	0.725653	0.995608	-0.043441	0.048*
H1O	1.626 (11)	1.161 (10)	-0.124 (2)	0.06 (3)*
H2O	1.531 (15)	1.017 (12)	-0.144 (3)	0.10 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U ²³
Cl1	0.0999 (15)	0.0603 (13)	0.0515 (10)	-0.0130 (13)	0.0260 (11)	0.0058 (10)

01	0.038 (3)	0.095 (5)	0.057 (3)	-0.002 (3)	0.004 (2)	0.019 (3)
O2	0.037 (3)	0.066 (4)	0.043 (3)	-0.008 (3)	0.006 (2)	-0.005 (3)
N1	0.036 (3)	0.045 (4)	0.035 (3)	0.001 (3)	0.008 (2)	0.002 (3)
N2	0.030 (2)	0.046 (4)	0.038 (3)	0.001 (3)	0.007 (2)	0.006 (3)
N3	0.061 (4)	0.068 (5)	0.037 (3)	-0.006 (4)	0.001 (3)	0.008 (3)
C1	0.034 (3)	0.045 (4)	0.043 (4)	-0.009 (4)	0.006 (3)	0.006 (3)
C2	0.033 (3)	0.045 (5)	0.034 (3)	-0.001 (3)	0.000 (3)	0.007 (3)
C3	0.043 (4)	0.067 (5)	0.047 (4)	-0.014 (4)	-0.005 (3)	0.003 (4)
C4	0.063 (5)	0.083 (7)	0.039 (4)	-0.009 (5)	-0.011 (4)	0.003 (4)
C5	0.044 (4)	0.054 (5)	0.046 (4)	-0.011 (4)	0.005 (4)	0.010 (4)
C6	0.040 (4)	0.051 (5)	0.038 (3)	-0.005 (4)	-0.003 (3)	0.003 (3)
C7	0.036 (3)	0.038 (4)	0.042 (3)	-0.001 (3)	0.008 (3)	-0.004 (3)
C8	0.035 (3)	0.031 (4)	0.035 (3)	-0.002 (3)	0.007 (3)	-0.005 (3)
C9	0.047 (4)	0.045 (4)	0.041 (4)	0.000 (3)	-0.001 (3)	-0.003 (3)
C10	0.063 (4)	0.042 (4)	0.034 (4)	0.001 (4)	0.006 (4)	-0.003 (3)
C11	0.057 (4)	0.035 (4)	0.040 (4)	0.001 (4)	0.020 (4)	-0.001 (3)
C12	0.041 (3)	0.042 (4)	0.051 (4)	-0.011 (4)	0.005 (4)	-0.004 (3)
C13	0.046 (4)	0.036 (4)	0.039 (3)	-0.004 (4)	0.000 (3)	0.003 (3)

Geometric parameters (Å, °)

Cl1—Cl1	1.735 (6)	C5—C6	1.375 (8)
01—C1	1.234 (7)	С5—Н5	0.9300
O2—H1O	0.80(7)	С6—Н6	0.9300
O2—H2O	0.86 (8)	C7—C8	1.455 (8)
N1—C7	1.273 (7)	C7—H7	0.9300
N1—N2	1.380 (6)	C8—C9	1.387 (8)
N2—C1	1.333 (7)	C8—C13	1.402 (8)
N2—H2	0.8600	C9—C10	1.375 (8)
N3—C5	1.331 (8)	С9—Н9	0.9300
N3—C4	1.332 (8)	C10—C11	1.387 (9)
C1—C2	1.494 (8)	C10—H10	0.9300
C2—C6	1.384 (8)	C11—C12	1.364 (8)
C2—C3	1.384 (8)	C12—C13	1.380 (8)
C3—C4	1.383 (9)	C12—H12	0.9300
С3—Н3	0.9300	C13—H13	0.9300
C4—H4	0.9300		
H10—O2—H2O	108 (8)	С2—С6—Н6	120.6
C7—N1—N2	116.0 (5)	N1—C7—C8	121.3 (5)
C1—N2—N1	119.1 (4)	N1—C7—H7	119.4
C1—N2—H2	120.4	С8—С7—Н7	119.4
N1—N2—H2	120.4	C9—C8—C13	117.9 (6)
C5—N3—C4	115.0 (6)	C9—C8—C7	120.9 (6)
O1—C1—N2	123.4 (5)	C13—C8—C7	121.1 (5)
O1—C1—C2	120.1 (6)	C10—C9—C8	121.8 (6)
N2-C1-C2	116.5 (5)	С10—С9—Н9	119.1
С6—С2—С3	117.5 (6)	С8—С9—Н9	119.1

C6—C2—C1	123.6 (5)	C9—C10—C11	118.8 (7)
C3—C2—C1	118.9 (5)	C9—C10—H10	120.6
C4—C3—C2	118.7 (6)	C11—C10—H10	120.6
С4—С3—Н3	120.7	C12—C11—C10	120.8 (6)
С2—С3—Н3	120.7	C12—C11—C11	120.0 (5)
N3—C4—C3	124.8 (6)	C10—C11—C11	119.1 (5)
N3—C4—H4	117.6	C11—C12—C13	120.3 (6)
C3—C4—H4	117.6	C11—C12—H12	119.9
N3—C5—C6	125.1 (6)	C13—C12—H12	119.9
N3—C5—H5	117.4	C12—C13—C8	120.3 (6)
С6—С5—Н5	117.4	С12—С13—Н13	119.8
C5—C6—C2	118.8 (6)	C8—C13—H13	119.8
С5—С6—Н6	120.6		
C7—N1—N2—C1	-175.7 (6)	C1—C2—C6—C5	-177.9 (6)
N1-N2-C1-O1	6.1 (11)	N2—N1—C7—C8	-172.8 (5)
N1—N2—C1—C2	-173.5 (6)	N1—C7—C8—C9	-165.9 (7)
O1—C1—C2—C6	146.9 (7)	N1-C7-C8-C13	16.4 (10)
N2-C1-C2-C6	-33.4 (10)	C13—C8—C9—C10	0.9 (10)
O1—C1—C2—C3	-34.8 (11)	C7—C8—C9—C10	-177.0 (6)
N2—C1—C2—C3	144.9 (7)	C8—C9—C10—C11	0.1 (11)
C6—C2—C3—C4	-2.6 (11)	C9-C10-C11-C12	-1.6 (10)
C1—C2—C3—C4	179.0 (7)	C9—C10—C11—C11	179.7 (5)
C5—N3—C4—C3	-0.7 (12)	C10-C11-C12-C13	2.0 (10)
C2-C3-C4-N3	1.1 (12)	Cl1—C11—C12—C13	-179.3 (5)
C4—N3—C5—C6	2.0 (11)	C11—C12—C13—C8	-0.9 (10)
N3—C5—C6—C2	-3.7 (11)	C9—C8—C13—C12	-0.5 (9)
C3—C2—C6—C5	3.8 (10)	C7—C8—C13—C12	177.3 (6)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
02—H1 <i>O</i> …O1 ⁱ	0.80 (7)	2.19 (7)	2.907 (7)	149 (6)
N2—H2…O2	0.86	2.01	2.814 (7)	156
O2—H2 <i>O</i> ···N3 ⁱⁱ	0.87 (8)	2.02 (9)	2.841 (8)	158 (8)
C4—H4…Cl1 ⁱⁱⁱ	0.93	2.81	3.667 (7)	153
C5—H5···· $Cg1^{iv}$	0.93	2.98	3.6350 (7)	129
C12—H12···Cg2 ^v	0.93	2.99	3.6489 (7)	129

Symmetry codes: (i) x+1, y, z; (ii) -x+3, y-1/2, -z-1/2; (iii) -x+3/2, -y+2, z-1/2; (iv) -x+2, y-1/2, -z+1/2; (v) x-1/2, -y+3/2, -z.