

ISSN 2414-3146

Received 29 October 2018 Accepted 22 November 2018

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; nitrification inhibitor; phenolic compounds; hydrogen bonding.

CCDC reference: 1880603

Structural data: full structural data are available from iucrdata.iucr.org

Methyl 3-(4-hydroxyphenyl)propionate

Moaz M. Abdou,^{a,b,c} Magdalini Matziari,^b* Paul M. O'Neill,^{c,d} Eric Amigues,^b Ruixue Zhou,^b Ruiyao Wang^b and Basem F. Ali^e

^aEgyptian Petroleum Research Institute, Nasr City, PO 11727, Cairo, Egypt, ^bDepartment of Chemistry, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu, 215123, People's Republic of China, ^cDepartment of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK, ^dDepartment of Pharmacology, School of Biomedical Sciences, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK, and ^eDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan. *Correspondence e-mail: magdalini.matziari@xjtlu.edu.cn

The title compound, $C_{10}H_{12}O_3$, crystallizes in the orthorhombic $P2_12_12_1$ space group. The structure contains a phenolic group with the OH being coplanar with the phenyl ring. The structure exhibits significant hydrogen bonding between the O-H group of one molecule and the CO group of an adjacent one. These O-H···O=C interactions form chains of molecules parallel to the *b* axis. No π - π or C-H··· π intermolecular interactions are observed.

Structure description

The application of nitrogen-based fertilizers has been a remarkable strategy applied to meet the growing world food and fibre demands over the past 80 years (Galloway et al., 2008). However, these fertilizers increase anthropogenic nitrous oxide production, causing serious effects on the environment in water, the air and soil. One of the important environmentally friendly techniques applied in agriculture to control the rate of the climate-relevant N₂O gas emission is the use of nitrification inhibitors (Ruser & Schulz, 2015). Among the various nitrification inhibitors, methyl 3-(2 or 4-hydroxyphenyl)propionates (MHPPs) are the most important formed in sorghum (Sorghum bicolor; Zakir et al., 2008; Nardi et al., 2013). Additionally, they exhibit an interesting motif in the enzymatic coupling of saccharides to proteins, also acting as modulators of the root system architecture (RSA; Martinez et al., 2017; ter Haar et al., 2011). There are various reports on the synthesis of methyl 3-(2-hydroxyphenyl)propionate (Yuthavong et al., 2012; Rosales et al., 2011; Meier et al., 2006), but its crystal structure has not previously been been reported. As part of our ongoing studies on the synthesis and properties of phenolic compounds (Abdou, 2013a,b, 2017a,b,c, 2018; Abdou et al., 2012a,b,c, 2013, 2015, 2015a,b, 2016; Abdou et al., 2015a,b; Abdou, El-Saeed, Abozeid et al., 2015;

data reports

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1 - H1H \cdots O2^i$	0.86 (3)	1.96 (4)	2.805 (3)	169 (3)

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Metwally *et al.*, 2012*a*,*b*, 2013), we report herein the crystal structure of methyl 3-(2-hydroxyphenyl)propionate.

The molecular structure of the title compound is depicted in Fig. 1. The phenyl ring is planar with the hydroxyl group being coplanar with a C2–C1–O1–H1*H* torsion angle of -8 (2)°. The bond distances and angles within the phenolic ring, the propionate group and the co-planarity of OH group with the phenyl ring are consistent with related structures such as methyl 3-(3,5-di-tertbutyl-4-hydroxyphenyl)propionate (Li *et al.*, 2014), 2-(4-acetylanilino)-2-oxoethyl 3-(4-hydroxyphenyl)-propionate (Ashraf *et al.*, 2016) and methyl 3-[3-*tert*-butyl-5-(6-chloro-1-oxybenzotriazol-2-yl)-4-hydroxyphenyl]propionate (Wen *et al.*, 2006).

The crystal structure exhibits significant hydrogen-bonding interactions (Table 1), in which the O1-H1 groups acts as the donor while the carbonyl group of an adjacent molecule $(-x + 1, y + \frac{1}{2}, -z + \frac{3}{2})$ being the acceptor. These hydrogen bonds shown as dashed lines in Fig. 2) connect the molecules into chains running parallel to the *b* axis (Fig. 3). π - π stacking and C-H··· π interactions are not present in the crystal structure.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Hydrogen-bonding interactions (dashed lines) between adjacent molecules. Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Experimental details.	
Crystal data	
Chemical formula	$C_{10}H_{12}O_3$
M _r	180.20
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	180
a, b, c (Å)	5.4774 (6), 11.1557 (12), 14.5610 (17)
$V(A^3)$	889.74 (17)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.10
Crystal size (mm)	$0.35 \times 0.15 \times 0.10$
Data collection	
Diffractometer	Bruker D8 Venture diffractometer with PHOTON 100 CMOS detecter
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.614, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9443, 1756, 1390
R _{int}	0.056
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.091, 1.04
No. of reflections	1756
No. of parameters	122
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{\AA}^{-3})$	0.19 - 0.15
Absolute structure	Flack x determined using 467 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
Absolute structure parameter	-0.5 (8)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2018 (Sheldrick, 2015).

Synthesis and crystallization

A mixture of dihydrocoumarin (1 ml, 7.89 mmol), a catalytic amount of conc. H_2SO_4 , and 30 ml of dry MeOH were heated under reflux for 5 h. The methanol was removed *in vacuo* and the residue was neutralized with saturated NaHCO₃ solution then diluted with water and extracted with Et₂O. The combined organic extracts were dried over MgSO₄, filtered and concentrated. The crude compound was crystallized by slow evaporation of a diethyl ether–hexane mixture (2:1 v/v)

Figure 3

Table 2

Crystal packing of the title compound viewed along the a axis, showing the chains parallel to the a axis formed via hydrogen bonding (dashed lines).

to give colourless single crystals (1.22 g, 86%). M.p. 41–42°C; IR (KBr, cm⁻¹) 3420, 3055, 1735, 1447. ¹H NMR (400 MHz, CDCl₃) δ 2.76 (*t*, *J* = 6.6 Hz, 3H), 2.95 (*t*, *J* = 6.6 Hz, 2H), 3.72 (*s*, 3H), 6.89 (*d*, *J* = 7.4 Hz, 2H), 7.12–7.16 (*m*, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 24.86, 34.87, 52.24, 116.82, 120.81, 127.07, 128.23, 130.52, 154.26, 175.96. HRMS (ESI/QTOF) *m*/*z*: [*M*]⁺ calculated for C₁₀H₁₂O₃ 180.0786, found 180.0774.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Abdou, M. M. (2013*a*). New Azo Disperse Dyes Derived from 3-(Hydroxyphenyl)-2-Pyrazolin-5-One, 1st, pp. 21–50. Köln: Lambert Academic Publishing AG & Co. KG.
- Abdou, M. M. (2013b). Azo Disperse Dyes with 2-Pyrazolin-5-Ones for Dyeing Polyester Fabrics, 1st, pp. 30–60. Köln: Lambert Academic Publishing AG & Co. KG.
- Abdou, M. M. (2018). Arab. J. Chem. 11, 1061–1071.
- Abdou, M. M. (2017a). Arab. J. Chem. 10, \$3324-\$3337.
- Abdou, M. M. (2017b). Arab. J. Chem. 10, S3664-S3675.
- Abdou, M. M. (2017c). Arab. J. Chem. 10, S3955-S3961.
- Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2012b). Int. J. Modern Org. Chem. 1, 19–54.
- Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2012c). Int. J. Modern Org. Chem. 1, 165–192.
- Abdou, M. M., Bondock, S., El-Desouky, E. I. & Metwally, M. A. (2013). Am. J. Chem. 3, 59–67.
- Abdou, M. M., El-Saeed, R. A., Abozeid, M. A., Sadek, M. G., Zaki, E., Barakat, Y., Ibrahim, H., Fathy, M., Shabana, S., Amine, M. & Bondock, S. (2015). *Arab. J. Chem.* In the press. https: doi: 10.1016/ j. arabjc. 2015.11.004.
- Abdou, M. M., El-Saeed, R. A. & Bondock, S. (2015a). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.012.
- Abdou, M. M., El-Saeed, R. A. & Bondock, S. (2015b). Arab. J. Chem. In the press. doi: 10.1016/j. arabjc. 2015.06.029.
- Abdou, M. M., El-Saeed, R. A., Elattar, K. M., Seferoğlu, Z. & Boukouvalas, J. (2016). *Mol. Divers.* **20**, 989–999.
- Ashraf, Z., Kim, D., Seo, S.-Y. & Kang, S. K. (2016). Acta Cryst. E72, 933–936.

- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P. & Sutton, M. A. (2008). Science, **320**, 889–892.
- Haar, R. ter, Wildschut, J., Sugih, A. K., Möller, W. B., de Waard, P., Boeriu, C. G., Heeres, H. J., Schols, H. A. & Gruppen, H. (2011). *Carbohydr. Res.* 346, 1005–1012.
- Li, X., Wang, Z.-G., Chen, H.-H. & Liu, S.-G. (2014). Acta Cryst. C70, 1050–1053.
- Martinez, A. P., Qamar, B., Fuerst, T. R., Muro, S. & Andrianov, A. K. (2017). *Biomacromolecules*, **18**, 2000–2011.
- Meier, C., Ducho, C., Jessen, H., Vukadinović-Tenter, D. & Balzarini, J. (2006). Eur. J. Org. Chem. pp. 197–206.
- Metwally, M. A., Bondock, S., I. El-Desouky, E., & M. Abdou, M. (2012a). Ame. J. Chem. 2, 347–354.
- Metwally, M. A., Bondock, S., El-Desouky, E. I. & Abdou, M. M. (2012a). J. Korean Chem. Soc. 56, 82–91.
- Metwally, M. A., Bondock, S., El-Desouky, S. I. & Abdou, M. M. (2012b). J. Korean Chem. Soc. 56, 348–356.
- Metwally, M. A., Bondock, S., El-Desouky, E. I. & Abdou, M. M. (2013). *Coloration Technol.* **129**, 418–424.
- Nardi, P., Akutsu, M., Pariasca-Tanaka, J. & Wissuwa, M. (2013). Plant Soil, 367, 627–637.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rosales, A., Rodríguez-García, I., López-Sánchez, C., Álvarez-Corral, M. & Muñoz-Dorado, M. (2011). *Tetrahedron*, 67, 3071– 3075.
- Ruser, R. & Schulz, R. (2015). J. Plant Nutr. Soil Sci. 178, 171– 188.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Wen, H.-L., Chen, Y.-H., Hu, H.-W., Zhou, X.-Y. & Liu, C.-B. (2006). Acta Cryst. E62, 04702–04703.
- Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., McLennan, D. N., White, K. L., Vivas, L., Bongard, E., Thongphanchang, C., Taweechai, S., Vanichtanankul, J., Rattanajak, R., Arwon, U., Fantauzzi, P., Yuvaniyama, J., Charman, W. N. & Matthews, D. (2012). Proc. Natl Acad. Sci. USA, 109, 16823–16828.
- Zakir, H. A., Subbarao, G. V., Pearse, S. J., Gopalakrishnan, S., Ito, O., Ishikawa, T., Kawano, N., Nakahara, K., Yoshihashi, T., Ono, H. & Yoshida, M. (2008). *New Phytol.* 180, 442–451.

full crystallographic data

IUCrData (2018). 3, x181662 [https://doi.org/10.1107/S2414314618016620]

Methyl 3-(4-hydroxyphenyl)propionate

Moaz M. Abdou, Magdalini Matziari, Paul M. O'Neill, Eric Amigues, Ruixue Zhou, Ruiyao Wang and Basem F. Ali

Methyl 3-(4-hydroxyphenyl)propionate

Crystal data

 $C_{10}H_{12}O_3$ $M_r = 180.20$ Orthorhombic, $P2_12_12_1$ a = 5.4774 (6) Å b = 11.1557 (12) Å c = 14.5610 (17) Å V = 889.74 (17) Å³ Z = 4F(000) = 384

Data collection

Bruker D8 Venture diffractometer with PHOTON 100 CMOS detecter φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.614, T_{\max} = 0.746$ 9443 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.091$ S = 1.041756 reflections 122 parameters 0 restraints Hydrogen site location: mixed $D_x = 1.345 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2736 reflections $\theta = 3.3-27.6^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 180 KBlock, colourless $0.35 \times 0.15 \times 0.10 \text{ mm}$

1756 independent reflections 1390 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -6 \rightarrow 6$ $k = -13 \rightarrow 13$ $l = -17 \rightarrow 17$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 0.1279P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³ Absolute structure: Flack *x* determined using 467 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.5 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms on carbon atoms were calculated with C–H = 0.95, 0.98 and 0.99 Å for CH (aromatic), CH₂ and CH₃, respectively, and refined as riding atoms with $U_{iso}(H) = 1.2 U_{eq}(C)$ for CH (aromatic) and CH₂, and 1.5 $U_{eq}(C)$ for CH₃. The H atoms of the –OH group was located in a differenceFourier map and refined without any constraint.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.5468 (3)	0.18977 (17)	0.77139 (13)	0.0302 (5)
H1H	0.642 (6)	0.235 (3)	0.740 (2)	0.051 (11)*
O2	0.1249 (3)	-0.19195 (17)	0.84546 (13)	0.0304 (5)
O3	-0.2348 (3)	-0.18421 (16)	0.91771 (11)	0.0267 (5)
C1	0.3762 (5)	0.2573 (2)	0.81696 (17)	0.0220 (6)
C2	0.3865 (5)	0.3815 (2)	0.8200 (2)	0.0270 (7)
H2A	0.515418	0.422762	0.789969	0.032*
C3	0.2091 (5)	0.4451 (2)	0.86675 (19)	0.0293 (7)
H3A	0.215294	0.530216	0.868476	0.035*
C4	0.0235 (6)	0.3849 (2)	0.9108 (2)	0.0293 (7)
H4A	-0.097370	0.428212	0.943778	0.035*
C5	0.0136 (5)	0.2607 (2)	0.90690 (18)	0.0248 (6)
H5A	-0.115233	0.219904	0.937426	0.030*
C6	0.1866 (4)	0.1949 (2)	0.85970 (16)	0.0203 (6)
C7	0.1802 (5)	0.0596 (2)	0.85041 (19)	0.0251 (6)
H7A	0.191282	0.038987	0.784403	0.030*
H7B	0.326584	0.026163	0.881019	0.030*
C8	-0.0424 (5)	-0.0006 (2)	0.88985 (19)	0.0226 (6)
H8A	-0.055581	0.020109	0.955777	0.027*
H8B	-0.189442	0.030922	0.858512	0.027*
C9	-0.0375 (5)	-0.1341 (2)	0.88018 (19)	0.0209 (6)
C10	-0.2421 (5)	-0.3137 (2)	0.91727 (19)	0.0304 (7)
H10A	-0.393610	-0.341096	0.946253	0.046*
H10B	-0.235700	-0.342708	0.853791	0.046*
H10C	-0.101883	-0.345081	0.951474	0.046*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0222 (10)	0.0322 (11)	0.0363 (12)	-0.0049 (10)	0.0094 (9)	0.0037 (10)
O2	0.0278 (11)	0.0272 (10)	0.0362 (11)	0.0043 (9)	0.0102 (8)	-0.0033 (10)
03	0.0245 (10)	0.0204 (9)	0.0353 (11)	-0.0020 (9)	0.0084 (8)	-0.0006 (9)
C1	0.0193 (16)	0.0266 (15)	0.0201 (14)	-0.0011 (12)	-0.0020 (12)	0.0008 (12)
C2	0.0226 (17)	0.0289 (16)	0.0296 (18)	-0.0085 (12)	-0.0028 (14)	0.0050 (12)
C3	0.0329 (16)	0.0195 (14)	0.0355 (17)	-0.0050 (13)	-0.0071 (14)	0.0006 (13)
C4	0.0290 (18)	0.0259 (16)	0.0329 (18)	0.0021 (13)	-0.0005 (15)	-0.0045 (12)
C5	0.0203 (16)	0.0265 (15)	0.0276 (16)	-0.0018 (12)	0.0029 (13)	0.0009 (12)
C6	0.0190 (13)	0.0213 (13)	0.0206 (14)	-0.0018 (12)	-0.0030 (11)	0.0018 (12)
C7	0.0226 (14)	0.0248 (15)	0.0278 (15)	0.0000 (12)	0.0048 (13)	0.0015 (13)
C8	0.0204 (14)	0.0223 (13)	0.0251 (14)	0.0015 (11)	0.0034 (12)	0.0013 (12)

data reports

C9	0.0200 (14)	0.0239 (14)	0.0188 (14)	0.0001 (12)	0.0016 (12)	0.0019 (11)
C10	0.0365 (16)	0.0195 (14)	0.0353 (16)	-0.0042 (14)	0.0031 (13)	0.0001 (13)

Geometric parameters (Å, °)

01—C1	1.372 (3)	C5—C6	1.381 (4)
01—H1H	0.86 (3)	С5—Н5А	0.9500
O2—C9	1.210 (3)	C6—C7	1.516 (4)
О3—С9	1.334 (3)	C7—C8	1.506 (3)
O3—C10	1.445 (3)	C7—H7A	0.9900
C1—C2	1.387 (3)	C7—H7B	0.9900
C1—C6	1.397 (4)	C8—C9	1.496 (3)
C2—C3	1.382 (4)	C8—H8A	0.9900
C2—H2A	0.9500	C8—H8B	0.9900
C3—C4	1.377 (4)	C10—H10A	0.9800
С3—НЗА	0.9500	C10—H10B	0.9800
C4—C5	1.388 (4)	C10—H10C	0.9800
C4—H4A	0.9500		
С1—01—Н1Н	111 (2)	С8—С7—Н7А	108.4
C9—O3—C10	116.1 (2)	С6—С7—Н7А	108.4
01—C1—C2	122.4 (3)	C8—C7—H7B	108.4
O1—C1—C6	116.6 (2)	С6—С7—Н7В	108.4
C2—C1—C6	120.9 (3)	H7A—C7—H7B	107.5
C3—C2—C1	120.0 (3)	C9—C8—C7	113.2 (2)
C3—C2—H2A	120.0	C9—C8—H8A	108.9
C1—C2—H2A	120.0	C7—C8—H8A	108.9
C4—C3—C2	119.8 (3)	C9—C8—H8B	108.9
C4—C3—H3A	120.1	C7—C8—H8B	108.9
С2—С3—НЗА	120.1	H8A—C8—H8B	107.8
C3—C4—C5	119.8 (3)	O2—C9—O3	122.9 (2)
C3—C4—H4A	120.1	O2—C9—C8	125.7 (2)
C5—C4—H4A	120.1	O3—C9—C8	111.4 (2)
C6—C5—C4	121.6 (3)	O3—C10—H10A	109.5
С6—С5—Н5А	119.2	O3—C10—H10B	109.5
C4—C5—H5A	119.2	H10A—C10—H10B	109.5
C5—C6—C1	117.8 (2)	O3—C10—H10C	109.5
C5—C6—C7	123.9 (2)	H10A—C10—H10C	109.5
C1—C6—C7	118.3 (2)	H10B—C10—H10C	109.5
C8—C7—C6	115.4 (2)		
01	1798(2)	01	-16(3)
C6-C1-C2-C3	0.8(4)	C_{2} C_{1} C_{6} C_{7}	1.0(5)
$C_1 - C_2 - C_3 - C_4$	0.5(4)	$C_2 - C_1 - C_0 - C_7$	50(4)
$C_1 = C_2 = C_3 = C_4 = C_5$	-00(4)	$C_{1} - C_{6} - C_{7} - C_{8}$	-1740(2)
$C_2 = C_3 = C_4 = C_5 = C_6$	$0.7(\tau)$	C6 - C7 - C8 - C9	-1791(2)
$C_{4} = C_{5} = C_{6} = C_{1}$	12(4)	$C_{10} = C_{10} = C_{10} = C_{10}$	$1 \times (4)$
$C_{4} = C_{5} = C_{6} = C_{7}$	-1770(3)	C10 - 03 - C9 - C8	-1764(2)
$C_{-} = C_{-} = C_{-$	1/1.2 (3)	010 - 03 - 03 - 00	1/0.7(2)

data reports

O1—C1—C6—C5	179.3 (2)	С7—С8—С9—О2	0.5 (4)
C2—C1—C6—C5	-1.6 (4)	С7—С8—С9—О3	178.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	D—H…A
O1—H1 <i>H</i> ···O2 ⁱ	0.86 (3)	1.96 (4)	2.805 (3)	169 (3)

Symmetry code: (i) -x+1, y+1/2, -z+3/2.