

IUCrData

ISSN 2414-3146

Received 24 October 2018 Accepted 10 November 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; pyrazolo[3,4b]pyridine; C-H··· π (ring) interactions.

CCDC reference: 1878230

Structural data: full structural data are available from iucrdata.iucr.org

3,4,6-Trimethyl-1-phenyl-5-(thiophen-3-yl)-1*H*-pyrazolo[3,4-*b*]pyridine

Mohamed Loubidi,^a* Jabrane Jouha,^b Zahira Tber,^a Mohamed El Hafi,^c El Mokhtar Essassi^c and Joel T. Mague^d

^aLaboratoire de Chimie Bioorganique & Analytique, URAC 22 Université Hassan II, Mohammedia-Casablanca, Faculté des Sciences et Techniques, BP 146, 28800, Mohammedia, Morocco, ^bLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay, Slimane, Faculté des Sciences et Techniques, BP 523, 23000, Beni-Mellal, Morocco, ^cLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and ^dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: m.loubidi@gmail.com

In the title compound, $C_{19}H_{17}N_3S$, the pyrazolo[3,4-*b*]pyridine unit is slightly bowed across the C–C bond common to the two rings. In the crystal, ribbons extending along the *a*-axis direction are formed by C–H··· π (ring) interactions. The ribbons are packed into corrugated layers inclined to the *ac* plane by approximately 22°. The thiophenyl group is rotationally disordered over two sites 180° apart in a 0.606 (2)/0.394 (2) ratio.

Structure description

Bi-heterocyclic systems have received considerable attention due to their biologically interesting properties that are often exploited in drug manufacture. The pyrazolo[3,4-*b*]-pyridines are bi-heterocyclic systems that are included in many drugs targeting bacterial diseases and malaria. They are also active anti-proliferative and anti-coagulant agents (Goda *et al.*, 2004; Kundariya *et al.*, 2011). This work is part of our continuing efforts to develop new pyrazolo[3,4-*b*]pyridine derivatives (Jouha *et al.*, 2017).

In the title compound (Fig. 1), the pyrazolo[3,4-*b*]pyridine unit is slightly bowed about the C1···C5 axis with an angle of 2.2 (1)° between the two constituent rings. The thiophenyl ring (major orientation) is almost orthogonal to the mean plane of the pyridine ring with an angle of 89.8 (2)° between them. In contrast, the C14–C19 phenyl ring is almost coplanar with the pyrazole ring with an interplanar angle of 22.3 (1)°. This conformation is aided by the formation of an intramolecular C15–H15···N1 hydrogen bond (Table 1).

Figure 1

The title molecule with the labelling scheme and 50% probability ellipsoids. The intramolecular $C-H\cdots N$ hydrogen bond is shown as a dashed line.

Figure 2

Detail of the C-H··· π (ring) interactions (dashed lines) viewed along the *c*-axis direction.

Figure 3

Packing viewed along the *b*-axis direction with intermolecular interactions depicted as in Fig. 2.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg4 and Cg5 are the centroids of the N1/C1–C5 and C14–C19 rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10-H10··· $Cg4^{i}$	0.95	2.63	3.491 (3)	151
C13-H13 A ··· $Cg5^{ii}$	0.97 (2)	2.70(2)	3.4771 (18)	138.1 (16)
C15-H15···N1	0.98 (2)	2.44(2)	3.040 (2)	119.2 (15)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$C_{19}H_{17}N_3S$
M _r	319.41
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
a, b, c (Å)	7.6672 (3), 9.9098 (4), 11.4101 (4)
α, β, γ (°)	82.548 (1), 78.176 (2), 76.607 (2)
$V(Å^3)$	822.39 (6)
Ζ	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	1.75
Crystal size (mm)	$0.43 \times 0.17 \times 0.16$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T _{min} , T _{max}	0.63, 0.77
No. of measured, independent and	6351, 3048, 2722
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.027
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.117, 1.04
No. of reflections	3048
No. of parameters	262
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained
$\Delta \rho_{\text{max}}$, $\Delta \rho_{\text{min}}$ (e Å ⁻³)	0.240.26

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

In the crystal, inversion-related pairs of $C10-H10\cdots Cg4$ interactions (Table 1) form dimers, which are joined into ribbons extending along the *a*-axis direction by $C13-H13A\cdots Cg5$ interactions (Table 1 and Fig. 2). The ribbons are packed to form corrugated layers (Fig. 3) inclined to the *ac* plane by approximately 22° .

Synthesis and crystallization

A flask containing a stirring bar was charged with 5-bromo-3,4,6-trimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine (100 mg, 0.31 mmol), 3-thiopheneboronic acid (52 mg, 0.35 mmol) and sodium bicarbonate (1.5 equiv, 0.47 mmol) in a mixture of toluene/ethanol ($2/1 \nu/\nu$). Pd(PPh₃)₄ (0.05 equiv, 0.018 mmol) was added and the mixture was refluxed for 12 h. After cooling, solvents were removed under reduced pressure and the residue was purified by flash chromatography on silica gel (90:10 petroleum ether/ethyl acetate). The title compound was recrystallized from ethanol, at room temperature, giving colourless crystals (yield: 74%; m.p. 434–436 K).

Refinement

Crystal and refinement details are presented in Table 2. The thiophenyl group is rotationally disordered over two sites 180° apart in a 0.606 (2)/0.394 (2) ratio. The two components of the disorder were refined as idealized rigid groups.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the

Tulane Crystallography Laboratory are gratefully acknowl-edged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Goda, F. E., Abdel-Aziz, A. A. M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845–1852.

Jouha, J., Loubidi, M., Bouali, J., Hamri, S., Hafid, A., Suzenet, F., Guillaumet, G., Dagei, T., Khouili, M., Aydın, F., Saso, L. & Armagan, G. (2017). Eur. J. Med. Chem. 129, 41–52.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kundariya, D. S., Bheshdadia, B. M., Joshi, N. K. & Patel, P. K. (2011). Int. J. Chem. Tech. Res, 3, 238–243.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2018). **3**, x181593 [https://doi.org/10.1107/S2414314618015936]

3,4,6-Trimethyl-1-phenyl-5-(thiophen-3-yl)-1H-pyrazolo[3,4-b]pyridine

Mohamed Loubidi, Jabrane Jouha, Zahira Tber, Mohamed El Hafi, El Mokhtar Essassi and Joel T.

Mague

3,4,6-Trimethyl-1-phenyl-5-(thiophen-3-yl)-1*H*-pyrazolo[3,4-*b*]pyridine

Crystal data

C₁₉H₁₇N₃S $M_r = 319.41$ Triclinic, $P\overline{1}$ a = 7.6672 (3) Å b = 9.9098 (4) Å c = 11.4101 (4) Å a = 82.548 (1)° $\beta = 78.176$ (2)° $\gamma = 76.607$ (2)° V = 822.39 (6) Å³

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (SADABS; Krause et al., 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.117$ S = 1.033048 reflections 262 parameters 1 restraint Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 336 $D_x = 1.290 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 5350 reflections $\theta = 4.0-72.2^{\circ}$ $\mu = 1.75 \text{ mm}^{-1}$ T = 150 K Column, colourless $0.43 \times 0.17 \times 0.16 \text{ mm}$

 $T_{\min} = 0.63, T_{\max} = 0.77$ 6351 measured reflections 3048 independent reflections 2722 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 72.2^{\circ}, \theta_{min} = 4.0^{\circ}$ $h = -8 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -14 \rightarrow 13$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 0.2279P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.26$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The thiophenyl group is rotationally disordered over two sites 180° apart. The two components of the disorder were refined as idealized rigid groups with riding hydrogens.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.76462 (17)	0.22090 (13)	0.55436 (11)	0.0343 (3)	
N2	0.61196 (17)	0.34682 (13)	0.72855 (11)	0.0318 (3)	
N3	0.44124 (17)	0.42717 (13)	0.76695 (11)	0.0329 (3)	
C1	0.4452 (2)	0.34579 (14)	0.58985 (12)	0.0304 (3)	
C2	0.4127 (2)	0.30555 (15)	0.48398 (13)	0.0321 (3)	
C3	0.5603 (2)	0.22109 (15)	0.41634 (13)	0.0330 (3)	
C4	0.7329 (2)	0.18473 (15)	0.45272 (13)	0.0345 (3)	
C5	0.6183 (2)	0.29736 (15)	0.62018 (13)	0.0308 (3)	
C6	0.3413 (2)	0.42794 (15)	0.68545 (13)	0.0319 (3)	
C7	0.2296 (2)	0.3506 (2)	0.44751 (15)	0.0402 (4)	
H7A	0.234 (3)	0.329 (2)	0.368 (2)	0.063 (6)*	
H7B	0.138 (3)	0.312 (2)	0.505 (2)	0.063 (6)*	
H7C	0.185 (3)	0.450 (3)	0.445 (2)	0.066 (7)*	
C8	0.5523 (7)	0.1636 (3)	0.30143 (14)	0.0277 (8)	0.606 (2)
C9	0.5743 (8)	0.2332 (3)	0.18973 (18)	0.0423 (8)	0.606 (2)
Н9	0.610994	0.319952	0.171281	0.051*	0.606 (2)
S 1	0.52573 (14)	0.14045 (9)	0.08737 (6)	0.0471 (3)	0.606 (2)
C10	0.4936 (5)	0.0382 (3)	0.30243 (10)	0.0463 (10)	0.606 (2)
H10	0.471090	-0.021735	0.373322	0.056*	0.606 (2)
C11	0.4724 (5)	0.0112 (2)	0.19456 (14)	0.0581 (5)	0.606 (2)
H11	0.433455	-0.068226	0.179727	0.070*	0.606 (2)
C8A	0.5135 (13)	0.1704 (6)	0.3104 (3)	0.0277 (8)	0.394 (2)
C9A	0.4500 (8)	0.0520 (4)	0.31229 (13)	0.0423 (8)	0.394 (2)
H9A	0.410352	-0.003177	0.382854	0.051*	0.394 (2)
S1A	0.4527 (3)	0.01780 (16)	0.16774 (12)	0.0581 (5)	0.394 (2)
C10A	0.5659 (13)	0.2295 (6)	0.1924 (4)	0.0463 (10)	0.394 (2)
H10A	0.613757	0.311623	0.175878	0.056*	0.394 (2)
C11A	0.5421 (9)	0.1596 (4)	0.1058 (2)	0.0471 (3)	0.394 (2)
H11A	0.570836	0.185035	0.022056	0.056*	0.394 (2)
C12	0.8937 (3)	0.0994 (2)	0.37643 (16)	0.0462 (4)	
H12A	0.879 (4)	0.005 (3)	0.387 (2)	0.071 (7)*	
H12B	0.907 (3)	0.133 (3)	0.292 (2)	0.068 (7)*	
H12C	1.006 (3)	0.094 (2)	0.407 (2)	0.060 (6)*	
C13	0.1498 (2)	0.50792 (18)	0.69981 (15)	0.0380 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H13A	0.063 (3)	0.449 (2)	0.7058 (19)	0.055 (6)*
H13B	0.132 (3)	0.577 (2)	0.6308 (19)	0.050 (5)*
H13C	0.121 (3)	0.562 (2)	0.770 (2)	0.058 (6)*
C14	0.7449 (2)	0.32305 (16)	0.80297 (13)	0.0337 (3)
C15	0.8874 (2)	0.20766 (19)	0.79334 (15)	0.0433 (4)
H15	0.899 (3)	0.142 (2)	0.7341 (19)	0.049 (5)*
C16	1.0143 (3)	0.1856 (2)	0.86897 (18)	0.0530 (5)
H16	1.113 (3)	0.099 (2)	0.866 (2)	0.062 (6)*
C17	0.9990 (3)	0.2778 (2)	0.95380 (16)	0.0515 (4)
H17	1.087 (3)	0.263 (2)	1.007 (2)	0.057 (6)*
C18	0.8557 (2)	0.3923 (2)	0.96290 (14)	0.0445 (4)
H18	0.836 (3)	0.456 (2)	1.023 (2)	0.056 (6)*
C19	0.7284 (2)	0.41651 (17)	0.88843 (13)	0.0371 (3)
H19	0.625 (3)	0.4989 (19)	0.8953 (16)	0.038 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0383 (7)	0.0391 (7)	0.0284 (6)	-0.0103 (5)	-0.0050 (5)	-0.0118 (5)
N2	0.0338 (6)	0.0375 (6)	0.0280 (6)	-0.0104 (5)	-0.0055 (5)	-0.0123 (5)
N3	0.0356 (7)	0.0367 (6)	0.0296 (6)	-0.0114 (5)	-0.0046 (5)	-0.0107 (5)
C1	0.0359 (7)	0.0334 (7)	0.0258 (7)	-0.0136 (6)	-0.0044 (6)	-0.0067 (5)
C2	0.0401 (8)	0.0342 (7)	0.0268 (7)	-0.0157 (6)	-0.0060 (6)	-0.0061 (5)
C3	0.0428 (8)	0.0348 (7)	0.0260 (7)	-0.0149 (6)	-0.0059 (6)	-0.0074 (5)
C4	0.0425 (8)	0.0369 (8)	0.0265 (7)	-0.0112 (6)	-0.0040 (6)	-0.0098 (6)
C5	0.0374 (7)	0.0338 (7)	0.0256 (7)	-0.0143 (6)	-0.0043 (6)	-0.0081 (5)
C6	0.0369 (8)	0.0352 (7)	0.0276 (7)	-0.0140 (6)	-0.0045 (6)	-0.0080(5)
C7	0.0410 (9)	0.0523 (10)	0.0328 (8)	-0.0129 (7)	-0.0103 (7)	-0.0122 (7)
C8	0.022 (2)	0.0366 (8)	0.0257 (7)	-0.0083 (10)	0.0019 (10)	-0.0121 (6)
C9	0.0608 (18)	0.0439 (18)	0.0282 (16)	-0.0170 (13)	-0.0100 (12)	-0.0112 (14)
S 1	0.0692 (5)	0.0549 (5)	0.0266 (4)	-0.0235 (3)	-0.0131 (3)	-0.0123 (3)
C10	0.064 (2)	0.051 (2)	0.0330 (18)	-0.0355 (16)	0.0003 (13)	-0.0078 (14)
C11	0.0854 (8)	0.0653 (7)	0.0400 (8)	-0.0407 (6)	-0.0121 (6)	-0.0181 (5)
C8A	0.022 (2)	0.0366 (8)	0.0257 (7)	-0.0083 (10)	0.0019 (10)	-0.0121 (6)
C9A	0.0608 (18)	0.0439 (18)	0.0282 (16)	-0.0170 (13)	-0.0100 (12)	-0.0112 (14)
S1A	0.0854 (8)	0.0653 (7)	0.0400 (8)	-0.0407 (6)	-0.0121 (6)	-0.0181 (5)
C10A	0.064 (2)	0.051 (2)	0.0330 (18)	-0.0355 (16)	0.0003 (13)	-0.0078 (14)
C11A	0.0692 (5)	0.0549 (5)	0.0266 (4)	-0.0235 (3)	-0.0131 (3)	-0.0123 (3)
C12	0.0486 (10)	0.0536 (11)	0.0366 (9)	-0.0026 (8)	-0.0070 (7)	-0.0201 (8)
C13	0.0373 (8)	0.0458 (9)	0.0324 (8)	-0.0081 (7)	-0.0055 (6)	-0.0115 (7)
C14	0.0355 (8)	0.0441 (8)	0.0263 (7)	-0.0159 (6)	-0.0048 (6)	-0.0081 (6)
C15	0.0456 (9)	0.0492 (9)	0.0391 (9)	-0.0077 (7)	-0.0131 (7)	-0.0143 (7)
C16	0.0488 (10)	0.0629 (12)	0.0500 (10)	-0.0037 (8)	-0.0190 (8)	-0.0129 (8)
C17	0.0500 (10)	0.0740 (12)	0.0384 (9)	-0.0185 (9)	-0.0182 (8)	-0.0073 (8)
C18	0.0490 (10)	0.0636 (11)	0.0296 (8)	-0.0248 (8)	-0.0067 (7)	-0.0132 (7)
C19	0.0405 (8)	0.0475 (9)	0.0282 (7)	-0.0167 (7)	-0.0040 (6)	-0.0109 (6)

Geometric parameters (Å, °)

N1—C4	1.3403 (18)	C11—H11	0.9500	
N1—C5	1.3438 (19)	C8A—C9A	1.3662	
N2—C5	1.3760 (17)	C8AC10A	1.4147	
N2—N3	1.3827 (17)	C9A—S1A	1.7217	
N2—C14	1.4170 (18)	С9А—Н9А	0.9500	
N3—C6	1.3189 (18)	S1A—C11A	1.7128	
C1—C5	1.401 (2)	C10A—C11A	1.3415	
C1—C2	1.4050 (19)	C10A—H10A	0.9500	
C1—C6	1.4356 (19)	C11A—H11A	0.9500	
C2—C3	1.396 (2)	C12—H12A	0.95 (3)	
C2—C7	1.499 (2)	C12—H12B	0.97 (3)	
C3—C4	1.421 (2)	C12—H12C	0.98 (2)	
C3—C8A	1.504 (2)	C13—H13A	0.97 (2)	
C3—C8	1.5133 (16)	C13—H13B	0.98 (2)	
C4—C12	1.504 (2)	C13—H13C	0.98 (2)	
C6—C13	1.486 (2)	C14—C15	1.385 (2)	
С7—Н7А	0.95 (2)	C14—C19	1.398 (2)	
С7—Н7В	0.97 (3)	C15—C16	1.392 (2)	
C7—H7C	0.96 (3)	С15—Н15	0.98 (2)	
C8—C9	1.3662	C16—C17	1.386 (3)	
C8—C10	1.4147	C16—H16	1.00 (2)	
C9—S1	1.7216	C17—C18	1.382 (3)	
С9—Н9	0.9500	C17—H17	0.97 (2)	
S1—C11	1.7128	C18—C19	1.382 (2)	
C10-C11	1.3415	C18—H18	0.96 (2)	
C10—H10	0.9500	C19—H19	0.994 (18)	
C4—N1—C5	114.22 (13)	C9A—C8A—C10A	112.6	
C5—N2—N3	110.22 (11)	C9A—C8A—C3	125.5 (3)	
C5—N2—C14	130.64 (13)	C10A—C8A—C3	120.8 (3)	
N3—N2—C14	119.08 (11)	C8A—C9A—S1A	109.9	
C6—N3—N2	107.32 (11)	С8А—С9А—Н9А	125.1	
C5—C1—C2	118.55 (13)	S1A—C9A—H9A	125.1	
C5—C1—C6	105.07 (12)	C11A—S1A—C9A	92.9	
C2—C1—C6	136.37 (14)	C11A-C10A-C8A	114.2	
C3—C2—C1	115.97 (13)	C11A—C10A—H10A	122.9	
C3—C2—C7	122.59 (13)	C8A—C10A—H10A	122.9	
C1—C2—C7	121.44 (13)	C10A—C11A—S1A	110.4	
C2—C3—C4	120.47 (13)	C10A—C11A—H11A	124.8	
C2—C3—C8A	113.7 (4)	S1A—C11A—H11A	124.8	
C4—C3—C8A	125.8 (4)	C4—C12—H12A	108.1 (15)	
C2—C3—C8	124.2 (2)	C4—C12—H12B	112.5 (14)	
C4—C3—C8	115.3 (2)	H12A—C12—H12B	111 (2)	
N1—C4—C3	123.97 (13)	C4—C12—H12C	110.9 (13)	
N1-C4-C12	115.76 (14)	H12A—C12—H12C	103 (2)	
C3—C4—C12	120.27 (13)	H12B—C12—H12C	111.0 (19)	

N1—C5—N2	126.35 (13)	C6—C13—H13A	112.5 (12)
N1—C5—C1	126.65 (13)	C6—C13—H13B	110.9 (12)
N2-C5-C1	106.97 (12)	H13A—C13—H13B	107.0 (17)
N3—C6—C1	110.41 (13)	C6—C13—H13C	110.2 (13)
N3-C6-C13	120.49 (13)	H13A—C13—H13C	110.6 (18)
C1 - C6 - C13	129.09(13)	H_{13B} C_{13} H_{13C}	105.5(17)
$C_2 - C_7 - H_7 A$	1114(14)	C_{15} C_{14} C_{19}	100.0(17) 120.19(14)
$C_2 = C_7 = H_7 B$	111.4(14)	C_{15} C_{14} C_{15} C_{14} N_{2}	120.19(14) 120.79(13)
$H_{2} - C_{1} - H_{2} B$	111.1(1+) 112(2)	C19 - C14 - N2	120.79(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112(2) 1127(15)	C14 C15 C16	119.01(14)
	112.7(13) 104(2)	$C_{14} = C_{15} = C_{10}$	119.39(13)
H/A - C / - H/C	104(2) 105(2)	C16 C15 H15	120.4(12)
H/B = C/=H/C	103 (2)	C17_C1(_C15	120.0(12)
$C_{9} = C_{8} = C_{10}$	112.6	C17 - C16 - C15	120.55 (18)
09-08-03	124.92 (17)	C1/C16H16	119.6 (13)
C10—C8—C3	121.82 (18)	С15—С16—Н16	119.7 (13)
C8—C9—S1	109.9	C18—C17—C16	119.31 (16)
С8—С9—Н9	125.1	C18—C17—H17	119.8 (12)
S1—C9—H9	125.1	С16—С17—Н17	120.9 (12)
C11—S1—C9	92.9	C19—C18—C17	121.11 (15)
C11—C10—C8	114.2	C19—C18—H18	116.5 (13)
C11—C10—H10	122.9	C17—C18—H18	122.3 (13)
C8—C10—H10	122.9	C18—C19—C14	119.25 (16)
C10—C11—S1	110.4	C18—C19—H19	120.9 (11)
C10-C11-H11	124.8	C14—C19—H19	119.9 (11)
S1—C11—H11	124.8		
C5—N2—N3—C6	0.41 (16)	C2-C1-C6-C13	-2.9 (3)
C14—N2—N3—C6	-177.05 (12)	C2—C3—C8—C9	84.6 (2)
C5—C1—C2—C3	-1.1 (2)	C4—C3—C8—C9	-94.6(2)
C6—C1—C2—C3	-179.68 (16)	C2-C3-C8-C10	-85.7 (4)
C5—C1—C2—C7	178.51 (14)	C4-C3-C8-C10	95.0 (4)
C6—C1—C2—C7	-0.1 (3)	C10—C8—C9—S1	-1.1
C1—C2—C3—C4	-2.4(2)	C3—C8—C9—S1	-172.2(4)
C7—C2—C3—C4	178.02 (15)	C8—C9—S1—C11	1.0
C1-C2-C3-C8A	174.6 (2)	C9—C8—C10—C11	0.5
C7—C2—C3—C8A	-4.9(3)	C3—C8—C10—C11	171.9 (4)
$C_1 - C_2 - C_3 - C_8$	178 37 (17)	C8 - C10 - C11 - S1	03
$C_{7} - C_{2} - C_{3} - C_{8}$	-12(3)	C9 = S1 = C11 = C10	-0.7
$C_{2} = C_{2} = C_{3} = C_{3}$	-0.8(2)	$C_2 = C_3 = C_8 \Delta = C_9 \Delta$	-88 1 (6)
$C_5 N_1 C_4 C_{12}$	170.82(14)	$C_2 = C_3 = C_3 + C_3 $	887(6)
$C_{3} = N_{1} = C_{4} = C_{12}$	1/9.02(14)	C_{4}	104.4(4)
$C_2 = C_3 = C_4 = N_1$	5.0(2)	$C_2 = C_3 = C_8 A = C_{10} A$	104.4(4)
$C_{A} = C_{A} = C_{A} = N_{A}$	-1/5.1(2)	$C_4 = C_3 = C_{8A} = C_{10A}$	-/8.8 (4)
U3-U3-U4-NI	177 17 (17)		-11
C2 C2 C4 C12	-177.12 (17)	C10A - C0A - C9A - S1A	1.1
C2-C3-C4-C12	-177.12(17) -177.07(15)	C10A—C8A—C9A—S1A C3—C8A—C9A—S1A	-169.5 (7)
C2—C3—C4—C12 C8A—C3—C4—C12	-177.12 (17) -177.07 (15) 6.3 (3)	C10A—C8A—C9A—S1A C3—C8A—C9A—S1A C8A—C9A—S1A—C11A	-169.5 (7) 1.0
C2-C3-C4-C12 C8A-C3-C4-C12 C8-C3-C4-C12	-177.12 (17) -177.07 (15) 6.3 (3) 2.2 (2)	C3-C8A-C9A-S1A C3-C8A-C9A-S1A C8A-C9A-S1A-C11A C9A-C8A-C10A-C11A	-169.5 (7) 1.0 0.5
C2—C3—C4—C12 C8A—C3—C4—C12 C8—C3—C4—C12 C4—N1—C5—N2	-177.12 (17) -177.07 (15) 6.3 (3) 2.2 (2) 179.18 (14)	C3—C8A—C9A—S1A C3—C8A—C9A—S1A C8A—C9A—S1A—C11A C9A—C8A—C10A—C11A C3—C8A—C10A—C11A	-169.5 (7) 1.0 0.5 169.5 (7)

N3-N2-C5-N1 $C14-N2-C5-N1$ $N3-N2-C5-C1$ $C14-N2-C5-C1$ $C2-C1-C5-N1$ $C6-C1-C5-N2$ $C6-C1-C5-N2$ $N2-N3-C6-C1$ $N2-N3-C6-C13$ $C5-C1-C6-N3$ $C2-C1-C6-N3$	$\begin{array}{c} 177.01 \ (14) \\ -5.9 \ (2) \\ -1.05 \ (16) \\ 176.02 \ (14) \\ 4.2 \ (2) \\ -176.83 \ (14) \\ -177.77 \ (12) \\ 1.23 \ (16) \\ 0.40 \ (16) \\ -179.02 \ (13) \\ -1.03 \ (16) \\ 177.70 \ (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.7 -20.9 (2) 155.93 (15) 160.39 (15) -22.8 (2) -0.2 (3) -178.91 (16) 0.2 (3) 0.1 (3) -0.4 (3) 0.3 (3) 0.0 (2)
C2-C1-C6-N3	177.70 (16)	C15—C14—C19—C18	0.0 (2)
C5-C1-C6-C13	178.33 (15)	N2—C14—C19—C18	178.71 (14)

Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the N1/C1-C5 and C14-C19 rings, respectively.

D—H···A	D—H	H···A	D····A	D—H··· A
C10—H10…Cg4 ⁱ	0.95	2.63	3.491 (3)	151
C13—H13 <i>A</i> … <i>Cg</i> 5 ⁱⁱ	0.97 (2)	2.70 (2)	3.4771 (18)	138.1 (16)
C15—H15…N1	0.98 (2)	2.44 (2)	3.040 (2)	119.2 (15)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*-1, *y*, *z*.