

IUCrData

ISSN 2414-3146

Received 9 November 2018 Accepted 20 November 2018

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; 1:1 co-crystal of 3hydroxy-3-methylisochroman-1-one–2-(carboxymethyl)benzoic acid; hydrogen bonding; C—H··· π (ring) interactions; C=O··· π (ring) interactions.

CCDC reference: 1879994

Structural data: full structural data are available from iucrdata.iucr.org

3-Hydroxy-3-methylisochroman-1-one-2-(carboxymethyl)benzoic acid (1/1)

Akoun Abou,^a* Ludovic Akonan,^b Frédérica Koblavi-Mansilla,^c Aka Joseph N'gouan^c and Konan René Kambo^c

^aUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité, Appliqueés (UMRI EEA), Equipe de Recherche Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093 Yamoussoukro, Côte d'Ivoire, ^bLaboratoire de Physique Fondamentale et Appliquée, UFR SFA, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire, and ^cLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire. *Correspondence e-mail: abouakoun@gmail.com

The title co-crystalline compound, $C_{10}H_{10}O_3 \cdot C_9H_8O_4$, has been synthesized and characterized in a single-crystal X-ray diffraction study. In the 3-hydroxy-3-methylisochroman-1-one molecule, the six-membered heterocyclic ring lies between an envelope and a screw-boat conformation. In the 2-carboxymethylbenzoic acid, molecule, the 2-carboxymethyl substituent is almost planar (r.m.s deviation = 0.048 Å) and makes a dihedral angle of 79.59 (7)° with the planar benzene ring. In this molecule, intramolecular $C-H \cdot \cdot O$ contacts generate five-and six-membered rings, forming a tricyclic ring system. In the crystal, classical $O-H \cdot \cdot O$ and $C-H \cdot \cdot O$ hydrogen bonds combine with $C-H \cdot \cdot \pi(\text{ring})$ and unusual $C=O \cdot \cdot \pi(\text{ring})$ contacts to generate a three-dimensional network.

Structure description

Isochromanone derivatives are generally known as regulators of plant growth (Bianchi *et al.*, 2004). Depending on their chemical structure and concentration, they can act either as inhibitors or stimulators in these processes. Some substituted isochromanones isolated from myxobacteria strains have been introduced as anti-fungal agents (Buntin *et al.*, 2008). In view of their importance and as a continuation of our work on the crystal structure analysis of isochromanone derivatives (Abou *et al.*, 2009, 2011, 2012), we report herein the synthesis and crystal structure of the title compound (Fig. 1), a (1/1) co-crystal of 3-hydoxy-3-methyl-isochroman-1-one (A), and 2-carboxymethyl-benzoic acid (B).

Table 1Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C3A/C4A/C10A-C13A benzene ring (molecule A) and *Cg4* is the centroid of the C3B/C4B/C10B-C13B benzene ring (molecule B).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$C10B - H10B \cdots O18B$	0.93	2.33	2.6745 (16)	102
$C2B - H21B \cdots O17B$	0.97	2.39	2.7870 (16)	102
$C7A - H73A \cdots O9A^{i}$	0.96	2.60	3.4469 (17)	148
$O8A - H8A \cdots O9A^{ii}$	0.82	2.02	2.8311 (12)	172
$O15B - H15B \cdot \cdot \cdot O17B^{iii}$	0.82	1.88	2.6950 (13)	171
$O18B - H18B \cdots O16B^{iv}$	0.82	1.80	2.6115 (15)	168
$C2B - H22B \cdots Cg2^{iii}$	0.97	2.92	3.8725 (15)	169
$C5A - H51A \cdots Cg2^{v}$	0.97	2.74	3.6346 (15)	153
$C11A - H11A \cdots Cg4^{vi}$	0.93	2.78	3.6075 (17)	149
$C14B - O17B \cdots Cg4^{vii}$	1.26 (1)	3.44 (1)	3.5714 (13)	86 (1)

Symmetry codes: (i) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) -x - 1, -y, -z; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) -x + 1, -y + 1, -z; (vi) $x, -y + \frac{1}{2}, z - \frac{3}{2}$; (vii) -x, -y + 1, -z + 1.

In molecule A, the six-membered heterocyclic ring system O1A/C2A–C6A displays a conformation between that of an envelope and a screw-boat as judged from the puckering parameters $[Q_T = 0.4319 (14) \text{ Å}, \theta = 120.60 (18)^\circ$ and $\varphi = 109.5 (2)^\circ]$ with atom O8A in an axial position. In this molecule, the bond lengths and angles of the isochroman-1-one ring are within normal ranges and comparable to those found in related structures (Brockway *et al.*, 2011; Bredenkamp *et al.*, 1989).

In molecule *B*, *S*(5) and *S*(6) ring motifs arise from intramolecular $C10B-H10B\cdots O18B$ and $C2B-H2B\cdots O17B$ hydrogen bonds (Table 1), and generate a pseudo tricyclic ring system (Fig. 1). The planar benzoic acid (r.m.s deviation = 0.028 Å) group is almost perpendicular to the least-squares plane of the 2-carboxymethyl substituent (r.m.s deviation = 0.004), making a dihedral angle of 79.14 (7)°. The bond lengths and angles of this molecule are also generally in good agreement with those observed in related structures (Tai *et al.*, 2014; Bolte, 2009).

Figure 1

The asymmetric unit of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The dashed lines indicate intramolecular hydrogen bonds.

Sheets of type A molecules viewed along the the a-axis direction. The green dots are the centroids of the C3A/C4A/C10A-C13A benzene rings. In these packing diagrams, the dashed lines represent hydrogen bonds and H atoms not involved in hydrogen-bonding interactions have been omitted for clarity.

In the co-crystal structure, $O8A - H8A \cdots O9A$ hydrogen bonds (Table 1) link molecules of type A into centrosymmetric $R_2^2(12)$ dimers lying nearly parallel to the bc plane. These are connected by $C7A - H73A \cdots O9A$ hydrogen bonds along the c-axis direction and by inversion-related C5A -

Figure 3

Part of the crystal packing of the *B* molecules in the co-crystal viewed along the the *a* axis direction. The blue dots are the centroids of the C3*B*/C4*B*/C10*B*-C13*B* benzene rings

Figure 4

Overall crystal packing of the title compound, showing the supramolecular aggregation resulting from the three-dimensional hydrogenbonded network.

H51 $A \cdots \pi$ (ring) contacts to the benzene ring of another A molecule (Fig. 2). B molecules form unusual inversion-related C14B—O17 $B \cdots Cg4$ contacts and classical centrosymmetric head-to-head carboxylic acid–carboxyl hydrogen-bonding interactions (O15B—H15 $B \cdots$ O17B and O18B—H18 $B \cdots$ O16B) each generating $R_2^2(8)$ ring motifs. These contacts link the B molecules into an extensive X-shaped array along the c-axis direction, Fig. 3. The two sets of co-crystallized molecules are further interconnected by weak C11A—H11 $A \cdots Cg4$ and C2B—H22 $B \cdots Cg2$ hydrogen bonds (Table 1) to give a three-dimensional network (Fig. 4) (Cg2 and Cg4 are the centroids of the C3A/C4A/C10A-C13A and C3B/C4B/C10B-C13B benzene rings, respectively).

Synthesis and crystallization

300 ml of dried diethyl ether, 0.125 mol of acetic anhydride and 4 ml of dried pyridine were placed in a 500 ml flask fitted with water condenser. The mixture was stirred and 0.12 mol of homophthalic anhydride was added in small portions of 0.03 mol over 30 min. After this addition, the mixture was stirred at room temperature for 3 h. The precipitate was filtered, washed with petroleum ether to remove the pyridine and recrystallized from chloroform–pentane (1/1; v/v) solution. Colourless crystals of the title compound were obtained in a good yield (98%; m.p. 435–436 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Two outlier reflections ($\overline{3}08$, $\overline{3}17$) were omitted from the final refinement.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{10}H_{10}O_3 \cdot C_9H_8O_4$
$M_{ m r}$	358.33
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	298
a, b, c (Å)	12.1143 (4), 9.8134 (1), 14.2602 (2)
β (°)	95.116 (1)
$V(Å^3)$	1688.53 (6)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.11
Crystal size (mm)	$0.50 \times 0.30 \times 0.30$
Data collection	
Diffractometer	Nonius KappaCCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16894, 4368, 3717
R _{int}	0.025
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.683
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.116, 1.05
No. of reflections	4368
No. of parameters	238
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.30, -0.34

Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2014 (Burla et al., 2015), PLATON (Spek, 2009), SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Acknowledgements

The authors are grateful to the Spectropôle Service (Aix-Marseille University, France) for use of the diffractometer.

References

- Abou, A., Djandé, A., Saba, A., Chiavassa, T. & Kakou-Yao, R. (2012). Acta Cryst. E68, 03.
- Abou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, 03349.
- Abou, A., Goulizan Bi, S. D., Kaboré, L., Djandé, A., Saba, A. & Kakou-Yao, R. (2009). Z. Naturforsch. Teil B, 64, 328–330.
- Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927.
- Bolte, M. (2009). Private Communication (refcode HOPHAL11, deposition No. 757871). CCDC, Cambridge, England.
- Bredenkamp, M. W., Dillen, J. L. M., van Rooyen, P. H. & Steyn, P. S. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1835–1839.
- Brockway, A. J., González-López, M., Fettinger, J. C. & Shaw, J. T. (2011). J. Org. Chem. **76**, 3515–3518.
- Buntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. 47, 4595–4599.
- Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Sheldrick, G. M. (2015). *Acta Cryst.* C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Tai, X. S. & Liu, L. L. (2014). J. Chem. Pharm. Res. 6, 905–909.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2018). **3**, x181653 [https://doi.org/10.1107/S241431461801653X]

3-Hydroxy-3-methylisochroman-1-one-2-(carboxymethyl)benzoic acid (1/1)

Akoun Abou, Ludovic Akonan, Frédérica Koblavi-Mansilla, Aka Joseph N'gouan and Konan René Kambo

3-Hydroxy-3-methylisochroman-1-one-2-(carboxymethyl)benzoic acid (1/1)

Crysiai aala	
$C_{10}H_{10}O_{3} \cdot C_{9}H_{8}O_{4}$ $M_{r} = 358.33$ Monoclinic, $P2_{1}/c$ a = 12.1143 (4) Å b = 9.8134 (1) Å c = 14.2602 (2) Å $\beta = 95.116$ (1)° V = 1688.53 (6) Å ³ Z = 4 F(000) = 752	$D_x = 1.410 \text{ Mg m}^{-3}$ Melting point = 435–436 K Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16894 reflections $\theta = 3.0-29.1^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 298 K Prism, colourless $0.50 \times 0.30 \times 0.30 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube $\varphi \& \omega$ scans 16894 measured reflections 4368 independent reflections	3717 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$ $\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ $h = -16 \rightarrow 16$ $k = -12 \rightarrow 12$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.116$ S = 1.05 4368 reflections 238 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0494P)^2 + 0.4813P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å ⁻³ $\Delta\rho_{min} = -0.34$ e Å ⁻³

Special details

Conversal data

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1A	-0.54160 (7)	-0.16519 (9)	-0.02214 (6)	0.0373 (2)
09A	-0.50696 (9)	-0.15285 (9)	0.13071 (6)	0.0454 (2)
08A	-0.40645 (7)	-0.11526 (9)	-0.12192 (7)	0.0408 (2)
H8A	-0.4248	-0.0348	-0.1239	0.061*
O15B	0.00113 (8)	0.38147 (10)	0.16774 (7)	0.0471 (2)
H15B	0.0107	0.4299	0.2146	0.071*
O17B	-0.01082 (9)	0.04983 (10)	0.18244 (6)	0.0468 (2)
C3A	-0.40072 (9)	-0.31387 (11)	0.05345 (8)	0.0325 (2)
O18B	-0.17355 (9)	-0.03915 (12)	0.13005 (8)	0.0614 (3)
H18B	-0.1638	-0.0801	0.1803	0.092*
C4B	-0.09752 (9)	0.12336 (11)	0.03329 (8)	0.0306 (2)
C2B	0.09587 (10)	0.23078 (13)	0.06993 (9)	0.0373 (3)
H21B	0.1250	0.1420	0.0890	0.045*
H22B	0.1485	0.2727	0.0314	0.045*
C5A	-0.46413 (11)	-0.34373 (12)	-0.11663 (9)	0.0377 (3)
H51A	-0.5297	-0.4010	-0.1216	0.045*
H52A	-0.4249	-0.3592	-0.1721	0.045*
C14B	-0.09202 (10)	0.04148 (12)	0.12152 (8)	0.0329 (2)
C6A	-0.49905 (10)	-0.19569 (12)	-0.11399 (8)	0.0338 (2)
C1B	0.08979 (10)	0.31608 (12)	0.15668 (8)	0.0354 (2)
C10B	-0.19361 (10)	0.10970 (12)	-0.02765 (9)	0.0366 (3)
H10B	-0.2504	0.0531	-0.0113	0.044*
O16B	0.17422 (9)	0.32251 (14)	0.21356 (8)	0.0657 (4)
C4A	-0.39103 (9)	-0.38359 (11)	-0.03078 (8)	0.0331 (2)
C13B	-0.02670 (12)	0.27947 (14)	-0.07543 (9)	0.0424 (3)
H13B	0.0289	0.3374	-0.0924	0.051*
C11A	-0.25009 (12)	-0.52470 (14)	0.04999 (12)	0.0498 (3)
H11A	-0.1996	-0.5960	0.0488	0.060*
C12B	-0.12191 (13)	0.26454 (15)	-0.13581 (9)	0.0473 (3)
H12B	-0.1295	0.3121	-0.1924	0.057*
C11B	-0.20523 (11)	0.17956 (14)	-0.11222 (9)	0.0431 (3)
H11B	-0.2691	0.1691	-0.1529	0.052*
C3B	-0.01182 (10)	0.21028 (11)	0.00992 (8)	0.0324 (2)
C13A	-0.33505 (11)	-0.34890 (13)	0.13500 (9)	0.0406 (3)
H13A	-0.3420	-0.3018	0.1908	0.049*
C2A	-0.48439 (10)	-0.20496 (11)	0.05745 (8)	0.0331 (2)
C10A	-0.31536 (11)	-0.49014 (13)	-0.03101 (10)	0.0433 (3)
H10A	-0.3086	-0.5387	-0.0862	0.052*
C7A	-0.59486 (12)	-0.16094 (16)	-0.18498 (10)	0.0483 (3)
H71A	-0.6147	-0.0670	-0.1781	0.072*
H72A	-0.6572	-0.2176	-0.1745	0.072*
H73A	-0.5736	-0.1761	-0.2474	0.072*
C12A	-0.25926 (12)	-0.45421 (15)	0.13264 (11)	0.0481 (3)
H12A	-0.2146	-0.4774	0.1867	0.058*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0383 (4)	0.0387 (5)	0.0353 (4)	0.0089 (3)	0.0059 (3)	-0.0026 (3)
09A	0.0633 (6)	0.0381 (5)	0.0361 (5)	0.0094 (4)	0.0125 (4)	-0.0028 (4)
O8A	0.0427 (5)	0.0321 (4)	0.0487 (5)	0.0000 (3)	0.0093 (4)	0.0005 (4)
O15B	0.0446 (5)	0.0467 (5)	0.0482 (5)	0.0124 (4)	-0.0047 (4)	-0.0156 (4)
O17B	0.0585 (6)	0.0419 (5)	0.0378 (5)	-0.0058 (4)	-0.0084 (4)	0.0062 (4)
C3A	0.0325 (5)	0.0267 (5)	0.0382 (6)	-0.0018 (4)	0.0040 (4)	-0.0014 (4)
O18B	0.0465 (6)	0.0747 (8)	0.0623 (7)	-0.0108 (5)	0.0012 (5)	0.0329 (6)
C4B	0.0345 (5)	0.0276 (5)	0.0299 (5)	0.0056 (4)	0.0048 (4)	-0.0013 (4)
C2B	0.0355 (6)	0.0381 (6)	0.0386 (6)	0.0000 (5)	0.0056 (5)	-0.0062 (5)
C5A	0.0446 (7)	0.0314 (6)	0.0371 (6)	0.0010 (5)	0.0027 (5)	-0.0072 (4)
C14B	0.0344 (6)	0.0313 (5)	0.0331 (5)	0.0034 (4)	0.0045 (4)	0.0004 (4)
C6A	0.0368 (6)	0.0331 (6)	0.0317 (5)	0.0019 (4)	0.0037 (4)	-0.0037 (4)
C1B	0.0378 (6)	0.0327 (6)	0.0353 (6)	0.0026 (5)	0.0007 (5)	-0.0007 (4)
C10B	0.0355 (6)	0.0358 (6)	0.0385 (6)	0.0031 (5)	0.0029 (5)	-0.0003 (5)
O16B	0.0518 (6)	0.0896 (9)	0.0521 (6)	0.0245 (6)	-0.0164 (5)	-0.0269 (6)
C4A	0.0336 (5)	0.0253 (5)	0.0408 (6)	-0.0015 (4)	0.0062 (5)	-0.0026 (4)
C13B	0.0488 (7)	0.0403 (6)	0.0392 (6)	-0.0017 (5)	0.0103 (5)	0.0053 (5)
C11A	0.0415 (7)	0.0377 (7)	0.0701 (9)	0.0095 (5)	0.0044 (6)	0.0046 (6)
C12B	0.0569 (8)	0.0506 (8)	0.0345 (6)	0.0068 (6)	0.0041 (6)	0.0104 (5)
C11B	0.0436 (7)	0.0483 (7)	0.0363 (6)	0.0074 (5)	-0.0032 (5)	0.0013 (5)
C3B	0.0367 (6)	0.0289 (5)	0.0322 (5)	0.0029 (4)	0.0066 (4)	-0.0040 (4)
C13A	0.0413 (6)	0.0386 (6)	0.0413 (6)	-0.0026 (5)	-0.0009 (5)	-0.0012 (5)
C2A	0.0380 (6)	0.0271 (5)	0.0348 (6)	-0.0011 (4)	0.0065 (4)	-0.0013 (4)
C10A	0.0448 (7)	0.0315 (6)	0.0546 (8)	0.0052 (5)	0.0090 (6)	-0.0051 (5)
C7A	0.0503 (8)	0.0512 (8)	0.0412 (7)	0.0084 (6)	-0.0071 (6)	-0.0048 (6)
C12A	0.0401 (7)	0.0462 (7)	0.0561 (8)	0.0026 (6)	-0.0054 (6)	0.0076 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01A—C2A	1.3343 (14)	C5A—H52A	0.9700
O1A—C6A	1.4803 (14)	C6A—C7A	1.5095 (17)
O9A—C2A	1.2160 (14)	C1B—O16B	1.2491 (16)
O8A—C6A	1.3845 (15)	C10B—C11B	1.3834 (18)
O8A—H8A	0.8200	C10B—H10B	0.9300
O15B—C1B	1.2729 (15)	C4A—C10A	1.3907 (16)
O15B—H15B	0.8200	C13B—C12B	1.384 (2)
O17B—C14B	1.2556 (14)	C13B—C3B	1.3914 (17)
C3A—C13A	1.3922 (17)	C13B—H13B	0.9300
C3A—C4A	1.3964 (16)	C11A—C12A	1.379 (2)
C3A—C2A	1.4776 (16)	C11A—C10A	1.383 (2)
O18B—C14B	1.2798 (15)	C11A—H11A	0.9300
O18B—H18B	0.8200	C12B—C11B	1.374 (2)
C4B—C10B	1.3956 (16)	C12B—H12B	0.9300
C4B—C3B	1.4064 (16)	C11B—H11B	0.9300
C4B—C14B	1.4894 (15)	C13A—C12A	1.3848 (19)

C2B—C1B	1.5009 (16)	C13A—H13A	0.9300
C2B—C3B	1.5085 (17)	C10A—H10A	0.9300
C2B—H21B	0.9700	C7A—H71A	0.9600
C2B—H22B	0.9700	C7A—H72A	0.9600
C5A—C4A	1.4975 (17)	С7А—Н73А	0.9600
C5A—C6A	1.5145 (16)	C12A—H12A	0.9300
C5A—H51A	0.9700		
C2A—O1A—C6A	119.87 (9)	C10A—C4A—C3A	118.45 (12)
C6A—O8A—H8A	109.5	C10A—C4A—C5A	122.43 (11)
C1B—O15B—H15B	109.5	C3A—C4A—C5A	119.10 (10)
C13A—C3A—C4A	120.79 (11)	C12B—C13B—C3B	121.88 (12)
C13A—C3A—C2A	119.29 (11)	C12B—C13B—H13B	119.1
C4A—C3A—C2A	119.88 (10)	C3B—C13B—H13B	119.1
C14B—O18B—H18B	109.5	C12A—C11A—C10A	120.47 (12)
C10B—C4B—C3B	120.20 (10)	C12A—C11A—H11A	119.8
C10B—C4B—C14B	116.50 (10)	C10A—C11A—H11A	119.8
C3B—C4B—C14B	123.30 (10)	C11B—C12B—C13B	120.11 (12)
C1B—C2B—C3B	116.00 (10)	C11B—C12B—H12B	119.9
C1B—C2B—H21B	108.3	C13B—C12B—H12B	119.9
C3B—C2B—H21B	108.3	C12B— $C11B$ — $C10B$	119.62 (12)
C1B—C2B—H22B	108.3	C12B—C11B—H11B	120.2
C3B—C2B—H22B	108.3	C10B—C11B—H11B	120.2
H_{21B} C_{2B} H_{22B}	107.4	C13B-C3B-C4B	117.54 (11)
C4A - C5A - C6A	112, 11 (9)	C13B-C3B-C2B	117.98 (11)
C4A - C5A - H51A	109.2	C4B - C3B - C2B	124.46 (10)
C6A - C5A - H51A	109.2	C12A - C13A - C3A	119.65(12)
C4A - C5A - H52A	109.2	C12A— $C13A$ — $H13A$	120.2
C6A - C5A - H52A	109.2	C3A - C13A - H13A	120.2
H51A—C5A—H52A	107.9	O9A - C2A - O1A	117.92 (11)
017B— $C14B$ — $018B$	122.56(11)	O9A - C2A - C3A	123.02(11)
017B $-C14B$ $-C4B$	122.50(11) 121.50(11)	O1A - C2A - C3A	129.02(11) 119.00(10)
018B $-C14B$ $-C4B$	115 92 (10)	C11A - C10A - C4A	120.69 (13)
08A - C6A - 01A	107 79 (9)	$C_{11A} - C_{10A} - H_{10A}$	119.7
08A - C6A - C7A	107.75(5)	C4A - C10A - H10A	119.7
01A - C6A - C7A	103 89 (10)	C6A - C7A - H71A	109.5
08A - C6A - C5A	108.34(10)	C6A - C7A - H72A	109.5
01A - C6A - C5A	109.63 (10)	H71A - C7A - H72A	109.5
C7A - C6A - C5A	103.03(10) 113 57 (10)	C6A - C7A - H73A	109.5
016B-C1B-015B	123.04(11)	H71A - C7A - H73A	109.5
$O_{16B} = C_{1B} = O_{15B}$	123.04(11) 117.76(11)	$H72\Lambda$ $C7\Lambda$ $H73\Lambda$	109.5
O10B - C1B - C2B	117.70(11)	$\frac{11}{2} = \frac{11}{2} $	109.5 110.04 (13)
$C_{11B} = C_{10B} = C_{2B}$	119.10(11) 120.64(12)	$C_{11A} = C_{12A} = C_{13A}$	119.94 (13)
$C_{11B} = C_{10B} = C_{+B}$	120.04 (12)	C_{11A} C_{12A} H_{12A}	120.0
C4B $C10B$ $H10B$	110.7	C15/A-C12/A	120.0
	117./		
C10B-C4B-C14B-017B	-177 63 (11)	C4B-C10B-C11B-C12B	-0.8(2)
C3B - C4B - C14B - O17B	2 75 (17)	C12B = C13B = C3B = C4B	0.0(2)
	2.73 (17)		0.07 (10)

C10B—C4B—C14B—O18B C3B—C4B—C14B—O18B C2A—O1A—C6A—O8A C2A—O1A—C6A—C7A C2A—O1A—C6A—C7A C2A—O1A—C6A—C5A C4A—C5A—C6A—O1A C4A—C5A—C6A—O1A C4A—C5A—C6A—C7A C3B—C2B—C1B—O16B C3B—C2B—C1B—O15B C3B—C4B—C10B—C11B C14B—C4B—C10B—C11B C13A—C3A—C4A—C10A C2A—C3A—C4A—C10A C13A—C3A—C4A—C5A C2A—C3A—C4A—C5A C2A—C3A—C4A—C5A C2A—C3A—C4A—C5A C6A—C5A—C4A—C10A	3.79 (16) -175.83 (11) -70.24 (13) 169.20 (10) 47.50 (14) 68.15 (13) -49.23 (13) -164.94 (11) 172.01 (13) -10.13 (17) 0.98 (17) -178.66 (11) 0.92 (17) -176.79 (11) 179.32 (11) 1.62 (16) -154.37 (11)	C12B—C13B—C3B—C2B C10B—C4B—C3B—C13B C14B—C4B—C3B—C13B C10B—C4B—C3B—C2B C14B—C4B—C3B—C2B C1B—C2B—C3B—C13B C1B—C2B—C3B—C4B C4A—C3A—C13A—C12A C6A—O1A—C2A—O9A C6A—O1A—C2A—O9A C4A—C3A—C2A—O9A C4A—C3A—C2A—O9A C4A—C3A—C2A—O1A C13A—C3A—C2A—O1A C12A—C11A—C10A—C4A C3A—C4A—C10A—C11A	178.65 (12) -0.59 (16) 179.02 (11) -179.05 (11) 0.56 (17) 106.92 (13) -74.62 (15) -0.07 (19) 177.65 (12) 163.52 (11) -19.25 (15) -7.62 (18) 170.12 (11) 175.30 (11) -6.97 (16) 0.2 (2) -1.00 (19)
C13A—C3A—C4A—C5A	179.32 (11)	C4A—C3A—C2A—O1A	-6.97 (16)
C2A—C3A—C4A—C5A	1.62 (16)	C12A—C11A—C10A—C4A	0.2 (2)
C6A—C5A—C4A—C10A	-154.37 (11)	C3A—C4A—C10A—C11A	-1.00 (19)
C6A—C5A—C4A—C3A	27.29 (15)	C5A—C4A—C10A—C11A	-179.35 (12)
C3B—C13B—C12B—C11B	0.0 (2)	C10A—C11A—C12A—C13A	0.6 (2)
C13B—C12B—C11B—C10B	0.3 (2)	C3A—C13A—C12A—C11A	-0.7 (2)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C3A/C4A/C10A-C13A benzene ring (molecule A) and Cg4 is the centroid of the C3B/C4B/C10B-C13B benzene ring (molecule B).

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C10B—H10B…O18B	0.93	2.33	2.6745 (16)	102
C2B—H21B····O17B	0.97	2.39	2.7870 (16)	104
C7 <i>A</i> —H73 <i>A</i> ···O9 <i>A</i> ⁱ	0.96	2.60	3.4469 (17)	148
O8A—H8A····O9A ⁱⁱ	0.82	2.02	2.8311 (12)	172
O15 <i>B</i> —H15 <i>B</i> ···O17 <i>B</i> ⁱⁱⁱ	0.82	1.88	2.6950 (13)	171
O18 <i>B</i> —H18 <i>B</i> ····O16 <i>B</i> ^{iv}	0.82	1.80	2.6115 (15)	168
$C2B$ — $H22B$ ··· $Cg2^{iii}$	0.97	2.92	3.8725 (15)	169
$C5A$ — $H51A$ ··· $Cg2^{v}$	0.97	2.74	3.6346 (15)	153
$C11A$ — $H11A$ ··· $Cg4^{vi}$	0.93	2.78	3.6075 (17)	149
C14 <i>B</i> —O17 <i>B</i> … <i>Cg</i> 4 ^{vii}	1.26 (1)	3.44 (1)	3.5714 (13)	86 (1)

Symmetry codes: (i) x, -y-1/2, z-1/2; (ii) -x-1, -y, -z; (iii) -x, y+1/2, -z+1/2; (iv) -x, y-1/2, -z+1/2; (v) -x+1, -y+1, -z; (vi) x, -y+1/2, z-3/2; (vii) -x, -y+1, -z+1.