ISSN 2414-3146

Received 18 November 2018
Accepted 17 December 2018

Edited by R. J. Butcher, Howard University, USA

Keywords: SuFEx; ionic liquids; click chemistry; crystal structure.

CCDC reference: 1885682

Structural data: full structural data are available from iucrdata.iucr.org

1-Methyl-1H-imidazol-3-ium methanesulfonate

Taha Hmissa, ${ }^{\text {a }}$ Logesh Mathivathanan, ${ }^{\text {b }}$ Alexander P. Thompson ${ }^{\text {a }}$ and Arsalan Mirjafari ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA. *Correspondence e-mail: amirjafari@fgcu.edu

The structure of the title salt, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{CH}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$, has monoclinic $\left(P 2_{1} / n\right)$ symmetry. The 1-methylimidazolium cation and the methylsulfonate anion in the asymmetric unit are held together by a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Chemical scheme

Structure description

Ionic liquids (ILs) with fluoride anions possess high electrochemical stability and electrical conductivity (Hmissa et al., 2018). Fluoride ionic liquids were produced to serve as potential non-volatile replacements of VOCs for the development of IL electrolytes.

Electrolytes with stable solvents can be utilized for the production of innocuous rechargeable Al -ion and Li -ion batteries. The reported strategy for the synthesis of ILs with fluoride anions is autocatalytic, HF-free, and does not require chromatographic purification. HF-free synthesis of fluoride ionic liquids eradicates the need for corrosive acids. The exposure of the ionic liquid to water may serve as a technique to increase electrical conductivity (Li et al., 2007). Chemical stability studies indicate that water attacks the S^{VI} atom, which leads to the formation of a sulfate-based salt (Fig. 1).

Sulfur(VI) fluoride-exchange (SuFEx) chemistry possesses characteristics of click chemistry. Many of its potential applications have been investigated recently, including post-polymerization modification (Yatvin et al., 2015) and sulfonimidoyl fluorides synthesis (Gao et al., 2018). Fluoride salts have been reported to function as catalysts for the SuFEx reaction (Gao et al., 2017). The autocatalytic property of the sulfonyl-based ionic liquids allows the reaction to proceed in a time-efficient manner, opening the doors for potential industrial scale application. The chemical stability of these ionic liquids towards the hydrolysis reaction was studied in this work.

The title compound crystallizes in the monoclinic $P 2_{1} / n$ space group. The 1-methylimidazolium cation and the methylsulfonate anion in the asymmetric unit are linked by a

Figure 1
Synthetic scheme for the synthesis of imidazolium-based salts, paired with sulfate anion via SuFEx click chemistry
strong $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bond $[\mathrm{O} \cdots \mathrm{N}$ distance $=$ 2.775 (2) \AA; Table 1 and (Fig. 2)] between the proton on N and one of the sulfonate oxygen atoms. The packing is shown in Fig. 3.

1-MeIm is a common cation found in as many as 48 crystal structures in the Cambridge Structural Database (Groom et al., 2016). The planar cation often displays $\pi-\pi$ interactions with neighboring 1 -MeIm cations (Wilkes \& Zaworotko, 1993). Such interactions are not seen in the title compound. One of the methylsulfonate O atoms displays some degree of interaction with the π-cation [O -centroid distance $=$ 3.382 (1) \AA].

Synthesis and crystallization

One molar equivalent of 1-methylimidazole and methanesulfonyl fluoride were dissolved separately using 10 ml extra dry toluene. The two solutions were combined and stirred vigorously for 8 h at reflux temperature. Subsequent to reflux, 1 ml of deionized water was added to the reaction mixture dropwise and then stirred for 4 h at $60^{\circ} \mathrm{C}$ to allow for hydrolysis to occur. The solid phase of the reaction mixture was filtered. Colourless plate-like crystals formed after 29 days upon slow evaporation of the reaction solvent (toluene).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We are grateful to Professor Raphael G. Raptis (FIU) for the access to the X-ray diffractometer facility.

Figure 2
The asymmetric unit with displacement ellipsoids shown at the 35% probability level. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1) is indicated by a dashed line.

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$	0.87	1.96	$2.775(2)$	156

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\hat{A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
$0.031,0.085,1.08$
No. of reflections
No. of parameters
H -atom treatment
102
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
H -atom parameters constrained

Computer programs: SAINT (Bruker, 2015), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Funding information

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (PRF\# 58975UR4) for support of this research.

Figure 3
A view of the crystal packing of the title compound.

References

Bruker (2015). SAINT. Bruker AXS Inc., Wisconsin, Madison, USA Bruker (2016). SADABS. Bruker AXS Inc., Wisconsin, Madison, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Gao, B., Li, S., Wu, P., Moses, J. E. \& Sharpless, K. B. (2018). Angew. Chem. Int. Ed. 57, 1939-1943.
Gao, B., Zhang, L., Zheng, Q., Zhou, F., Klivansky, L. M., Lu, J., Liu, J., Dong, J., Wu, P. \& Sharpless, K. B. (2017). Nat. Chem. 9, 10831088.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hmissa, T., Zhang, X., Dhumal, N. R., McManus, G. J., Zhou, X., Nulwala, H. B. \& Mirjafari, A. (2018). Angew. Chem. Int. Ed., 57, 16005-16009.
Li, W., Zhang, Z., Han, B., Hu, S., Xie, Y. \& Yang, G. (2007). J. Phys. Chem. B, 111, 6452-6456.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Wilkes, J. S. \& Zaworotko, M. J. (1993). Supramol. Chem. 1, 191193.

Yatvin, J., Brooks, K. \& Locklin, J. (2015). Angew. Chem. Int. Ed. 54, 13370-13373.

full crystallographic data

IUCrData (2018). 3, x181781 [https://doi.org/10.1107/S2414314618017819]

1-Methyl-1 H-imidazol-3-ium methanesulfonate

Taha Hmissa, Logesh Mathivathanan, Alexander P. Thompson and Arsalan Mirjafari

1-Methyl-1H-imidazol-3-ium methanesulfonate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{CH}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$
$M_{r}=178.21$
Monoclinic, $P 2_{1} / n$
$a=10.1891$ (5) \AA
$b=7.4627$ (4) \AA
$c=11.4884$ (6) \AA
$\beta=111.635(1)^{\circ}$
$V=812.02(7) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Quest CMOS
diffractometer
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 10.42 pixels mm^{-1}
φ and ω shutterless scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\min }=0.707, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.085$
$S=1.08$
2011 reflections
102 parameters
0 restraints
$F(000)=376$
$D_{\mathrm{x}}=1.458 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9900 reflections
$\theta=3.3-28.3^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=230 \mathrm{~K}$
Block, colourless
$0.58 \times 0.4 \times 0.36 \mathrm{~mm}$

11035 measured reflections
2011 independent reflections
1827 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-9 \rightarrow 9$
$l=-15 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0399 P)^{2}+0.3268 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} U_{\mathrm{eq}}$
S1	$0.67678(3)$	$0.74219(4)$	$0.90924(3)$	$0.02711(11)$
O1	$0.72814(12)$	$0.64890(15)$	$0.82397(10)$	$0.0424(3)$
O2	$0.58946(10)$	$0.62642(13)$	$0.95480(8)$	$0.0354(2)$
O3	$0.78655(11)$	$0.83115(16)$	$1.01095(10)$	$0.0468(3)$
N1	$0.38601(11)$	$0.26564(14)$	$0.59635(10)$	$0.0283(2)$
N2	$0.43894(12)$	$0.37124(16)$	$0.78128(11)$	$0.0384(3)$
H2	0.483452	0.427925	0.850900	0.046^{*}
C1	$0.47811(14)$	$0.36423(18)$	$0.68438(13)$	$0.0349(3)$
H1	0.558245	0.420035	0.678699	0.042^{*}
C2	$0.28337(14)$	$0.2092(2)$	$0.63836(13)$	$0.0347(3)$
H2A	0.204560	0.137987	0.594256	0.042^{*}
C3	$0.31699(16)$	$0.2752(2)$	$0.75517(14)$	$0.0408(3)$
H3	0.266479	0.258443	0.808246	0.049^{*}
C4	$0.38835(18)$	$0.2315(2)$	$0.47203(14)$	$0.0456(4)$
H4A	0.362591	0.107785	0.448925	0.068^{*}
H4B	0.482460	0.253917	0.472837	0.068^{*}
H4C	0.321550	0.310260	0.411695	0.068^{*}
C5	$0.56302(18)$	$0.9098(3)$	$0.81923(19)$	$0.0552(4)$
H5A	0.484569	0.854603	0.752852	0.083^{*}
H5B	0.614304	0.987198	0.782942	0.083^{*}
H5C	0.527445	0.980152	0.872276	0.083^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.02786(17)$	$0.02531(17)$	$0.02782(17)$	$-0.00194(10)$	$0.00987(13)$	$0.00137(11)$
O1	$0.0502(6)$	$0.0444(6)$	$0.0383(5)$	$0.0050(5)$	$0.0228(5)$	$-0.0008(4)$
O2	$0.0419(5)$	$0.0357(5)$	$0.0285(4)$	$-0.0136(4)$	$0.0128(4)$	$-0.0001(4)$
O3	$0.0407(6)$	$0.0527(7)$	$0.0441(6)$	$-0.0190(5)$	$0.0121(5)$	$-0.0124(5)$
N1	$0.0306(5)$	$0.0254(5)$	$0.0270(5)$	$-0.0018(4)$	$0.0083(4)$	$-0.0002(4)$
N2	$0.0388(6)$	$0.0354(6)$	$0.0303(5)$	$0.0046(5)$	$0.0003(5)$	$-0.0091(5)$
C1	$0.0307(6)$	$0.0276(6)$	$0.0396(7)$	$-0.0027(5)$	$0.0051(5)$	$-0.0006(5)$
C2	$0.0318(6)$	$0.0393(7)$	$0.0323(7)$	$-0.0074(5)$	$0.0109(5)$	$-0.0032(6)$
C3	$0.0397(7)$	$0.0510(9)$	$0.0325(7)$	$0.0027(6)$	$0.0142(6)$	$-0.0034(6)$
C4	$0.0545(9)$	$0.0541(9)$	$0.0333(7)$	$-0.0080(7)$	$0.0220(7)$	$-0.0044(6)$
C5	$0.0492(9)$	$0.0469(9)$	$0.0735(11)$	$0.0159(7)$	$0.0271(8)$	$0.0264(9)$

Geometric parameters ($A,{ }^{\circ}$)

S1-O1	$1.4478(10)$	$\mathrm{C} 1-\mathrm{H} 1$	0.9400
$\mathrm{~S} 1-\mathrm{O} 2$	$1.4680(9)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9400
$\mathrm{~S} 1-\mathrm{O} 3$	$1.4468(10)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.350(2)$
$\mathrm{S} 1-\mathrm{C} 5$	$1.7590(16)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9400
$\mathrm{~N} 1-\mathrm{C} 1$	$1.3210(17)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 2$	$1.3699(17)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700

$\mathrm{N} 1-\mathrm{C} 4$	$1.4596(17)$
$\mathrm{N} 2-\mathrm{H} 2$	0.8700
$\mathrm{~N} 2-\mathrm{C} 1$	$1.3149(19)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.369(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$112.08(6)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 5$	$105.57(8)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 5$	$105.88(7)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	$113.73(7)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	$111.83(6)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 5$	$107.10(9)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$108.71(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$125.66(12)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$125.53(12)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2$	125.4
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$109.15(12)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$	125.4
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	125.7
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{N} 1$	$108.58(12)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1$	125.7
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	126.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$106.92(12)$

$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9700
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9700
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.9700
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	126.5
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{H} 3$	126.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$106.63(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	126.7
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
N1-C4-H4B	109.5
N1-C4-H4C	109.5
H4A-C4-H4B	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5
S1-C5-H5A	109.5
S1-C5-H5B	109.5
S1-C5-H5C	109.5
H5A-C5-H5B	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5

Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 2$	0.87	1.96	$2.775(2)$	156

