

ISSN 2414-3146

Received 10 April 2019 Accepted 23 April 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; imine; fluorenone derivative.

CCDC reference: 1911702

Structural data: full structural data are available from iucrdata.iucr.org

## N-(4-Chlorophenyl)-9H-fluoren-9-imine

Guy Crundwell,\* Neil M. Glagovich, Elizabeth M. Reed Heinrich and Paul Ouellette

Department of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06050, USA. \*Correspondence e-mail: crundwellg@ccsu.edu

The title compound,  $C_{19}H_{12}ClN$ , was synthesized *via* reaction of 9-fluorenone and 4-chloroaniline using *p*-toluenesulfonic acid in toluene. The dihedral angle between the fluorene moiety (r.m.s. deviation = 0.027 Å) and the chlorophenyl ring is 64.59 (6)° and a possible weak intramolecular  $C-H\cdots\pi$  interaction occurs.



### Structure description

Acid-catalyzed imine formation reactions between 9-fluorenone and anilines are easy, high-yield projects for undergraduate research. Fluoren-9-imines are of interest because of their interesting fluorescence (Dufresne *et al.*, 2011) and use as potential organics in materials with tunable HLG (HOMO–LUMO gap) systems (Eakins *et al.*, 2013). The crystal structure of *N*-phenyl-*9H*-fluoren-9-imine, the stripped-down combination between 9-fluorenone and aniline, has been published three times. The first paper described the structure of a monoclinic benzene solvate (Peters *et al.*, 1998). Unsolvated monoclinic and orthorhombic forms were published by Eakins *et al.* (2013) and Dufresne *et al.* (2011), respectively. Four additional complexes made from 9-fluorenone and substituted anilines have been published: a 4-methylaniline derivate (Bai *et al.*, 2009) and 3,4-dimethylaniline, 2-methoxy aniline and 4-methoxyaniline derivatives (Glagovich *et al.*, 2004*a,b,c*). Finally, the crystal structure of *N*-mesityl-*9H*-fluoren-9-imine was communicated privately to the CSD in 2016 (Evans *et al.* 2016). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

In the title molecule (Fig. 1), all bond lengths and angles are within expected values: the dihedral angle between the fluorene ring system and the chlorophenyl ring is 64.59 (6)°. A possible weak intramolecular C3 $-H3\cdots\pi$  interaction (Table 1) occurs. In the crystal, the molecules pack in interweaving layers (Fig. 2).





Figure 1

The molecular structure of the title compound showing 50% probability displacement ellipsoids.

### Synthesis and crystallization

To a 100 ml round-bottom flask were added 0.326 g (1.81 mmol) of 9-fluorenone, 0.46 g (3.62 mmol) of 4-chloroaniline, 0.0017 g (9.05 × 10<sup>-6</sup> mol) *p*-toluenesulfonic acid, and 25 ml of toluene. The flask was fitted with a Hickman still and condenser and the solution was refluxed for 16 h. After this time, the toluene was removed under reduced pressure and the resulting brown solid was purified by column chromatography (SiO<sub>2</sub>, 95% hexane/5% EtOAc) to produce 0.395 g (79%) of product. Yellow needles for the diffraction study were crystallized from methylene chloride solution (m.p. 420 K). ATR–IR (cm<sup>-1</sup>) 3063, 2962, 1640, 838, 816, 732; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.92 (*dd*, 1H), 7.63 (*dd*, 2H), 7.44 (*dt*, 1H), 7.40 (*m*, 4H), 7.00 (*m*, 3H), 6.68 (*d*, 1H); <sup>13</sup>C (75 MHz,



Figure 2

The unit-cell packing in the title compound as viewed along [010]. The  $C-H\cdots\pi$  contact is shown as a black dashed line.

| Table  | 1        |          |         |
|--------|----------|----------|---------|
| Hydrog | gen-bond | geometry | (Å, °). |

Cg4 is the centroid of the C14–C19 ring.

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $C3-H3\cdots Cg4$           | 0.93 | 2.98                    | 3.7347 (16)  | 139                                  |

 Table 2

 Experimental details.

| Crystal data                                                               |                                                     |
|----------------------------------------------------------------------------|-----------------------------------------------------|
| Chemical formula                                                           | $C_{19}H_{12}CIN$                                   |
| M <sub>r</sub>                                                             | 289.75                                              |
| Crystal system, space group                                                | Monoclinic, $P2_1/c$                                |
| Temperature (K)                                                            | 293                                                 |
| a, b, c (Å)                                                                | 14.2842 (14), 5.2148 (2), 25.923 (3)                |
| $\beta$ (°)                                                                | 132.024 (17)                                        |
| $V(Å^3)$                                                                   | 1434.5 (2)                                          |
| Ζ                                                                          | 4                                                   |
| Radiation type                                                             | Μο Κα                                               |
| $\mu \ (\mathrm{mm}^{-1})$                                                 | 0.26                                                |
| Crystal size (mm)                                                          | $0.45 \times 0.21 \times 0.20$                      |
| Data collection                                                            |                                                     |
| Diffractometer                                                             | Rigaku Oxford Diffraction<br>Xcalibur, Sapphire3    |
| Absorption correction                                                      | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2015) |
| $T_{\min}, T_{\max}$                                                       | 0.767, 1.000                                        |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 35328, 5301, 3925                                   |
| R <sub>int</sub>                                                           | 0.031                                               |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.780                                               |
| Refinement                                                                 |                                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.050, 0.134, 1.03                                  |
| No. of reflections                                                         | 5301                                                |
| No. of parameters                                                          | 190                                                 |
| H-atom treatment                                                           | H-atom parameters constrained                       |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 0.28, -0.36                                         |

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

CDCl<sub>3</sub>):  $\delta$  163.45, 150.22, 143.97, 141.90, 137.32, 132.11, 132.08, 131.06, 129.46, 129.32, 128.54, 127.78, 127.03, 123.39, 120.40, 119.83, 119.70. FTIR, <sup>1</sup>H NMR, COSY and <sup>13</sup>C NMR are given in the supplementary materials.

### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

### **Funding information**

Funding for this research was provided by: CSU-AAUP Research Grant.

#### References

- Bai, S.-Z., Lou, X.-H., Li, H.-M. & Shi, H. (2009). Acta Cryst. E65, 01545.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Dufresne, S., Skalski, T. & Skene, W. G. (2011). *Can. J. Chem.* **89**, 173–180.
- Eakins, G. L., Cooper, M. W., Gerasimchuk, N. N., Phillips, T. J., Breyfogle, B. E. & Stearman, C. J. (2013). *Can. J. Chem.* **91**, 1059– 1071.
- Evans, P., Izod, K. & Waddell, P. G. (2016). Private communication (refcode CCDC 1488084). CCDC, Cambridge, England.
- Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o1269– 01270.
- Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004*b*). *Acta Cryst.* E**60**, o2000–o2001.
- Glagovich, N. M, Reed, E. M, Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004c). Acta Cryst. E60, o623–o625.
- Peters, K., Peters, E.-M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607–608.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

# full crystallographic data

IUCrData (2019). 4, x190555 [https://doi.org/10.1107/S2414314619005558]

## N-(4-Chlorophenyl)-9H-fluoren-9-imine

Guy Crundwell, Neil M. Glagovich, Elizabeth M. Reed Heinrich and Paul Ouellette

N-(4-Chlorophenyl)-9H-fluoren-9-imine

Crystal data

C<sub>19</sub>H<sub>12</sub>ClN  $D_{\rm x} = 1.342 {\rm Mg m^{-3}}$  $M_r = 289.75$ Melting point: 420 K Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Monoclinic,  $P2_1/c$ Cell parameters from 7600 reflections a = 14.2842 (14) Åb = 5.2148 (2) Å  $\theta = 4.5 - 32.3^{\circ}$  $\mu = 0.26 \text{ mm}^{-1}$ c = 25.923 (3) Å  $\beta = 132.024 (17)^{\circ}$ T = 293 KV = 1434.5 (2) Å<sup>3</sup> Needle, yellow Z = 4 $0.45 \times 0.21 \times 0.20 \text{ mm}$ F(000) = 600Data collection Rigaku Oxford Diffraction Xcalibur, Sapphire3 35328 measured reflections diffractometer 5301 independent reflections Radiation source: Enhance (Mo) X-ray Source 3925 reflections with  $I > 2\sigma(I)$ Graphite monochromator  $R_{\rm int} = 0.031$ Detector resolution: 16.1790 pixels mm<sup>-1</sup>  $\theta_{\rm max} = 33.7^{\circ}, \ \theta_{\rm min} = 4.2^{\circ}$  $h = -21 \rightarrow 21$  $\omega$  scans  $k = -8 \rightarrow 7$ Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015)  $l = -38 \rightarrow 39$  $T_{\rm min} = 0.767, T_{\rm max} = 1.000$ Refinement Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.050$ Hydrogen site location: inferred from  $wR(F^2) = 0.134$ neighbouring sites S = 1.03H-atom parameters constrained 5301 reflections  $w = 1/[\sigma^2(F_0^2) + (0.0519P)^2 + 0.4392P]$ 190 parameters where  $P = (F_0^2 + 2F_c^2)/3$ 0 restraints  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods  $\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$ 

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were included in calculated positions (C—H = 0.93Å) and refined as riding with Uiso~ = 1.2 $U_{eq}$  (carrier atom).

|     | x             | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|---------------|--------------|-------------|-----------------------------|
| C11 | -0.45087 (4)  | 0.83251 (10) | 0.46185 (2) | 0.06331 (14)                |
| N1  | 0.00458 (10)  | 0.2458 (2)   | 0.57276 (5) | 0.0404 (2)                  |
| C1  | 0.09621 (12)  | 0.2050 (2)   | 0.63725 (6) | 0.0355 (2)                  |
| C2  | 0.12964 (12)  | 0.3141 (2)   | 0.70134 (6) | 0.0362 (2)                  |
| C3  | 0.07819 (14)  | 0.5127 (3)   | 0.71103 (7) | 0.0443 (3)                  |
| Н3  | 0.0092        | 0.6045       | 0.6734      | 0.053*                      |
| C4  | 0.13234 (15)  | 0.5717 (3)   | 0.77866 (8) | 0.0521 (4)                  |
| H4  | 0.0984        | 0.7032       | 0.7860      | 0.063*                      |
| C5  | 0.23516 (16)  | 0.4380 (4)   | 0.83459 (8) | 0.0545 (4)                  |
| Н5  | 0.2686        | 0.4785       | 0.8791      | 0.065*                      |
| C6  | 0.28949 (15)  | 0.2448 (3)   | 0.82579 (7) | 0.0495 (3)                  |
| H6  | 0.3596        | 0.1566       | 0.8638      | 0.059*                      |
| C7  | 0.23708 (12)  | 0.1852 (3)   | 0.75893 (7) | 0.0383 (3)                  |
| C8  | 0.27774 (12)  | -0.0020 (3)  | 0.73491 (6) | 0.0375 (3)                  |
| C9  | 0.37545 (14)  | -0.1769 (3)  | 0.77105 (8) | 0.0481 (3)                  |
| H9  | 0.4302        | -0.1882      | 0.8192      | 0.058*                      |
| C10 | 0.38990 (16)  | -0.3354 (3)  | 0.73379 (9) | 0.0537 (4)                  |
| H10 | 0.4555        | -0.4535      | 0.7573      | 0.064*                      |
| C11 | 0.30817 (15)  | -0.3205 (3)  | 0.66212 (9) | 0.0516 (4)                  |
| H11 | 0.3199        | -0.4283      | 0.6383      | 0.062*                      |
| C12 | 0.20892 (13)  | -0.1468 (3)  | 0.62532 (7) | 0.0441 (3)                  |
| H12 | 0.1532        | -0.1386      | 0.5771      | 0.053*                      |
| C13 | 0.19547 (12)  | 0.0136 (2)   | 0.66253 (6) | 0.0360 (2)                  |
| C14 | -0.10002 (12) | 0.3955 (3)   | 0.54933 (6) | 0.0373 (3)                  |
| C15 | -0.13495 (13) | 0.6099 (3)   | 0.50817 (7) | 0.0425 (3)                  |
| H15 | -0.0860       | 0.6625       | 0.4984      | 0.051*                      |
| C16 | -0.24244 (14) | 0.7457 (3)   | 0.48156 (7) | 0.0460 (3)                  |
| H16 | -0.2651       | 0.8912       | 0.4547      | 0.055*                      |
| C17 | -0.31558 (12) | 0.6632 (3)   | 0.49532 (7) | 0.0426 (3)                  |
| C18 | -0.28392 (14) | 0.4484 (3)   | 0.53493 (8) | 0.0477 (3)                  |
| H18 | -0.3345       | 0.3942       | 0.5435      | 0.057*                      |
| C19 | -0.17632 (14) | 0.3145 (3)   | 0.56179 (8) | 0.0456 (3)                  |
| H19 | -0.1545       | 0.1687       | 0.5885      | 0.055*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$      | $U^{13}$     | $U^{23}$   |
|-----|------------|------------|------------|---------------|--------------|------------|
| C11 | 0.0434 (2) | 0.0768 (3) | 0.0626 (2) | -0.01057 (18) | 0.03256 (19) | 0.0050 (2) |
| N1  | 0.0410 (5) | 0.0500 (6) | 0.0365 (5) | -0.0016 (5)   | 0.0285 (5)   | 0.0018 (5) |

| C1  | 0.0387 (6) | 0.0387 (6)  | 0.0366 (6)  | 0.0032 (5)  | 0.0283 (5) | 0.0029 (5)  |
|-----|------------|-------------|-------------|-------------|------------|-------------|
| C2  | 0.0398 (6) | 0.0382 (6)  | 0.0381 (6)  | 0.0052 (5)  | 0.0292 (5) | 0.0057 (5)  |
| C3  | 0.0463 (7) | 0.0457 (7)  | 0.0460 (7)  | 0.0008 (6)  | 0.0330 (6) | 0.0067 (6)  |
| C4  | 0.0576 (8) | 0.0556 (9)  | 0.0557 (8)  | 0.0057 (7)  | 0.0431 (8) | 0.0174 (7)  |
| C5  | 0.0591 (9) | 0.0689 (10) | 0.0416 (7)  | 0.0081 (8)  | 0.0363 (7) | 0.0162 (7)  |
| C6  | 0.0509 (8) | 0.0590 (9)  | 0.0361 (6)  | 0.0022 (7)  | 0.0281 (6) | 0.0047 (6)  |
| C7  | 0.0421 (6) | 0.0410 (6)  | 0.0373 (6)  | 0.0056 (5)  | 0.0288 (5) | 0.0044 (5)  |
| C8  | 0.0405 (6) | 0.0379 (6)  | 0.0393 (6)  | 0.0034 (5)  | 0.0289 (5) | 0.0021 (5)  |
| C9  | 0.0472 (7) | 0.0489 (8)  | 0.0463 (7)  | -0.0053 (6) | 0.0304 (6) | -0.0048 (6) |
| C10 | 0.0517 (8) | 0.0469 (8)  | 0.0658 (10) | -0.0086 (6) | 0.0407 (8) | -0.0033 (7) |
| C11 | 0.0542 (8) | 0.0486 (8)  | 0.0640 (9)  | -0.0005 (6) | 0.0444 (8) | 0.0097 (7)  |
| C12 | 0.0468 (7) | 0.0488 (7)  | 0.0462 (7)  | 0.0036 (6)  | 0.0351 (6) | 0.0082 (6)  |
| C13 | 0.0388 (6) | 0.0376 (6)  | 0.0393 (6)  | 0.0033 (5)  | 0.0292 (5) | 0.0035 (5)  |
| C14 | 0.0372 (6) | 0.0465 (7)  | 0.0319 (5)  | 0.0017 (5)  | 0.0246 (5) | 0.0048 (5)  |
| C15 | 0.0449 (7) | 0.0513 (8)  | 0.0413 (6)  | 0.0007 (6)  | 0.0330 (6) | -0.0006 (6) |
| C16 | 0.0486 (7) | 0.0505 (8)  | 0.0416 (7)  | -0.0043 (6) | 0.0314 (6) | -0.0045 (6) |
| C17 | 0.0357 (6) | 0.0525 (8)  | 0.0372 (6)  | 0.0007 (5)  | 0.0234 (5) | 0.0096 (6)  |
| C18 | 0.0453 (7) | 0.0559 (8)  | 0.0544 (8)  | 0.0052 (6)  | 0.0385 (7) | 0.0043 (7)  |
| C19 | 0.0482 (7) | 0.0502 (8)  | 0.0488 (7)  | 0.0000 (6)  | 0.0367 (6) | -0.0034 (6) |
|     |            |             |             |             |            |             |

## Geometric parameters (Å, °)

| Cl1—C17   | 1.7384 (14) | С9—Н9       | 0.9300      |
|-----------|-------------|-------------|-------------|
| N1-C1     | 1.2742 (17) | C9—C10      | 1.388 (2)   |
| N1-C14    | 1.4127 (17) | C10—H10     | 0.9300      |
| C1—C2     | 1.4999 (16) | C10—C11     | 1.384 (2)   |
| C1—C13    | 1.4805 (18) | C11—H11     | 0.9300      |
| С2—С3     | 1.3869 (18) | C11—C12     | 1.389 (2)   |
| С2—С7     | 1.4029 (19) | C12—H12     | 0.9300      |
| С3—Н3     | 0.9300      | C12—C13     | 1.3840 (17) |
| C3—C4     | 1.397 (2)   | C14—C15     | 1.3870 (19) |
| C4—H4     | 0.9300      | C14—C19     | 1.3936 (18) |
| C4—C5     | 1.376 (2)   | C15—H15     | 0.9300      |
| С5—Н5     | 0.9300      | C15—C16     | 1.384 (2)   |
| С5—С6     | 1.381 (2)   | C16—H16     | 0.9300      |
| С6—Н6     | 0.9300      | C16—C17     | 1.379 (2)   |
| С6—С7     | 1.3871 (18) | C17—C18     | 1.375 (2)   |
| С7—С8     | 1.4702 (18) | C18—H18     | 0.9300      |
| С8—С9     | 1.381 (2)   | C18—C19     | 1.379 (2)   |
| C8—C13    | 1.3986 (18) | С19—Н19     | 0.9300      |
| C1—N1—C14 | 121.21 (10) | C11—C10—C9  | 121.05 (14) |
| N1-C1-C2  | 132.51 (12) | C11—C10—H10 | 119.5       |
| N1-C1-C13 | 122.11 (11) | C10-C11-H11 | 119.5       |
| C13—C1—C2 | 105.36 (10) | C10-C11-C12 | 120.96 (13) |
| C3—C2—C1  | 132.03 (13) | C12—C11—H11 | 119.5       |
| C3—C2—C7  | 120.00 (12) | C11—C12—H12 | 121.0       |
| C7—C2—C1  | 107.90 (11) | C13—C12—C11 | 118.00 (13) |

| C2—C3—H3   | 120.8                | C13—C12—H12 | 121.0       |
|------------|----------------------|-------------|-------------|
| C2C3       | 118.46 (14)<br>120.8 | C12—C13—C1  | 129.62 (12) |
| C3—C4—H4   | 119.5                | C12—C13—C8  | 121.06 (12) |
| C5—C4—C3   | 120.97 (14)          | C15—C14—N1  | 120.55 (11) |
| C5—C4—H4   | 119.5                | C15—C14—C19 | 119.23 (12) |
| C4—C5—H5   | 119.4                | C19—C14—N1  | 119.92 (12) |
| C4—C5—C6   | 121.13 (13)          | C14—C15—H15 | 119.9       |
| С6—С5—Н5   | 119.4                | C16—C15—C14 | 120.22 (12) |
| С5—С6—Н6   | 120.8                | C16—C15—H15 | 119.9       |
| C5—C6—C7   | 118.49 (14)          | C15—C16—H16 | 120.3       |
| С7—С6—Н6   | 120.8                | C17—C16—C15 | 119.39 (14) |
| C2—C7—C8   | 109.16 (11)          | C17—C16—H16 | 120.3       |
| C6—C7—C2   | 120.88 (13)          | C16—C17—Cl1 | 119.58 (12) |
| C6—C7—C8   | 129.95 (13)          | C18—C17—Cl1 | 119.11 (11) |
| C9—C8—C7   | 131.12 (12)          | C18—C17—C16 | 121.31 (13) |
| C9—C8—C13  | 120.55 (12)          | C17—C18—H18 | 120.4       |
| C13—C8—C7  | 108.32 (11)          | C17—C18—C19 | 119.19 (13) |
| С8—С9—Н9   | 120.8                | C19—C18—H18 | 120.4       |
| C8—C9—C10  | 118.37 (14)          | C14—C19—H19 | 119.7       |
| С10—С9—Н9  | 120.8                | C18—C19—C14 | 120.62 (14) |
| С9—С10—Н10 | 119.5                | C18—C19—H19 | 119.7       |

## Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C14–C19 ring.

| D—H···A   | D—H  | H···A | D····A      | <i>D</i> —H··· <i>A</i> |
|-----------|------|-------|-------------|-------------------------|
| С3—Н3…Сg4 | 0.93 | 2.98  | 3.7347 (16) | 139                     |