

ISSN 2414-3146

Received 15 January 2019 Accepted 19 March 2019

Edited by S. Parkin, University of Kentucky, USA

Keywords: 1,3-di(dimethylcyanomethyl)-5methylbenzene; spectroscopic studies; crystal structure; non-covalent interaction.

CCDC reference: 1904010

Structural data: full structural data are available from iucrdata.iucr.org

1,3-Bis(2-cyanopropan-2-yl)-5-methylbenzene

Sundaramoorthy Gomathi,^a* Udhayasuriyan Sathya,^a Sadasivam Sharmila Tagore,^a Jeyaraman Selvaraj Nirmal Ram,^b Devakumar Manikandan,^a Velusamy Sethuraman^a and Colin McMillen^c

^aDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, ^bDepartment of Chemistry, PRIST Deemed to be University, Thanjavur 613 403, Tamil Nadu, India, and ^cMolecular Structure Center, Department of Chemistry, Clemson University, 379 Hunter Laboratories, Clemson, SC 29634-0973, USA. *Correspondence e-mail: gomathichemist@gmail.com

The complete molecule of the title compound [systematic name: 2,2'-(5-methyl-1,3-phenylene)bis(2-methylpropanenitrile)] is generated by a crystallographic twofold axis, which leads to disorder of the H atoms on the methyl group attached to the benzene ring. The dihedral angle between the benzene ring and the nitrile group is 26.2 (2)°. In the crystal, pairs of weak $C-H\cdots\pi$ interactions link molecules into dimers. The molecule absorbs at 212 nm as a result of a π - π * transition.

Structure description

Anastrazole (1,3-di-(dimethylcyanomethyl)-5-([1,2,4]triazolylmethyl) benzene) is an active pharmaceutical ingredient that is used as a drug in the treatment of postmenopausal endocrine-responsive breast cancer (Varelas *et al.*, 2007; Geisler *et al.*, 1996; Dowsett *et al.*, 2001) and it has cytotoxic impact against breast, liver hepatocellular and glandular cancer cells. The title compound, 1,3-di(dimethylcyanomethyl)-5-methylbenzene (MCMB) is used as a starting material (Hsieh *et al.*, 2008) for the synthesis of anastrazole we now describe its crystal structure.

The asymmetric unit of the title compound consists of half a molecule of MCMB, with the other half being generated by a crystallographic twofold rotation axis (symmetry operation -x, y, $\frac{3}{2} - z$) (Fig. 1). Individual bond lengths and angles are unremarkable. The dihedral angle between the benzene ring and the carbonitrile moiety is 24.81 (16)°.

Within the crystal, molecules are linked by $C-H\cdots\pi$ interactions, with a $C-H\cdots Cg^{1}$ [symmetry code: (i) $\frac{1}{2} - x$, $\frac{1}{2} - y$, 2 - z] distance $d(C\cdots\pi)$ of 3.708 (3) Å and a $C-H\cdots\pi$ angle of 158°. The interaction leads to the formation inversion dimers arranged in a two-

Figure 1

An ellipsoid plot (50% probability) of 1,3-di(dimethylcyanomethyl)-5methylbenzene (MCMB). Symmetry code: (a) -x, y, $\frac{3}{2} - z$.

dimensional supramolecular strand-like architecture, linked by $C-H\cdots\pi$ interactions, as shown in Fig. 2.

An electronic transition takes place in the region of 212 nm because of a π - π * transition of the C=C benzene and C=N nitrile bonds of MCMB. The UV spectrum is shown in Fig. 3.

Synthesis and crystallization

The compound MCMB (0.056 mg, 0.25 mmol), obtained as a gift sample, was dissolved in hot methanol and stirred for half an hour. The resulting solution was allowed to cool and stored for slow evaporation. After a week, colorless prismatic crystals were harvested from the mother solution.

IR spectra: ν_{max} (cm⁻¹): (C=C) 1601, 1458, (Ar C–H) 2984, in-plane bending vibration 1001, 1293, out-of-plane bending vibration 707, 867, (C=N) 2237, (*sym* and *asym* CH₃) 2874, 2942; ¹H NMR (500 MHz, DMSO) δ : 1.7 (*s*,12*H*), 2.3 (*s*, 3H), 7.3 (*o*, 2H), 7.4 (*p*, 1H).

Figure 2

Inversion dimers linked by C-H·· π bonds [symmetry code: (i) $\frac{1}{2} - x$, 1/ 2 - y, 2 - z] forming supramolecular strands. H atoms apart from the one that interacts with the phenyl group have been omitted to enhance the clarity of the figure.

Experimental details.	
Crystal data	
Chemical formula	$C_{15}H_{18}N_2$
M _r	226.31
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	298
a, b, c (Å)	13.821 (6), 13.138 (3), 9.473 (3)
β (°)	126.133 (8)
$V(Å^3)$	1389.3 (8)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.06
Crystal size (mm)	$0.52 \times 0.24 \times 0.13$
Data collection	
Diffractometer	Rigaku Mercury
Absorption correction	Multi-scan (<i>CrystalClear</i> ; Rigaku, 2008)
T_{\min}, T_{\max}	0.653, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5988, 1261, 1012
R _{int}	0.043
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.600
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.059, 0.168, 1.06
No. of reflections	1261
No. of parameters	82
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.18, -0.14

Computer programs: CrystalClear (Rigaku, 2008), SHELXT2015 (Sheldrick, 2015a), SHELXL2015 (Sheldrick, 2015b), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), POVRay (Cason, 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Refinement

Table 1

Crystal data, data collection, and structure refinement details are summarized in Table 1. The H atoms attached to C7 are disordered over two sets of sites..

Acknowledgements

The authors thank Mr Sunil Kumar, Research Scholar, Department of Chemistry, Periyar Maniammai Institute of Science and Technology, for the gift of a sample.

UV absorption spectrum of MCMB.

References

- Cason, C. J. (2004). *POV-RAY for Windows*. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org
- Dowsett, M., Cuzick, J., Howell, A. & Jackson, I. (2001). Br. J. Cancer, **85**, 317–324.
- Geisler, J., King, N., Dowsett, M., Ottestad, L., Lundgren, S., Walton, P., Kormeset, P. O. & Lønning, P. E. (1996). Br. J. Cancer, 74, 1286– 1291.
- Hsieh, H. Y. & Wei, C. P. (2008). Process for preparation of anastrazole, US20080177081 A1.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). *J. Appl. Cryst.* **41**, 466–470.

Rigaku (2008). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Varelas, F. K., Papanicolaou, A. N., Vavatsi-Christaki, N., Makedos, G. A. & Vlassis, G. D. (2007). *Obstet. Gynecol.* **110**, 643–649.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2019). **4**, x190376 [https://doi.org/10.1107/S2414314619003766]

1,3-Bis(2-cyanopropan-2-yl)-5-methylbenzene

Sundaramoorthy Gomathi, Udhayasuriyan Sathya, Sadasivam Sharmila Tagore, Jeyaraman Selvaraj Nirmal Ram, Devakumar Manikandan, Velusamy Sethuraman and Colin McMillen

F(000) = 488

 $\theta = 2.4 - 25.2^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$

Prism, colourless

 $0.52 \times 0.24 \times 0.13 \text{ mm}$

5988 measured reflections

 $\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 2.4^\circ$

1261 independent reflections

1012 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.043$

 $h = -14 \rightarrow 16$

 $k = -15 \rightarrow 15$

 $l = -11 \rightarrow 11$

 $D_{\rm x} = 1.082 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1261 reflections

2,2'-(5-Methyl-1,3-phenylene)bis(2-methylpropanenitrile)

Crystal data

C₁₅H₁₈N₂ $M_r = 226.31$ Monoclinic, C2/c Hall symbol: -C 2yc a = 13.821 (6) Å b = 13.138 (3) Å c = 9.473 (3) Å $\beta = 126.133$ (8)° V = 1389.3 (8) Å³ Z = 4

Data collection

Rigaku Mercury diffractometer Radiation source: Sealed Tube Graphite Monochromator monochromator Detector resolution: 18.4 pixels mm⁻¹ dtprofit.ref scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) $T_{min} = 0.653, T_{max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.168$	$w = 1/[\sigma^2(F_o^2) + (0.0857P)^2 + 0.652P]$
<i>S</i> = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
1261 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
82 parameters	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All hydrogen atoms were positioned geometrically and were refined using a riding model with C—H bond lengths 0.93–0.96 Å and with $U_{iso}(H) = 1.2Ueq(C)$ for CH (aromatic) or 1.5Ueq(C) for CH₃.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
N10	0.2028 (3)	0.50771 (16)	0.8107 (5)	0.1065 (13)	
C1	0.07549 (16)	0.16087 (13)	0.7249 (2)	0.0490 (6)	
C2	0.07652 (15)	0.26634 (13)	0.7246 (2)	0.0427 (5)	
C3	0.00000	0.31872 (17)	0.75000	0.0422 (7)	
C4	0.00000	0.10686 (19)	0.75000	0.0527 (8)	
C5	0.15448 (16)	0.32323 (13)	0.6845 (2)	0.0476 (6)	
C6	0.1794 (2)	0.42686 (15)	0.7556 (3)	0.0646 (8)	
C7	0.00000	-0.0085 (2)	0.75000	0.0781 (13)	
C8	0.2775 (2)	0.27308 (17)	0.7686 (3)	0.0678 (8)	
C9	0.0871 (2)	0.3299 (2)	0.4854 (3)	0.0848 (10)	
H1	0.12620	0.12544	0.70811	0.0590*	
Н3	0.00000	0.38950	0.75000	0.0510*	
H7A	-0.03430	-0.03284	0.80706	0.1170*	0.500
H7B	0.08078	-0.03284	0.81121	0.1170*	0.500
H7C	-0.04647	-0.03284	0.63173	0.1170*	0.500
H8A	0.32525	0.31468	0.74812	0.1020*	
H8B	0.26704	0.20704	0.71796	0.1020*	
H8C	0.31717	0.26621	0.89209	0.1020*	
H9A	0.01218	0.36436	0.43489	0.1270*	
H9B	0.07231	0.26250	0.43753	0.1270*	
H9C	0.13464	0.36694	0.45929	0.1270*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Aiomic uisplucement purumeters (A)	Atomic	displ	lacement	parameters	$(Å^2$)
------------------------------------	--------	-------	----------	------------	--------	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N10	0.128 (2)	0.0523 (12)	0.196 (3)	-0.0193 (12)	0.127 (2)	-0.0238 (14)
C1	0.0539 (10)	0.0420 (10)	0.0613 (11)	0.0052 (7)	0.0396 (9)	0.0001 (7)
C2	0.0467 (9)	0.0415 (9)	0.0463 (9)	0.0003 (7)	0.0310 (7)	0.0004 (6)
C3	0.0464 (12)	0.0355 (11)	0.0489 (12)	0.0000	0.0305 (11)	0.0000
C4	0.0617 (15)	0.0373 (13)	0.0668 (15)	0.0000	0.0422 (13)	0.0000
C5	0.0507 (10)	0.0452 (10)	0.0583 (10)	0.0013 (7)	0.0385 (9)	0.0012 (7)
C6	0.0697 (13)	0.0467 (11)	0.1048 (17)	-0.0001 (9)	0.0666 (13)	0.0035 (10)
C7	0.095 (2)	0.0386 (15)	0.121 (3)	0.0000	0.075 (2)	0.0000
C8	0.0581 (12)	0.0590 (12)	0.0988 (16)	0.0032 (9)	0.0531 (12)	0.0003 (11)
C9	0.0824 (16)	0.116 (2)	0.0638 (13)	-0.0166 (15)	0.0475 (13)	0.0137 (13)

Geometric parameters (Å, °)

N10—C6	1.143 (3)	С7—Н7В	0.9600
C1—C2	1.386 (2)	С7—Н7С	0.9600
C1—C4	1.393 (3)	C7—H7A ⁱ	0.9600
C2—C3	1.396 (3)	C7—H7B ⁱ	0.9600
C2—C5	1.532 (3)	C7—H7C ⁱ	0.9600
C4—C7	1.516 (4)	C8—H8A	0.9600
C5—C6	1.467 (3)	C8—H8B	0.9600
C5—C8	1.537 (4)	C8—H8C	0.9600
С5—С9	1.537 (3)	С9—Н9А	0.9600
C1—H1	0.9300	С9—Н9В	0.9600
С3—Н3	0.9300	С9—Н9С	0.9600
С7—Н7А	0.9600		
C2-C1-C4	121.3 (2)	Н7А—С7—Н7С	109.00
C1-C2-C3	118.9 (2)	$H7A - C7 - H7A^{i}$	141.00
C1 - C2 - C5	119.87 (19)	$H7A - C7 - H7B^{i}$	56.00
C_{3} $-C_{2}$ $-C_{5}$	121.14 (16)	$H7A - C7 - H7C^{i}$	56.00
C2-C3-C2 ⁱ	120.95 (19)	H7B-C7-H7C	109.00
C1 - C4 - C7	120.52(12)	$H7A^{i}$ $C7$ $H7B$	56.00
$C1 - C4 - C1^{i}$	118.8 (2)	$H7B-C7-H7B^{i}$	141.00
$C1^{i}$ $C4$ $C7$	120.62(12)	$H7B-C7-H7C^{i}$	56.00
C2—C5—C6	110.37 (19)	$H7A^{i}$ —C7—H7C	56.00
C2—C5—C8	112.78 (16)	H7B ⁱ —C7—H7C	56.00
C2—C5—C9	109.05 (18)	$H7C-C7-H7C^{i}$	141.00
C6—C5—C8	105.75 (19)	$H7A^{i}$ —C7—H7 B^{i}	109.00
C6—C5—C9	108.60 (17)	H7A ⁱ —C7—H7C ⁱ	109.00
C8—C5—C9	110.2 (2)	$H7B^{i}$ — $C7$ — $H7C^{i}$	109.00
N10—C6—C5	177.2 (4)	С5—С8—Н8А	109.00
C2—C1—H1	119.00	C5—C8—H8B	109.00
C4—C1—H1	119.00	С5—С8—Н8С	110.00
С2—С3—Н3	120.00	H8A—C8—H8B	109.00
C2 ⁱ —C3—H3	120.00	H8A—C8—H8C	109.00
С4—С7—Н7А	109.00	H8B—C8—H8C	109.00
C4—C7—H7B	109.00	С5—С9—Н9А	109.00
С4—С7—Н7С	109.00	С5—С9—Н9В	109.00
C4—C7—H7A ⁱ	109.00	С5—С9—Н9С	109.00
$C4$ — $C7$ — $H7B^{i}$	109.00	H9A—C9—H9B	109.00
$C4$ — $C7$ — $H7C^{i}$	109.00	Н9А—С9—Н9С	109.00
H7A—C7—H7B	109.00	Н9В—С9—Н9С	109.00
C4—C1—C2—C3	0.0 (2)	C1—C2—C5—C6	-157.97 (17)
C4—C1—C2—C5	-175.93 (12)	C1—C2—C5—C8	-40.0 (2)
C2-C1-C4-C7	-180.00(12)	C1—C2—C5—C9	82.8 (2)
$C2-C1-C4-C1^{i}$	0.00 (17)	C3—C2—C5—C6	26.2 (2)

data reports

C1—C2—C3—C2 ⁱ	0.02 (18)	C3—C2—C5—C8	144.25 (15)
C5-C2-C3-C2 ⁱ	175.86 (12)	C3—C2—C5—C9	-92.99 (19)

Symmetry code: (i) -x, y, -z+3/2.