

ISSN 2414-3146

Received 25 June 2019 Accepted 2 July 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; cadmium; 2-(carboxymethoxy)benzoate; coordination polymer; hydrogen bonding;  $\pi$ - $\pi$  interactions.

CCDC reference: 1937965

Structural data: full structural data are available from iucrdata.iucr.org

# Poly[diaqua[µ<sub>4</sub>-2-(carboxylatomethoxy)benzoato]-[µ<sub>2</sub>-2-(carboxylatomethoxy)benzoato]dicadmium(II)]

Gabrielle J. Gaskin and Robert L. LaDuca\*

E-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825. \*Correspondence e-mail: laduca@msu.edu

In the title compound,  $[Cd_2(C_9H_6O_5)_2(H_2O)_2]_n$ , the crystallographically distinct  $Cd^{II}$  cations are coordinated in pentagonal-bipyramidal and octahedral fashions. The 2-(carboxymethoxy)benzoate (cmb) ligands connect the Cd atoms into  $[Cd_2(cmb)_2(H_2O)_2)]_n$  coordination polymer ribbons that are oriented along the *a*-axis direction. Supramolecular layers are formed parallel to  $(01\overline{1})$  by  $O-H\cdots O$  hydrogen bonding between the ribbons. The supramolecular three-dimensional crystal structure of the title compound is then constructed by  $\pi-\pi$  stacking interactions with a centroid–centroid distance of 3.622 (2) Å between cmb ligands in adjacent layer motifs.



### Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a cadmium coordination polymer containing both 2-(carboxymethoxy)benzoate (cmb) and 4-pyridylisonicotinamide (4-pina) ligands. Cadmium succinate coordination polymers containing the 4-pina ligands and their geometric isomers have shown intriguing self-penetrated or interpenetrated topologies (Uebler *et al.*, 2013).

The asymmetric unit of the title compound contains two crystallographically distinct Cd atoms (Cd1, Cd2), two crystallographically distinct cmb ligands (cmb-A, cmb-B) and two bound water molecules. There are no co-crystallized species in the title compound. The Cd1 atoms display a  $\{CdO_7\}$  distorted pentagonal-bipyramidal geometry with one bound water molecule in an axial position and another bound water molecule in the equatorial plane. A cmb-A ligand provides three O atom donors, two in equatorial positions and one in the other axial position. A chelating carboxylate group from a cmb-B ligand occupies the final two coordination positions at Cd1. The Cd2 atoms display a





Figure 1

The coordination environments of the title compound, showing the pentagonal bipyramidal coordination at the Cd1 atom and the octahedral coordination at the Cd2 atom. Complete cmb-A and cmb-B ligands are shown. Displacement ellipsoids are drawn at the 50% probability level. Most H atoms have been omitted for clarity. Color code: Cd1, light violet; Cd2, deep purple, N, blue; O, red; C, black. H-atom positions are shown as sticks.

{CdO<sub>6</sub>} distorted coordination octahedron. The nominal axial positions are taken up by single carboxylate O atom donors from two different cmb-B ligands. The nominal equatorial plane at Cd2 contains a chelating carboxylate group from a third cmb-B ligand, a single carboxylate O atom donor from a fourth cmb-B ligand, and a single carboxylate O atom donor from a cmb-A ligand. A displacement ellipsoid plot of the ligand set and coordination environments is shown in Fig. 1.



Figure 2 Exobidentate bridging mode of the cmb-A ligand.



Figure 3 Exobidentate bridging mode of the cmb-B ligand.

| D-H  | $H \cdot \cdot \cdot A$             | $D \cdots A$                                                                                                        | $D - H \cdots A$                                                                                                                                                                                              |
|------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.88 | 2.03                                | 2.873 (3)                                                                                                           | 162                                                                                                                                                                                                           |
| 0.88 | 1.91                                | 2.782 (3)                                                                                                           | 178                                                                                                                                                                                                           |
| 0.90 | 1.94                                | 2.788 (3)                                                                                                           | 158                                                                                                                                                                                                           |
| 0.90 | 1.86                                | 2.756 (3)                                                                                                           | 174                                                                                                                                                                                                           |
|      | D-H<br>0.88<br>0.88<br>0.90<br>0.90 | $\begin{array}{c c} D-H & H\cdots A \\ \hline 0.88 & 2.03 \\ 0.88 & 1.91 \\ 0.90 & 1.94 \\ 0.90 & 1.86 \end{array}$ | $D-H$ $H \cdots A$ $D \cdots A$ 0.88         2.03         2.873 (3)           0.88         1.91         2.782 (3)           0.90         1.94         2.788 (3)           0.90         1.86         2.756 (3) |

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y, -z.

The cmb-A ligands have an exobidentate  $\mu_2 \cdot \kappa^4$ -O:O',O'',O''' bridging mode, binding to one Cd1 atom with three donor O atoms, and binding to one Cd2 atom with only one O donor atom (Fig. 2). The cmb-A ether O atoms bind to Cd1. The cmb-B ligands have an exotetradentate  $\mu_4 \cdot \kappa^5$ -O,O':O'',O''':O''' bringing mode, binding to one Cd1 atom with a chelating carboxylate group, binding to two Cd2 atoms with single carboxylate O atom donors, and binding to a third Cd2 through a chelating carboxylate group (Fig. 3). The ether O atoms of the cmb-B ligands do **not** bind to either Cd1 or Cd2.

The Cd2 atoms and cmb-B ligands form a  $[Cd(cmb-B)]_n$  coordination polymer chain motif, in which *spiro*-fused  $\{Cd_2O_2\}$  rhomboid units construct the center of the chain (Fig. 4). The through-space Cd···Cd distance across the rhomboid units measures 3.632 (2) Å. The chain submotifs are oriented parallel to the *a* axis. These are decorated on their periphery by  $[Cd(cmb-A)(H_2O)_2]$  coordination fragments, resulting in one-dimensional  $[Cd_2(cmb)_2(H_2O)_2)]_n$  coordination polymer ribbons (Fig. 5).



Figure 4

Inner  $[Cd(cmb)]_n$  coordination polymer chain in the title compound, oriented parallel to the *a* axis. *Spiro*-fused  $\{Cd_2O_2\}$  rhomboid units make up the center of the chain, bracketed by cmb-B ligands



Figure 5

 $[Cd_2(cmb)_2(H_2O)_2)]_n$  coordination polymer ribbon in the title compound, oriented parallel to the *a* axis. The inner chain sub-motif is shown in purple.



**Figure 6** Supramolecular layer in the title compound, oriented parallel to  $(01\overline{1})$ . O-H···O hydrogen-bonding interactions (Table 1) between neighboring ribbons are shown as dashed lines.

#### Supramolecular interactions

Adjacent  $[Cd_2(cmb)_2(H_2O)_2)]_n$  coordination polymer ribbons interact by means of  $O-H\cdots O$  hydrogen-bonding interactions (Table 1) between the bound water molecules and unligated cmb-A carboxylate O atoms, thereby constructing supramolecular layer motifs coincident with (011) (Fig. 6). The  $O\cdots O$  distance measures 2.788 (1) Å. In turn, the twodimensional supramolecular layer motifs form the threedimensional crystal structure of the title compound (Fig. 7) by means of  $\pi-\pi$  stacking mechanisms involving the aromatic rings of the cmb-A ligands on the ribbon periphery [centroidcentroid distance = 3.622 (2) Å]. The stacking occurs along the *c*-axis direction, in an *AAA* pattern.

## Synthesis and crystallization

Cd(NO<sub>3</sub>)<sub>2</sub>'4H<sub>2</sub>O (115 mg, 0.37 mmol), 2-(carboxymethoxy)benzoic acid (73 mg, 0.37 mmol), 4-pyridylisonicotinamide (79 mg, 0.37 mmol) and 0.75 ml of a 1.0 MNaOH solution were placed into 10 ml distilled H<sub>2</sub>O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 2 d, and then cooled slowly to 273 K. Colorless crystals of the title complex (75 mg, 62%)



#### Figure 7

AAA pattern stacking of supramolecular layer motifs along the *c*-axis direction in the title compound, mediated by interlayer  $\pi$ - $\pi$  stacking interactions, which are shown as dashed lines. Ring centroids of the cmb ligands are shown as teal spheres.

Table 2Experimental details.

| Crystal data                                                               |                                           |
|----------------------------------------------------------------------------|-------------------------------------------|
| Chemical formula                                                           | $[Cd_2(C_9H_6O_5)_2(H_2O)_2]$             |
| M <sub>r</sub>                                                             | 649.11                                    |
| Crystal system, space group                                                | Triclinic, P1                             |
| Temperature (K)                                                            | 173                                       |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                         | 6.3966 (9), 11.7504 (16),<br>13.3579 (19) |
| $\alpha, \beta, \gamma$ (°)                                                | 104.407 (1), 96.978 (1), 93.267 (1)       |
| $V(\text{\AA}^3)$                                                          | 961.3 (2)                                 |
| Z                                                                          | 2                                         |
| Radiation type                                                             | Μο Κα                                     |
| $\mu \text{ (mm}^{-1})$                                                    | 2.28                                      |
| Crystal size (mm)                                                          | $0.19 \times 0.18 \times 0.11$            |
|                                                                            |                                           |
| Data collection                                                            |                                           |
| Diffractometer                                                             | Bruker APEXII CCD                         |
| Absorption correction                                                      | Multi-scan (SADABS; Bruker, 2014/5)       |
| $T_{\min}, T_{\max}$                                                       | 0.663, 0.745                              |
| No. of measured, independent and                                           | 10335, 3536, 3172                         |
| observed $[I > 2\sigma(I)]$ reflections                                    |                                           |
| R <sub>int</sub>                                                           | 0.028                                     |
| $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$                   | 0.604                                     |
|                                                                            |                                           |
| Refinement                                                                 |                                           |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.024, 0.057, 1.06                        |
| No. of reflections                                                         | 3536                                      |
| No. of parameters                                                          | 291                                       |
| H-atom treatment                                                           | H-atom parameters constrained             |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 0.96, -0.46                               |
|                                                                            |                                           |

Computer programs: COSMO (Bruker, 2009), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

yield based on Cd) were isolated after washing with distilled water and acetone, and drying in air.

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

#### Acknowledgements

GJG thanks her mother for serving as a constant, unconditional positive influence in her life.

#### **Funding information**

Funding for this work was provided by the Honors College of Michigan State University.

#### References

Bruker (2009). COSMO. Bruker AXS, Inc., Madison, Wisconsin, USA.

Bruker (2013). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Sheldrick, G. M. (2015*a*). Acta Cryst. A**71**, 3–8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Uebler, J. W., Pochodylo, A. L., Staples, R. J. & LaDuca, R. L. (2013). *Cryst. Growth Des.* **13**, 2220–2232.

# full crystallographic data

# *IUCrData* (2019). **4**, x190953 [https://doi.org/10.1107/S2414314619009532]

# Poly[diaqua[ $\mu_4$ -2-(carboxylatomethoxy)benzoato][ $\mu_2$ -2-(carboxylatomethoxy)-benzoato]dicadmium(II)]

# Gabrielle J. Gaskin and Robert L. LaDuca

Poly[diaqua[ $\mu_4$ -2-(carboxylatomethoxy)benzoato][ $\mu_2$ -2-(carboxylatomethoxy)benzoato]dicadmium(II)]

Crystal data

 $[Cd_{2}(C_{9}H_{6}O_{5})_{2}(H_{2}O)_{2}]$   $M_{r} = 649.11$ Triclinic,  $P\overline{1}$  a = 6.3966 (9) Å b = 11.7504 (16) Å c = 13.3579 (19) Å  $a = 104.407 (1)^{\circ}$   $\beta = 96.978 (1)^{\circ}$   $\gamma = 93.267 (1)^{\circ}$  $V = 961.3 (2) Å^{3}$ 

## Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8.36 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2014/5)  $T_{min} = 0.663, T_{max} = 0.745$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.024$  $wR(F^2) = 0.057$ S = 1.063536 reflections 291 parameters 0 restraints Z = 2 F(000) = 632  $D_x = 2.243 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7284 reflections  $\theta = 3.2-25.4^{\circ}$   $\mu = 2.28 \text{ mm}^{-1}$ T = 173 K Block, colourless  $0.19 \times 0.18 \times 0.11 \text{ mm}$ 

10335 measured reflections 3536 independent reflections 3172 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.028$  $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.6^{\circ}$  $h = -7 \rightarrow 7$  $k = -14 \rightarrow 13$  $l = -16 \rightarrow 16$ 

Hydrogen site location: mixed H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0194P)^2 + 1.6836P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{\text{max}} = 0.001$   $\Delta\rho_{\text{max}} = 0.96 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{\text{min}} = -0.46 \text{ e } \text{Å}^{-3}$ 

## Special details

**Experimental**. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov *et al.*, 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

|      | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|--------------|--------------|-----------------------------|--|
| Cd1  | 0.30111 (3) | 0.18731 (2)  | 0.26320 (2)  | 0.01372 (8)                 |  |
| Cd2  | 0.26261 (3) | 0.56335 (2)  | 0.45843 (2)  | 0.01311 (7)                 |  |
| 01   | 0.6054 (4)  | 0.1503 (2)   | 0.19000 (17) | 0.0199 (5)                  |  |
| O2   | 0.7503 (4)  | 0.0924 (2)   | 0.04417 (18) | 0.0223 (5)                  |  |
| O3   | 0.3239 (4)  | 0.2625 (2)   | 0.10350 (17) | 0.0192 (5)                  |  |
| O4   | 0.2524 (3)  | 0.37691 (19) | 0.29797 (17) | 0.0174 (5)                  |  |
| 05   | 0.1116 (4)  | 0.54112 (19) | 0.29333 (17) | 0.0206 (5)                  |  |
| O6   | 0.4298 (3)  | 0.08315 (19) | 0.37674 (17) | 0.0178 (5)                  |  |
| O7   | 0.5650 (3)  | 0.26916 (19) | 0.42704 (17) | 0.0165 (5)                  |  |
| 08   | 0.8603 (3)  | 0.22913 (18) | 0.56197 (17) | 0.0171 (5)                  |  |
| O9   | 1.0690 (3)  | 0.38854 (19) | 0.49607 (16) | 0.0154 (5)                  |  |
| O10  | 1.3856 (3)  | 0.45670 (19) | 0.57865 (17) | 0.0171 (5)                  |  |
| 011  | -0.0206 (4) | 0.1786 (2)   | 0.32737 (18) | 0.0202 (5)                  |  |
| H11A | -0.0207     | 0.2381       | 0.3820       | 0.030*                      |  |
| H11B | -0.1387     | 0.1714       | 0.2845       | 0.030*                      |  |
| 012  | 0.1160 (4)  | 0.0302 (2)   | 0.14044 (17) | 0.0215 (5)                  |  |
| H12A | 0.1920      | 0.0021       | 0.0887       | 0.032*                      |  |
| H12B | 0.0020      | 0.0533       | 0.1071       | 0.032*                      |  |
| C1   | 0.6117 (5)  | 0.1404 (3)   | 0.0939 (2)   | 0.0169 (7)                  |  |
| C2   | 0.4371 (5)  | 0.1873 (3)   | 0.0318 (2)   | 0.0173 (7)                  |  |
| H2A  | 0.4989      | 0.2321       | -0.0129      | 0.021*                      |  |
| H2B  | 0.3400      | 0.1209       | -0.0137      | 0.021*                      |  |
| C3   | 0.1492 (5)  | 0.3093 (3)   | 0.0643 (2)   | 0.0146 (7)                  |  |
| C4   | 0.0711 (5)  | 0.2810 (3)   | -0.0415 (3)  | 0.0197 (7)                  |  |
| H4   | 0.1405      | 0.2289       | -0.0905      | 0.024*                      |  |
| C5   | -0.1080 (5) | 0.3293 (3)   | -0.0751 (3)  | 0.0223 (8)                  |  |
| Н5   | -0.1606     | 0.3105       | -0.1475      | 0.027*                      |  |
| C6   | -0.2112 (6) | 0.4042 (3)   | -0.0051 (3)  | 0.0224 (8)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H6   | -0.3374     | 0.4343     | -0.0286    | 0.027*     |  |
|------|-------------|------------|------------|------------|--|
| C7   | -0.1298 (5) | 0.4356 (3) | 0.1002 (3) | 0.0210 (7) |  |
| H7   | -0.1995     | 0.4886     | 0.1483     | 0.025*     |  |
| C8   | 0.0528 (5)  | 0.3903 (3) | 0.1362 (2) | 0.0149 (7) |  |
| С9   | 0.1449 (5)  | 0.4362 (3) | 0.2489 (2) | 0.0152 (7) |  |
| C10  | 0.5591 (5)  | 0.1631 (3) | 0.4348 (2) | 0.0140 (7) |  |
| C11  | 0.7138 (5)  | 0.1291 (3) | 0.5142 (2) | 0.0153 (7) |  |
| H11C | 0.6386      | 0.1052     | 0.5673     | 0.018*     |  |
| H11D | 0.7889      | 0.0619     | 0.4798     | 0.018*     |  |
| C12  | 1.0460 (5)  | 0.2124 (3) | 0.6169 (2) | 0.0130 (6) |  |
| C13  | 1.0573 (5)  | 0.1223 (3) | 0.6671 (2) | 0.0154 (7) |  |
| H13  | 0.9365      | 0.0691     | 0.6617     | 0.018*     |  |
| C14  | 1.2463 (5)  | 0.1105 (3) | 0.7252 (2) | 0.0172 (7) |  |
| H14  | 1.2563      | 0.0473     | 0.7577     | 0.021*     |  |
| C15  | 1.4200 (5)  | 0.1906 (3) | 0.7360 (3) | 0.0189 (7) |  |
| H15  | 1.5481      | 0.1835     | 0.7772     | 0.023*     |  |
| C16  | 1.4071 (5)  | 0.2806 (3) | 0.6867 (2) | 0.0172 (7) |  |
| H16  | 1.5262      | 0.3362     | 0.6960     | 0.021*     |  |
| C17  | 1.2230 (5)  | 0.2919 (3) | 0.6235 (2) | 0.0140 (7) |  |
| C18  | 1.2237 (5)  | 0.3837 (3) | 0.5635 (2) | 0.0132 (6) |  |
|      |             |            |            |            |  |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|--------------|--------------|--------------|--------------|--------------|-----------------|
| Cd1 | 0.01275 (13) | 0.01489 (13) | 0.01405 (12) | 0.00280 (9)  | 0.00192 (9)  | 0.00434 (9)     |
| Cd2 | 0.01108 (13) | 0.01325 (12) | 0.01568 (12) | 0.00162 (9)  | 0.00207 (9)  | 0.00483 (9)     |
| 01  | 0.0175 (12)  | 0.0270 (13)  | 0.0167 (12)  | 0.0076 (10)  | 0.0049 (9)   | 0.0059 (10)     |
| O2  | 0.0186 (12)  | 0.0241 (13)  | 0.0225 (12)  | 0.0048 (10)  | 0.0077 (10)  | -0.0004 (10)    |
| O3  | 0.0222 (13)  | 0.0228 (12)  | 0.0136 (11)  | 0.0109 (10)  | 0.0050 (9)   | 0.0036 (9)      |
| O4  | 0.0178 (12)  | 0.0172 (11)  | 0.0167 (11)  | 0.0041 (9)   | -0.0005 (9)  | 0.0041 (9)      |
| 05  | 0.0260 (13)  | 0.0169 (12)  | 0.0182 (12)  | 0.0067 (10)  | 0.0034 (10)  | 0.0018 (9)      |
| O6  | 0.0166 (12)  | 0.0152 (11)  | 0.0203 (12)  | -0.0024 (9)  | -0.0036 (9)  | 0.0058 (9)      |
| 07  | 0.0176 (12)  | 0.0155 (11)  | 0.0172 (11)  | 0.0037 (9)   | 0.0002 (9)   | 0.0060 (9)      |
| 08  | 0.0125 (11)  | 0.0141 (11)  | 0.0242 (12)  | -0.0011 (9)  | -0.0044 (9)  | 0.0079 (9)      |
| 09  | 0.0139 (11)  | 0.0163 (11)  | 0.0170 (11)  | 0.0024 (9)   | 0.0021 (9)   | 0.0061 (9)      |
| O10 | 0.0150 (12)  | 0.0136 (11)  | 0.0242 (12)  | 0.0002 (9)   | 0.0069 (9)   | 0.0059 (9)      |
| O11 | 0.0151 (12)  | 0.0232 (12)  | 0.0201 (12)  | 0.0011 (10)  | 0.0050 (9)   | 0.0002 (10)     |
| O12 | 0.0172 (12)  | 0.0246 (13)  | 0.0185 (12)  | 0.0015 (10)  | 0.0036 (10)  | -0.0025 (10)    |
| C1  | 0.0169 (17)  | 0.0137 (15)  | 0.0183 (16)  | -0.0014 (13) | 0.0027 (13)  | 0.0016 (12)     |
| C2  | 0.0165 (17)  | 0.0186 (16)  | 0.0176 (16)  | 0.0035 (13)  | 0.0076 (13)  | 0.0030 (13)     |
| C3  | 0.0171 (17)  | 0.0115 (15)  | 0.0170 (16)  | 0.0006 (12)  | 0.0034 (13)  | 0.0069 (12)     |
| C4  | 0.0237 (19)  | 0.0148 (16)  | 0.0192 (17)  | 0.0005 (14)  | 0.0040 (14)  | 0.0019 (13)     |
| C5  | 0.0231 (19)  | 0.0214 (18)  | 0.0213 (17)  | -0.0045 (14) | -0.0070 (14) | 0.0098 (14)     |
| C6  | 0.0183 (18)  | 0.0228 (18)  | 0.0267 (18)  | 0.0002 (14)  | -0.0034 (14) | 0.0110 (15)     |
| C7  | 0.0176 (18)  | 0.0199 (17)  | 0.0273 (18)  | 0.0023 (14)  | 0.0026 (14)  | 0.0098 (14)     |
| C8  | 0.0143 (16)  | 0.0128 (15)  | 0.0184 (16)  | -0.0013 (12) | 0.0015 (13)  | 0.0068 (12)     |
| C9  | 0.0123 (16)  | 0.0181 (16)  | 0.0158 (15)  | -0.0009 (13) | 0.0031 (13)  | 0.0057 (13)     |
| C10 | 0.0142 (16)  | 0.0139 (16)  | 0.0157 (15)  | 0.0036 (13)  | 0.0076 (13)  | 0.0039 (12)     |

# data reports

| C11 | 0.0136 (16) | 0.0125 (15) | 0.0193 (16) | -0.0012 (13) | 0.0001 (13)  | 0.0049 (12) |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| C12 | 0.0102 (15) | 0.0135 (15) | 0.0143 (15) | 0.0024 (12)  | 0.0010 (12)  | 0.0018 (12) |
| C13 | 0.0136 (16) | 0.0155 (16) | 0.0175 (16) | -0.0006 (13) | 0.0019 (13)  | 0.0055 (12) |
| C14 | 0.0255 (18) | 0.0144 (16) | 0.0142 (15) | 0.0062 (13)  | 0.0022 (13)  | 0.0078 (12) |
| C15 | 0.0172 (17) | 0.0220 (17) | 0.0189 (16) | 0.0046 (14)  | -0.0019 (13) | 0.0090 (13) |
| C16 | 0.0115 (16) | 0.0203 (17) | 0.0185 (16) | -0.0013 (13) | 0.0012 (13)  | 0.0036 (13) |
| C17 | 0.0164 (17) | 0.0118 (15) | 0.0143 (15) | 0.0025 (12)  | 0.0022 (13)  | 0.0037 (12) |
| C17 | 0.0164 (17) | 0.0118 (15) | 0.0143 (15) | 0.0025 (12)  | 0.0022 (13)  | 0.0037 (12) |
| C18 | 0.0134 (16) | 0.0113 (15) | 0.0147 (15) | 0.0041 (12)  | 0.0065 (13)  | 0.0001 (12) |

Geometric parameters (Å, °)

| Cd1—O1                 | 2.298 (2)  | O11—H11A      | 0.8766    |
|------------------------|------------|---------------|-----------|
| Cd1—O3                 | 2.520 (2)  | O11—H11B      | 0.8772    |
| Cd1—O4                 | 2.208 (2)  | O12—H12A      | 0.8993    |
| Cd1—O6                 | 2.283 (2)  | O12—H12B      | 0.8991    |
| Cd1—O7                 | 2.537 (2)  | C1—C2         | 1.520 (5) |
| Cd1—O11                | 2.330 (2)  | C2—H2A        | 0.9900    |
| Cd1—O12                | 2.296 (2)  | C2—H2B        | 0.9900    |
| Cd1—C10                | 2.742 (3)  | C3—C4         | 1.391 (4) |
| Cd2—O4                 | 2.648 (2)  | C3—C8         | 1.401 (4) |
| Cd2—O5                 | 2.243 (2)  | C4—H4         | 0.9500    |
| Cd2—O7 <sup>i</sup>    | 2.297 (2)  | C4—C5         | 1.383 (5) |
| Cd2—O9 <sup>ii</sup>   | 2.526 (2)  | С5—Н5         | 0.9500    |
| Cd2—O9 <sup>i</sup>    | 2.338 (2)  | C5—C6         | 1.375 (5) |
| Cd2—O10 <sup>ii</sup>  | 2.361 (2)  | С6—Н6         | 0.9500    |
| Cd2—O10 <sup>iii</sup> | 2.374 (2)  | C6—C7         | 1.388 (5) |
| O1—C1                  | 1.266 (4)  | С7—Н7         | 0.9500    |
| O2—C1                  | 1.248 (4)  | C7—C8         | 1.393 (5) |
| O3—C2                  | 1.429 (4)  | C8—C9         | 1.500 (4) |
| O3—C3                  | 1.377 (4)  | C10-C11       | 1.505 (4) |
| O4—C9                  | 1.249 (4)  | C11—H11C      | 0.9900    |
| O5—C9                  | 1.270 (4)  | C11—H11D      | 0.9900    |
| O6—C10                 | 1.249 (4)  | C12—C13       | 1.387 (4) |
| O7—Cd2 <sup>i</sup>    | 2.297 (2)  | C12—C17       | 1.405 (4) |
| O7—C10                 | 1.275 (4)  | C13—H13       | 0.9500    |
| O8—C11                 | 1.422 (3)  | C13—C14       | 1.388 (5) |
| O8—C12                 | 1.370 (4)  | C14—H14       | 0.9500    |
| O9—Cd2 <sup>iv</sup>   | 2.526 (2)  | C14—C15       | 1.385 (5) |
| O9—Cd2 <sup>i</sup>    | 2.338 (2)  | С15—Н15       | 0.9500    |
| O9—C18                 | 1.268 (4)  | C15—C16       | 1.378 (5) |
| O10—Cd2 <sup>iii</sup> | 2.374 (2)  | C16—H16       | 0.9500    |
| O10—Cd2 <sup>iv</sup>  | 2.361 (2)  | C16—C17       | 1.397 (4) |
| O10-C18                | 1.269 (4)  | C17—C18       | 1.496 (4) |
| O1—Cd1—O3              | 65.56 (8)  | Cd1—O11—H11B  | 119.2     |
| O1—Cd1—O7              | 81.95 (8)  | H11A—O11—H11B | 110.1     |
| O1—Cd1—O11             | 167.04 (8) | Cd1—O12—H12A  | 111.1     |
| O1-Cd1-C10             | 80.86 (8)  | Cd1—O12—H12B  | 110.7     |

| O3—Cd1—O7                                 | 120.43 (7)  | H12A—O12—H12B | 103.0      |
|-------------------------------------------|-------------|---------------|------------|
| O3—Cd1—C10                                | 139.43 (9)  | O1—C1—C2      | 118.9 (3)  |
| O4—Cd1—O1                                 | 111.25 (8)  | O2-C1-O1      | 124.9 (3)  |
| O4—Cd1—O3                                 | 69.81 (8)   | O2—C1—C2      | 116.3 (3)  |
| O4—Cd1—O6                                 | 127.85 (8)  | O3—C2—C1      | 108.5 (3)  |
| O4—Cd1—O7                                 | 78.68 (7)   | O3—C2—H2A     | 110.0      |
| O4—Cd1—O11                                | 81.56 (8)   | O3—C2—H2B     | 110.0      |
| O4—Cd1—O12                                | 130.05 (8)  | C1—C2—H2A     | 110.0      |
| O4—Cd1—C10                                | 104.76 (8)  | C1—C2—H2B     | 110.0      |
| O6—Cd1—O1                                 | 85.47 (8)   | H2A—C2—H2B    | 108.4      |
| O6—Cd1—O3                                 | 150.85 (8)  | O3—C3—C4      | 122.7 (3)  |
| O6—Cd1—O7                                 | 54.31 (7)   | O3—C3—C8      | 117.0 (3)  |
| O6—Cd1—O11                                | 88.00 (8)   | C4—C3—C8      | 120.3 (3)  |
| O6-Cd1-012                                | 96.77 (8)   | C3—C4—H4      | 120.2      |
| O6—Cd1—C10                                | 26.85 (8)   | C5—C4—C3      | 119.6 (3)  |
| O7—Cd1—C10                                | 27.60 (8)   | C5—C4—H4      | 120.2      |
| O11—Cd1—O3                                | 119.67 (8)  | C4—C5—H5      | 119.6      |
| O11—Cd1—O7                                | 103.23 (8)  | C6—C5—C4      | 120.8 (3)  |
| O11—Cd1—C10                               | 98.15 (9)   | C6—C5—H5      | 119.6      |
| O12—Cd1—O1                                | 91.10 (8)   | С5—С6—Н6      | 120.2      |
| O12—Cd1—O3                                | 81.33 (8)   | C5—C6—C7      | 119.6 (3)  |
| O12—Cd1—O7                                | 150.54 (8)  | С7—С6—Н6      | 120.2      |
| O12—Cd1—O11                               | 78.55 (8)   | С6—С7—Н7      | 119.6      |
| O12—Cd1—C10                               | 123.09 (9)  | C6—C7—C8      | 120.8 (3)  |
| O5—Cd2—O4                                 | 52.32 (7)   | С8—С7—Н7      | 119.6      |
| O5—Cd2—O7 <sup>i</sup>                    | 128.03 (8)  | C3—C8—C9      | 122.9 (3)  |
| O5—Cd2—O9 <sup>i</sup>                    | 85.48 (8)   | C7—C8—C3      | 118.6 (3)  |
| O5—Cd2—O9 <sup>ii</sup>                   | 98.88 (8)   | C7—C8—C9      | 118.4 (3)  |
| O5—Cd2—O10 <sup>iii</sup>                 | 96.64 (8)   | O4—C9—O5      | 120.5 (3)  |
| O5—Cd2—O10 <sup>ii</sup>                  | 142.74 (8)  | O4—C9—C8      | 122.9 (3)  |
| O7 <sup>i</sup> —Cd2—O4                   | 151.33 (8)  | O5—C9—C8      | 116.6 (3)  |
| $O7^{i}$ —Cd2—O9 <sup>i</sup>             | 93.14 (8)   | O6—C10—Cd1    | 55.65 (16) |
| O7 <sup>i</sup> —Cd2—O9 <sup>ii</sup>     | 129.27 (7)  | O6—C10—O7     | 122.3 (3)  |
| O7 <sup>i</sup> —Cd2—O10 <sup>ii</sup>    | 88.12 (8)   | O6—C10—C11    | 117.2 (3)  |
| O7 <sup>i</sup> —Cd2—O10 <sup>iii</sup>   | 79.41 (8)   | O7—C10—Cd1    | 67.22 (17) |
| O9 <sup>ii</sup> —Cd2—O4                  | 70.79 (7)   | O7—C10—C11    | 120.4 (3)  |
| O9 <sup>i</sup> —Cd2—O4                   | 114.63 (7)  | C11-C10-Cd1   | 168.7 (2)  |
| O9 <sup>i</sup> —Cd2—O9 <sup>ii</sup>     | 69.96 (8)   | O8—C11—C10    | 107.5 (2)  |
| O9 <sup>i</sup> —Cd2—O10 <sup>iiii</sup>  | 171.93 (7)  | O8—C11—H11C   | 110.2      |
| O9 <sup>i</sup> —Cd2—O10 <sup>ii</sup>    | 103.18 (8)  | O8—C11—H11D   | 110.2      |
| O10 <sup>ii</sup> —Cd2—O4                 | 92.11 (7)   | C10—C11—H11C  | 110.2      |
| O10 <sup>iii</sup> —Cd2—O4                | 72.43 (7)   | C10-C11-H11D  | 110.2      |
| O10 <sup>ii</sup> —Cd2—O9 <sup>ii</sup>   | 53.09 (7)   | H11C—C11—H11D | 108.5      |
| O10 <sup>iii</sup> —Cd2—O9 <sup>ii</sup>  | 117.19 (7)  | O8—C12—C13    | 121.1 (3)  |
| O10 <sup>ii</sup> —Cd2—O10 <sup>iii</sup> | 79.83 (8)   | O8—C12—C17    | 117.7 (3)  |
| C1—O1—Cd1                                 | 121.9 (2)   | C13—C12—C17   | 121.2 (3)  |
| C2—O3—Cd1                                 | 110.90 (18) | C12—C13—H13   | 120.2      |
| C3—O3—Cd1                                 | 117.78 (18) | C12—C13—C14   | 119.6 (3)  |

| C3—O3—C2                                  | 118.6 (2)   | C14—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.2      |
|-------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Cd1—O4—Cd2                                | 140.68 (10) | C13—C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9      |
| C9—O4—Cd1                                 | 132.37 (19) | C15—C14—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1 (3)  |
| C9—O4—Cd2                                 | 84 27 (17)  | C15—C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1199       |
| $C_{9} = 05 = C_{42}$                     | 102.8(2)    | C14— $C15$ — $H15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.0      |
|                                           | 102.0(2)    | $C_{14} = C_{15} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0(3)   |
| $C_{10} = 00 = C_{01}$                    | 97.30(19)   | C10 - C15 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0 (3)  |
|                                           | 145.62 (10) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0      |
| C10-07-Cd1                                | 85.18 (17)  | C15—C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.2      |
| $C10-O7-Cd2^{1}$                          | 128.9 (2)   | C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.5 (3)  |
| C12—O8—C11                                | 118.3 (2)   | C17—C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.2      |
| $Cd2^{i}$ — $O9$ — $Cd2^{iv}$             | 110.04 (8)  | C12—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.0 (3)  |
| C18—O9—Cd2 <sup>iv</sup>                  | 89.97 (18)  | C16—C17—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.5 (3)  |
| C18—O9—Cd2 <sup>i</sup>                   | 122.20 (19) | C16—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.4 (3)  |
| Cd2 <sup>iv</sup> —O10—Cd2 <sup>iii</sup> | 100.17 (8)  | O9—C18—O10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.3 (3)  |
| $C18 - O10 - Cd2^{iii}$                   | 133.07(19)  | 09-C18-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.7(3)   |
| $C18 - O10 - Cd^{2iv}$                    | 97 67 (19)  | 010-C18-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.7(3)   |
| $C_{10} = 010 = C_{12}$                   | 100.7       | 010-010-017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.0 (3)  |
|                                           | 109.7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Cd1—O1—C1—O2                              | -161.2 (2)  | O8—C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -177.7 (3) |
| Cd1—O1—C1—C2                              | 17.5 (4)    | O8—C12—C17—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 174.8 (3)  |
| Cd1—O3—C2—C1                              | -35.1 (3)   | O8—C12—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7.4 (4)   |
| Cd1—O3—C3—C4                              | -134.4 (3)  | C2—O3—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.9 (4)    |
| Cd1—O3—C3—C8                              | 47.0 (3)    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -174.8(3)  |
| Cd1—O4—C9—O5                              | 167.2 (2)   | C3—O3—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -176.0(3)  |
| Cd1—O4—C9—C8                              | -14.0(5)    | C3—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.5(5)    |
| Cd1 - 06 - C10 - 07                       | 89(3)       | $C_{3}$ $C_{8}$ $C_{9}$ $O_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -310(5)    |
| Cd1 - O6 - C10 - C11                      | -169.8(2)   | $C_{3}$ $C_{8}$ $C_{9}$ $C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147.8(3)   |
| Cd1  O7  C10  O6                          | -80(3)      | $C_1 C_2 C_3 C_3 C_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 147.0(5)   |
| $C_{1}^{-1} = 07 = C_{10}^{-10} = 00$     | 8.0(3)      | $C_{4} = C_{3} = C_{8} = C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2(3)     |
|                                           | 1/0.7(3)    | $C_4 - C_3 - C_8 - C_9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1/2.0(3)  |
|                                           | 124.5 (10)  | C4 - C5 - C6 - C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.6 (5)    |
| Cd2—O4—C9—O5                              | 3.3 (3)     | C5—C6—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.3(5)    |
| Cd2—O4—C9—C8                              | -177.9 (3)  | C6—C7—C8—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.1(5)    |
| Cd2—O5—C9—O4                              | -4.0 (3)    | C6—C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 174.2 (3)  |
| Cd2—O5—C9—C8                              | 177.1 (2)   | C7—C8—C9—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 152.9 (3)  |
| Cd2 <sup>i</sup> O7Cd1                    | 174.7 (2)   | C7—C8—C9—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -28.3 (4)  |
| Cd2 <sup>i</sup> O7C10O6                  | 166.7 (2)   | C8—C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.9(5)    |
| Cd2 <sup>i</sup> —O7—C10—C11              | -14.6(4)    | C11—O8—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -30.0(4)   |
| Cd2 <sup>i</sup>                          | -115.1 (3)  | C11—O8—C12—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 152.0 (3)  |
| $Cd2^{iv}$ —09—C18—010                    | -1.2(3)     | C12-08-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -163.6(3)  |
| $Cd2^{iv} = 09 = C18 = C17$               | -1794(2)    | $C_{12}$ $C_{13}$ $C_{14}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22(5)      |
| $Cd2^i = 00$ $C18$ $C17$                  | 66 8 (3)    | $C_{12}$ $C_{13}$ $C_{14}$ $C_{15}$ $C_{15}$ $C_{16}$ $C$ | -6.1(5)    |
| $Cd_{2} = 0_{3} = 0_{10} = 0_{10}$        | 12(2)       | $C_{12} = C_{17} = C_{18} = O_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1(3)     |
| $C_{12}^{} = 010 - C_{13}^{} = 09$        | 1.5 (5)     | C12 - C17 - C18 - O10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.8(3)   |
|                                           | -110.4 (3)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.2(4)    |
| Cd2 <sup>m</sup> —O10—C18—C17             | 67.8 (4)    | C13—C12—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 174.6 (3)  |
| Cd2 <sup>1v</sup> —O10—C18—C17            | 179.5 (2)   | C13—C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.6(5)    |
| O1—C1—C2—O3                               | 14.8 (4)    | C14—C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.5 (5)   |
| O2—C1—C2—O3                               | -166.4 (3)  | C15-C16-C17-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.9 (5)    |
| O3—C3—C4—C5                               | 178.5 (3)   | C15—C16—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -174.0 (3) |

# data reports

| O3—C3—C8—C7   | -177.2 (3) | C16—C17—C18—O9  | 171.7 (3) |
|---------------|------------|-----------------|-----------|
| O3—C3—C8—C9   | 6.7 (4)    | C16-C17-C18-O10 | -6.4 (4)  |
| O6—C10—C11—O8 | 173.0 (3)  | C17—C12—C13—C14 | 0.2 (5)   |
| O7—C10—C11—O8 | -5.7 (4)   |                 |           |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*.

# Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H  | Н…А  | D····A    | <i>D</i> —H··· <i>A</i> |
|--------------------------------------|------|------|-----------|-------------------------|
| 011—H11A····O9 <sup>ii</sup>         | 0.88 | 2.03 | 2.873 (3) | 162                     |
| O11—H11 <i>B</i> ···O1 <sup>ii</sup> | 0.88 | 1.91 | 2.782 (3) | 178                     |
| O12—H12A···O2 <sup>v</sup>           | 0.90 | 1.94 | 2.788 (3) | 158                     |
| O12—H12 <i>B</i> ···O2 <sup>ii</sup> | 0.90 | 1.86 | 2.756 (3) | 174                     |

Symmetry codes: (ii) *x*-1, *y*, *z*; (v) -*x*+1, -*y*, -*z*.