

ISSN 2414-3146

Received 1 July 2019 Accepted 13 July 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; organometallic complex; ruthenium(II); *p*-cymene; C—H···CI hydrogen bonding; C—H··· π interactions.

CCDC reference: 1940325

Structural data: full structural data are available from iucrdata.iucr.org

(2,2-Bipyridine- $\kappa^2 N, N'$)chlorido[η^6 -1-methyl-4-(propan-2-yl)benzene]ruthenium(II) tetraphenylborate

Rajesh Thapa and Stefan M. Kilyanek*

University of Arkansas, Fayetteville, AR 72701, USA. *Correspondence e-mail: kilyanek@uark.edu

The title complex, $[RuCl(C_{10}H_{14})(C_{10}H_8N_2)](C_{24}H_{20}B)$, has monoclinic (*P*2₁) symmetry at 100 K. It was prepared by the reaction of the dichlorido[1-methyl-4-(propan-2-yl)benzene]ruthenium(II) dimer with 2,2'-bipyridine, followed by the addition of ammonium tetraphenylborate. The 1-methyl-4-(propan-2-yl)benzene group, the 2,2'-bipyridine unit and a chloride ion coordinate the ruthenium(II) atom, with the 1-methyl-4-(propan-2-yl)benzene ring and bipyridine moieties *trans* to each other. In the crystal, the complex cations are linked by $C-H\cdots Cl$ hydrogen bonds, forming chains parallel to [010]. These chains are linked by a number of $C-H\cdots\pi$ interactions, involving the phenyl rings of the tetraphenylborate anion and a pyridine ring of the bpy ligand, resulting in the formation of layers parallel to (101).

Structure description

N-Heterocyclic carbenes (NHCs) of ruthenium have been of significant interest to the organometallic community for many years, and have a number of applications in homogeneous chemical catalysis (Weskamp *et al.*, 1999; Fürstner *et al.*, 2001; Son *et al.*, 2004; Tudose *et al.*, 2006; Gandolfi *et al.*, 2009); Sanz *et al.*, 2010; Fogler *et al.*, 2011; Hackenberg *et al.*, 2013). The catalytic properties of these complexes have also been studied intensively (Fogler *et al.*, 2011; Ortega *et al.*, 2013; Day & Fogg, 2018). In an effort to access alternative synthetic starting materials for the synthesis of bipyridine-substituted complexes of ruthenium that include NHCs, the title complex was synthesized.

Complex 1 is comprised of an Ru^{II} metal atom coordinated by an η^6 1-methyl-4-(propan-2-yl)benzene (*p*-cymene) ring, a chloride ion and the bidentate ligand 2,2'-bipyridine, with a tetraphenylborate anion as counter ion (Fig. 1). The 1-methyl-4-(propan-2-yl)benzene ring and bipyridine moieties are *trans* to each other. The complex

Figure 1

The molecular structure of complex **1**, with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

crystallizes in the chiral monoclinic $P2_1$ space group with a refined absolute structure Flack parameter of -0.014 (7). The most significant bond lengths and bond angles involving atom Ru1 are given in Table 1.

In the crystal, the complex cations are linked by bifurcated $C-(H,H)\cdots Cl$ hydrogen bonds, forming chains propagating parallel to [010]; see Fig. 2 and Table 2. The chains are linked by a number of $C-H\cdots\pi$ interactions involving the phenyl rings of the tetraphenylborate anion and a pyridine ring of the by ligand, resulting in the formation of layers lying parallel to the $(10\overline{1})$ plane; see Fig. 2 and Table 2.

Figure 2

A view normal to plane $(10\overline{1})$ of the crystal packing of complex **1**. The C-H···Cl hydrogen bonds and C-H··· π interactions (see Table 2) are shown as dashed lines. For clarity, only the hydrogen atoms involved in these interactions have been included.

 Table 1

 Selected geometric parameters (Å, °).

0	1 ()	/	
Ru1-Cl1	2.3851 (5)	Ru1–C3	2.2123 (16)
Ru1-N1	2.0892 (13)	Ru1-C4	2.2391 (16)
Ru1-N2	2.0839 (13)	Ru1-C5	2.2005 (16)
Ru1-C1	2.2234 (16)	Ru1-C6	2.1626 (16)
Ru1-C2	2.1863 (18)		
N2-Ru1-N1	76.98 (5)	C4-Ru1-Cl1	87.95 (5)

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of rings C19A–C24A and N2/C16–C20, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots Cl1^i$	1.00	2.66	3.421 (2)	133
$C11-H11\cdots Cl1^{i}$	0.95	2.62	3.484 (2)	151
$C7-H7\cdots Cg1^{ii}$	1.00	2.67	3.616 (2)	158
$C9-H9B\cdots Cg2^{iii}$	0.98	2.91	3.733 (2)	143
$C18 - H18 \cdot \cdot \cdot Cg1$	0.95	2.73	3.431 (2)	131
$C23A - H23A \cdots Cg2^{iv}$	0.95	2.60	3.461 (2)	151

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z$; (ii) $-x + 1, y - \frac{1}{2}, -z + 1$; (iii) x, y - 1, z; (iv) $-x + 1, y + \frac{1}{2}, -z + 1$.

Synthesis and crystallization

All chemicals were purchased from Sigma-Aldrich and used without further purification under a nitrogen atmosphere. The dichlorido(p-cymene)ruthenium(II) dimer was prepared following the literature protocol of Bennett et al. (2007). The reaction scheme is shown in Fig. 3. $[Ru(p-cymene)Cl_2]_2$ 2,2'-bipyridine (100 mg, 163.29 mmol) and (28 mg, 179.28 mmol) in 5 ml of methanol were refluxed for 16 h. The reaction mixture was cooled to room temperature and then filtered through celite. Ammonium tetraphenylborate (29 mg, 86 mmol) dissolved in 3 ml of MeOH was added to the filtrate. Precipitation proceeded over the next 60 min, at which point a solid yellow product was collected by filtration (110 mg, 147 mmol, 90%). Crystals suitable for X-ray crystallography were grown in CH₂Cl₂/pentane by slow vapor diffusion. HR FT–ICR MS: Calc. for $C_{20}H_{22}ClN_2Ru$ (427.0542); Found m/z(M-BPh₄) 427.0515.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

Dr Doug Powell performed the data collection and the refinement of the structure. We are grateful to the University

Synthesis scheme of complex 1

[RuCl(C10H14)(C10H8N2)]-

14.1396 (15), 9.4811 (11),

(C₂₄H₂₀B) 746.12

Monoclinic, P21

14.3009 (15)

 $0.27 \times 0.15 \times 0.10$

al., 2015)

0.391, 0.439

0.040

0.848

Bruker Photon II cpad

57149, 18389, 17627

Multi-scan (SADABS; Krause et

109.013 (4)

1812.6 (3)

Μο Κα

0.54

100

2

of Arkansas for start-up funding, and for some support for the NMR Facility at the University of Arkansas provided by the Arkansas Biosciences Institute. We also thank the University of Oklahoma for funds to purchase the and computers.

Funding information

We thank the National Science Foundation (grant No. CHE-0130835) for funds to purchase the X-ray diffractometer.

References

- Bennett, M. A., Huang, T.-N., Matheson, T. W., Smith, A. K., Ittel, S. & Nickerson, W. (2007). *Inorg. Synth.* 21, 74–78.
- Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Day, C. S. & Fogg, D. E. (2018). Organometallics, 37, 4551-4555.
- Fogler, E., Balaraman, E., Ben-David, Y., Leitus, G., Shimon, L. J. W. & Milstein, D. (2011). Organometallics, 30, 3826–3833.
- Fürstner, A., Ackermann, L., Gabor, B., Goddard, R., Lehmann, C. W., Mynott, R., Stelzer, F. & Thiel, O. R. (2001). *Chem. Eur. J.* 7, 3236–3253.
- Gandolfi, C., Heckenroth, M., Neels, A., Laurenczy, G. & Albrecht, M. (2009). Organometallics, 28, 5112–5121.
- Hackenberg, F., Müller-Bunz, H., Smith, R., Streciwilk, W., Zhu, X. & Tacke, M. (2013). Organometallics, **32**, 5551–5560.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ortega, N., Tang, D. D., Urban, S., Zhao, D. & Glorius, F. (2013). Angew. Chem. Int. Ed. **52**, 9500–9503.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sanz, S., Azua, A. & Peris, E. (2010). Dalton Trans. 39, 6339-6343.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Son, S. U., Park, K. H., Lee, Y.-S., Kim, B. Y., Choi, C. H., Lah, M. S., Jang, Y. H., Jang, D.-J. & Chung, Y. K. (2004). *Inorg. Chem.* 43, 6896–6898.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Table 3Experimental details.

Chemical formula

Crystal data

 $M_{\rm r}$ Crystal system, space group Temperature (K) a, b, c (Å)

 β (°) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min} , T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int}

 $(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.025, 0.062, 1.01 No. of reflections 18389 No. of parameters 446 No. of restraints H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.43, -0.60Absolute structure Flack x determined using 7947 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons et al., 2013) Absolute structure parameter -0.014(7)

Computer programs: *APEX3* and *SAINT* (Bruker, 2018), *SHELXT* (Sheldrick, 2015*a*), *Mercury* (Macrae *et al.*, 2008), *SHELXL2018* (Sheldrick, 2015*b*), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Tudose, A., Demonceau, A. & Delaude, L. (2006). J. Organomet. Chem. 691, 5356–5365.

Weskamp, T., Kohl, F. J. & Herrmann, W. A. (1999). J. Organomet. Chem. 582, 362–365.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2019). **4**, x191006 [https://doi.org/10.1107/S241431461901006X]

(2,2-Bipyridine- $\kappa^2 N, N'$) chlorido[η^6 -1-methyl-4-(propan-2-yl)benzene]ruthenium(II) tetraphenylborate

Rajesh Thapa and Stefan M. Kilyanek

 $(2,2-Bipyridine-\kappa^2N,N')$ chlorido [η^6 -1-methyl-4-(propan-2-yl)benzene]ruthenium(II) tetraphenylborate

Crystal data

[RuCl(C₁₀H₁₄)(C₁₀H₈N₂)](C₂₄H₂₀B) $M_r = 746.12$ Monoclinic, P2₁ a = 14.1396 (15) Å b = 9.4811 (11) Å c = 14.3009 (15) Å $\beta = 109.013$ (4)° V = 1812.6 (3) Å³ Z = 2

Data collection

Bruker Photon II cpad
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.391, T_{\max} = 0.439$
57149 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.062$ S = 1.0118389 reflections 446 parameters 1 restraint Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained F(000) = 772 $D_x = 1.367 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9150 reflections $\theta = 4.3-37.1^{\circ}$ $\mu = 0.54 \text{ mm}^{-1}$ T = 100 KBlock, orange $0.27 \times 0.15 \times 0.10 \text{ mm}$

18389 independent reflections 17627 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 37.1^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -23 \rightarrow 23$ $k = -16 \rightarrow 16$ $l = -24 \rightarrow 24$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.028P)^{2} + 0.240P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.60 \text{ e} \text{ Å}^{-3}$ Extinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0054 (9) Absolute structure: Flack *x* determined using 7947 quotients [(*I*⁺)-(*I*)]/[(*I*⁺)+(*I*)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.014 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were included in calculated positions and treated as riding on the parent C atom: C - H = 0.95 - 1.00 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru1	0.18068 (2)	0.51286 (2)	0.07448 (2)	0.01075 (3)	
Cl1	0.12759 (4)	0.74527 (5)	0.01726 (4)	0.01957 (8)	
N1	0.09601 (10)	0.54459 (14)	0.16818 (10)	0.0145 (2)	
N2	0.27945 (9)	0.61963 (14)	0.19404 (10)	0.0126 (2)	
C1	0.22538 (12)	0.28724 (16)	0.09615 (11)	0.0146 (2)	
C2	0.12355 (14)	0.29922 (19)	0.03465 (13)	0.0150 (3)	
H2	0.070093	0.263351	0.060173	0.018*	
C3	0.09526 (13)	0.38097 (18)	-0.05258 (11)	0.0166 (3)	
Н3	0.022771	0.401613	-0.086461	0.020*	
C4	0.16818 (13)	0.45675 (19)	-0.08118 (12)	0.0182 (3)	
C5	0.26946 (13)	0.45044 (19)	-0.01971 (12)	0.0181 (3)	
Н5	0.319034	0.518072	-0.030787	0.022*	
C6	0.29636 (12)	0.36769 (18)	0.06801 (12)	0.0160 (3)	
H6	0.364984	0.379252	0.116869	0.019*	
C7	0.25764 (13)	0.19334 (18)	0.18562 (12)	0.0179 (3)	
H7	0.321125	0.232642	0.232325	0.022*	
C8	0.18197 (17)	0.1836 (3)	0.24075 (17)	0.0333 (5)	
H8A	0.169370	0.278072	0.261917	0.050*	
H8B	0.208624	0.122886	0.298870	0.050*	
H8C	0.119277	0.143665	0.196898	0.050*	
C9	0.2809 (2)	0.0474 (2)	0.15284 (17)	0.0327 (5)	
H9A	0.219180	0.004466	0.109425	0.049*	
H9B	0.309489	-0.012467	0.211108	0.049*	
H9C	0.329040	0.056781	0.117002	0.049*	
C10	0.13714 (16)	0.5463 (2)	-0.17228 (13)	0.0259 (4)	
H10A	0.137720	0.489475	-0.229329	0.039*	
H10B	0.183840	0.625332	-0.163962	0.039*	
H10C	0.069533	0.582760	-0.183212	0.039*	
C11	-0.00049 (11)	0.5078 (3)	0.14594 (12)	0.0215 (3)	
H11	-0.032789	0.461693	0.084867	0.026*	
C12	-0.05456 (14)	0.5350 (2)	0.20943 (15)	0.0283 (5)	
H12	-0.122792	0.507808	0.191893	0.034*	
C13	-0.00786 (15)	0.6023 (3)	0.29879 (16)	0.0278 (4)	
H13	-0.043449	0.620928	0.343492	0.033*	
C14	0.09145 (13)	0.6420 (2)	0.32182 (13)	0.0206 (3)	
H14	0.124927	0.688474	0.382439	0.025*	
C15	0.14161 (11)	0.61250 (17)	0.25445 (11)	0.0145 (2)	

C16	0.24499 (11)	0.65497 (16)	0.26890 (11)	0.0128 (2)
C17	0.30385 (12)	0.72922 (17)	0.35107 (12)	0.0163 (3)
H17	0.278860	0.751998	0.403353	0.020*
C18	0.39957 (12)	0.76962 (17)	0.35571 (13)	0.0182 (3)
H18	0.441031	0.820014	0.411425	0.022*
C19	0.43407 (12)	0.73577 (18)	0.27837 (13)	0.0186(3)
H19	0.499069	0.763543	0.279754	0.022*
C20	0.37197 (11)	0.66058 (17)	0.19884(12)	0.0161(3)
H20	0 395644	0.637128	0.145788	0.019*
CIA	0 23530 (11)	0.037120 0.77267 (17)	0.60471(11)	0.0132(2)
	0.23565(11) 0.23565(12)	0.88711(16)	0.54243(11)	0.0152(2)
H2A	0.298056	0.00711(10)	0.539820	0.0152 (2)
	0.14809 (14)	0.920029 0.95384 (18)	0.337820 0.48412(13)	0.010
	0.14009(14) 0.152034	1.030055	0.40412(13) 0.442426	0.0190 (3)
IIJA C4A	0.152054 0.05535 (14)	1.030033	0.442420 0.48677(12)	0.023°
C4A	0.03333 (14)	0.9094 (2)	0.48077(13)	0.0217(3)
П4А	-0.004209	0.934883	0.447030	0.020°
C5A	0.05165 (13)	0.7970(2)	0.54779(13)	0.0217(3)
НЗА	-0.010993	0.765367	0.550926	0.026*
C6A	0.13943 (12)	0.73070 (19)	0.60434 (12)	0.0181(3)
H6A	0.134581	0.653307	0.644725	0.022*
C7A	0.36590 (11)	0.75614 (16)	0.78984 (11)	0.0129 (2)
C8A	0.30762 (13)	0.8527 (2)	0.82111 (12)	0.0197 (3)
H8AA	0.247185	0.885698	0.774408	0.024*
C9A	0.33465 (16)	0.9025 (2)	0.91823 (14)	0.0268 (4)
H9AA	0.293176	0.968914	0.935999	0.032*
C10A	0.42176 (14)	0.8554 (2)	0.98886 (13)	0.0228 (3)
H10D	0.439700	0.887490	1.055300	0.027*
C11A	0.48227 (13)	0.7604 (2)	0.96048 (12)	0.0202 (3)
H11A	0.542283	0.727121	1.007701	0.024*
C12A	0.45494 (12)	0.71423 (19)	0.86297 (12)	0.0173 (3)
H12A	0.498421	0.651443	0.844919	0.021*
C13A	0.31168 (10)	0.5213 (2)	0.67714 (9)	0.0126 (2)
C14A	0.34015 (13)	0.43489 (17)	0.76138 (12)	0.0161 (3)
H14A	0.376568	0.475869	0.823269	0.019*
C15A	0.31722 (14)	0.29086 (19)	0.75824 (14)	0.0202 (3)
H15A	0.337552	0.236845	0.817420	0.024*
C16A	0.26504 (14)	0.22670 (18)	0.66926 (14)	0.0212 (3)
H16A	0.249287	0.129060	0.666635	0.025*
C17A	0.23636 (14)	0.3084 (2)	0.58416 (14)	0.0206 (3)
H17A	0.200600	0.266322	0.522461	0.025*
C18A	0 25953 (13)	0.45161 (18)	0.58838(12)	0.0177(3)
H18A	0.239247	0 504547	0 528734	0.021*
C19A	0.239217 0.43290(11)	0.71807 (15)	0.63904 (11)	0.0122(2)
C20A	0 47654 (11)	0.61317 (16)	0 59733 (11)	0.0122(2) 0.0140(2)
H20A	0 449422	0.520595	0 590472	0.017*
C21A	0 55858 (12)	0.63956 (18)	0 56539 (12)	0.017
H21A	0.586610	0.565195	0.538421	0.010*
C22A	0.50807 (12)	0.77414(18)	0.550421	0.015
ULLA	0.57677 (12)	0.77 + 1 + (10)	0.27300(11)	0.0101 (3)

H22A	0.653725	0.793064	0.550248	0.019*
C23A	0.55809 (12)	0.88118 (17)	0.61471 (12)	0.0158 (3)
H23A	0.584916	0.973856	0.620306	0.019*
C24A	0.47790 (12)	0.85237 (16)	0.64813 (12)	0.0146 (2)
H24A	0.452554	0.926073	0.678224	0.018*
B1A	0.33633 (12)	0.69173 (18)	0.67724 (12)	0.0124 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U ²³
Ru1	0.01025 (4)	0.01104 (4)	0.01128 (4)	0.00032 (4)	0.00393 (3)	0.00047 (4)
Cl1	0.01740 (17)	0.01448 (16)	0.02383 (19)	0.00399 (13)	0.00261 (14)	0.00439 (14)
N1	0.0140 (5)	0.0145 (5)	0.0164 (5)	-0.0034 (4)	0.0068 (4)	-0.0035 (4)
N2	0.0110 (5)	0.0118 (5)	0.0148 (5)	0.0004 (4)	0.0038 (4)	0.0013 (4)
C1	0.0170 (6)	0.0115 (5)	0.0142 (6)	0.0018 (5)	0.0038 (5)	-0.0009 (4)
C2	0.0173 (7)	0.0132 (6)	0.0130 (6)	-0.0003 (5)	0.0028 (5)	-0.0014 (5)
C3	0.0181 (6)	0.0178 (6)	0.0124 (6)	0.0009 (5)	0.0030 (5)	-0.0014 (5)
C4	0.0217 (7)	0.0216 (7)	0.0125 (6)	0.0042 (6)	0.0074 (5)	0.0011 (5)
C5	0.0191 (7)	0.0217 (7)	0.0166 (6)	0.0028 (5)	0.0099 (6)	0.0014 (5)
C6	0.0154 (6)	0.0169 (6)	0.0162 (6)	0.0035 (5)	0.0057 (5)	-0.0009 (5)
C7	0.0206 (7)	0.0150 (6)	0.0147 (6)	-0.0003 (5)	0.0010 (5)	0.0018 (5)
C8	0.0301 (10)	0.0434 (13)	0.0271 (9)	0.0023 (9)	0.0103 (8)	0.0167 (9)
C9	0.0478 (13)	0.0140 (7)	0.0293 (9)	0.0052 (7)	0.0030 (9)	0.0013 (6)
C10	0.0283 (8)	0.0346 (10)	0.0167 (7)	0.0058 (7)	0.0102 (6)	0.0087 (6)
C11	0.0166 (5)	0.0260 (7)	0.0241 (6)	-0.0095 (8)	0.0097 (5)	-0.0094 (9)
C12	0.0196 (7)	0.0391 (14)	0.0321 (8)	-0.0112 (7)	0.0167 (7)	-0.0118 (8)
C13	0.0237 (8)	0.0388 (11)	0.0277 (9)	-0.0077 (8)	0.0178 (7)	-0.0091 (8)
C14	0.0210 (7)	0.0255 (8)	0.0186 (7)	-0.0030 (6)	0.0109 (6)	-0.0058 (6)
C15	0.0141 (6)	0.0152 (6)	0.0149 (6)	-0.0020 (5)	0.0058 (5)	-0.0028 (5)
C16	0.0127 (5)	0.0110 (5)	0.0140 (5)	-0.0001 (4)	0.0036 (5)	0.0000 (4)
C17	0.0174 (6)	0.0135 (6)	0.0156 (6)	-0.0001 (5)	0.0019 (5)	-0.0016 (5)
C18	0.0158 (6)	0.0135 (6)	0.0199 (7)	-0.0013 (5)	-0.0015 (5)	-0.0008 (5)
C19	0.0129 (6)	0.0165 (6)	0.0233 (7)	-0.0027 (5)	0.0018 (5)	0.0024 (5)
C20	0.0115 (6)	0.0163 (6)	0.0206 (7)	-0.0011 (5)	0.0053 (5)	0.0018 (5)
C1A	0.0143 (6)	0.0127 (6)	0.0125 (5)	0.0005 (5)	0.0043 (5)	-0.0012 (4)
C2A	0.0180 (6)	0.0122 (6)	0.0148 (6)	-0.0001 (5)	0.0047 (5)	-0.0008 (4)
C3A	0.0240 (7)	0.0140 (7)	0.0179 (7)	0.0032 (5)	0.0032 (6)	0.0009 (5)
C4A	0.0194 (7)	0.0208 (7)	0.0208 (7)	0.0063 (6)	0.0009 (6)	-0.0001 (6)
C5A	0.0140 (6)	0.0276 (8)	0.0221 (7)	0.0028 (6)	0.0040 (6)	0.0014 (6)
C6A	0.0139 (6)	0.0224 (7)	0.0177 (6)	0.0010 (5)	0.0046 (5)	0.0043 (5)
C7A	0.0127 (6)	0.0132 (6)	0.0133 (5)	-0.0013 (4)	0.0049 (5)	-0.0014 (4)
C8A	0.0189 (7)	0.0225 (7)	0.0160 (6)	0.0040 (6)	0.0034 (5)	-0.0057 (5)
C9A	0.0266 (8)	0.0325 (10)	0.0205 (8)	0.0056 (7)	0.0067 (7)	-0.0106 (7)
C10A	0.0239 (8)	0.0290 (9)	0.0146 (6)	-0.0043 (7)	0.0052 (6)	-0.0060 (6)
C11A	0.0166 (6)	0.0271 (8)	0.0146 (6)	-0.0033 (6)	0.0021 (5)	-0.0016 (5)
C12A	0.0139 (6)	0.0212 (7)	0.0156 (6)	0.0003 (5)	0.0032 (5)	-0.0017 (5)
C13A	0.0123 (4)	0.0129 (5)	0.0139 (4)	-0.0005 (6)	0.0059 (4)	-0.0006 (6)
C14A	0.0193 (6)	0.0147 (6)	0.0147 (6)	0.0003 (5)	0.0064 (5)	0.0000 (5)

C15A	0.0251 (8)	0.0154 (6)	0.0218 (7)	-0.0001 (6)	0.0100 (6)	0.0023 (5)	
C16A	0.0237 (8)	0.0148 (6)	0.0285 (8)	-0.0044 (6)	0.0130 (7)	-0.0023 (6)	
C17A	0.0200 (7)	0.0184 (7)	0.0235 (7)	-0.0057 (6)	0.0071 (6)	-0.0061 (6)	
C18A	0.0186 (7)	0.0169 (7)	0.0165 (6)	-0.0038 (5)	0.0041 (5)	-0.0015 (5)	
C19A	0.0120 (5)	0.0117 (5)	0.0125 (5)	-0.0003 (4)	0.0035 (4)	-0.0004 (4)	
C20A	0.0151 (6)	0.0117 (5)	0.0156 (6)	-0.0002 (4)	0.0056 (5)	-0.0005 (4)	
C21A	0.0144 (6)	0.0167 (6)	0.0170 (6)	0.0003 (5)	0.0069 (5)	-0.0019 (5)	
C22A	0.0130 (6)	0.0203 (7)	0.0156 (6)	-0.0015 (5)	0.0054 (5)	0.0016 (5)	
C23A	0.0147 (6)	0.0143 (6)	0.0173 (6)	-0.0035 (5)	0.0035 (5)	0.0012 (5)	
C24A	0.0142 (6)	0.0125 (6)	0.0171 (6)	-0.0012 (5)	0.0050 (5)	-0.0015 (5)	
B1A	0.0125 (6)	0.0128 (6)	0.0116 (6)	-0.0009(5)	0.0036 (5)	-0.0010 (5)	

Geometric parameters (Å, °)

Ru1—Cl1	2.3851 (5)	C19—C20	1.386 (2)
Ru1—N1	2.0892 (13)	С19—Н19	0.9500
Ru1—N2	2.0839 (13)	С20—Н20	0.9500
Ru1—C1	2.2234 (16)	C1A—C2A	1.405 (2)
Ru1—C2	2.1863 (18)	C1A—C6A	1.411 (2)
Ru1—C3	2.2123 (16)	C1A—B1A	1.655 (2)
Ru1—C4	2.2391 (16)	C2A—C3A	1.399 (2)
Ru1—C5	2.2005 (16)	C2A—H2A	0.9500
Ru1—C6	2.1626 (16)	C3A—C4A	1.390 (3)
N1—C11	1.3423 (19)	СЗА—НЗА	0.9500
N1—C15	1.354 (2)	C4A—C5A	1.389 (3)
N2—C20	1.345 (2)	C4A—H4A	0.9500
N2—C16	1.355 (2)	C5A—C6A	1.391 (2)
C1—C6	1.419 (2)	C5A—H5A	0.9500
C1—C2	1.426 (3)	С6А—Н6А	0.9500
C1—C7	1.502 (2)	C7A—C8A	1.399 (2)
C2—C3	1.411 (2)	C7A—C12A	1.407 (2)
С2—Н2	1.0000	C7A—B1A	1.644 (2)
C3—C4	1.422 (2)	C8A—C9A	1.397 (2)
С3—Н3	1.0000	C8A—H8AA	0.9500
C4—C5	1.417 (2)	C9A—C10A	1.388 (3)
C4—C10	1.496 (2)	С9А—Н9АА	0.9500
C5—C6	1.422 (2)	C10A—C11A	1.391 (3)
С5—Н5	1.0000	C10A—H10D	0.9500
С6—Н6	1.0000	C11A—C12A	1.391 (2)
C7—C8	1.525 (3)	C11A—H11A	0.9500
С7—С9	1.531 (3)	C12A—H12A	0.9500
С7—Н7	1.0000	C13A—C14A	1.403 (2)
C8—H8A	0.9800	C13A—C18A	1.408 (2)
C8—H8B	0.9800	C13A—B1A	1.653 (3)
C8—H8C	0.9800	C14A—C15A	1.401 (2)
С9—Н9А	0.9800	C14A—H14A	0.9500
С9—Н9В	0.9800	C15A—C16A	1.386 (3)
С9—Н9С	0.9800	C15A—H15A	0.9500

C10—H10A	0.9800	C16A—C17A	1.387 (3)
C10—H10B	0.9800	C16A—H16A	0.9500
C10—H10C	0.9800	C17A—C18A	1.394 (3)
C11—C12	1.388 (2)	C17A—H17A	0.9500
C11—H11	0.9500	C18A—H18A	0.9500
C12—C13	1.388 (3)	C19A—C20A	1.402 (2)
С12—Н12	0.9500	C19A—C24A	1.410 (2)
C13—C14	1.386 (3)	C19A—B1A	1.647 (2)
С13—Н13	0.9500	C20A—C21A	1.401 (2)
C14—C15	1.398 (2)	C20A—H20A	0.9500
C14—H14	0.9500	C21A—C22A	1.388 (2)
C15—C16	1.465 (2)	C21A—H21A	0.9500
C16—C17	1.390 (2)	C22A—C23A	1.394 (2)
C17—C18	1.387 (2)	C22A - H22A	0.9500
С17—Н17	0.9500	C23A—C24A	1.393 (2)
C18—C19	1.384 (3)	$C_{23}A - H_{23}A$	0.9500
C18—H18	0.9500	C_{24A} H24A	0.9500
	0.9500		0.9500
N2—Ru1—N1	76.98 (5)	C13—C12—C11	119.30 (16)
N2—Ru1—C6	91.73 (6)	C13—C12—H12	120.3
N1—Ru1—C6	135.94 (6)	C11—C12—H12	120.3
N2—Ru1—C2	139.09 (6)	C14—C13—C12	119.00 (17)
N1—Ru1—C2	93.45 (6)	C14—C13—H13	120.5
C6—Ru1—C2	67.64 (7)	С12—С13—Н13	120.5
N2—Ru1—C5	105.63 (6)	C13—C14—C15	118.96 (16)
N1—Ru1—C5	172.63 (6)	C13—C14—H14	120.5
C6—Ru1—C5	38.04 (6)	C15—C14—H14	120.5
C2—Ru1—C5	80.06 (7)	N1—C15—C14	121.67 (14)
N2—Ru1—C3	171.53 (6)	N1—C15—C16	114.60 (13)
N1—Ru1—C3	109.54 (6)	C14—C15—C16	123.70 (14)
C6—Ru1—C3	79.82 (6)	N2—C16—C17	121.53 (14)
C2—Ru1—C3	37.42 (6)	N2-C16-C15	114.82 (13)
C5—Ru1—C3	67.23 (7)	C17—C16—C15	123.62 (14)
N2— $Ru1$ — $C1$	105.60 (5)	C18—C17—C16	119.10 (15)
N1—Ru1—C1	104.21 (6)	С18—С17—Н17	120.5
C6—Ru1—C1	37.73 (6)	С16—С17—Н17	120.5
C2— $Ru1$ — $C1$	37.73 (7)	C19—C18—C17	119.35 (15)
C5—Ru1—C1	68.51 (6)	C19—C18—H18	120.3
C3— $Ru1$ — $C1$	67.98 (6)	C17—C18—H18	120.3
N2—Ru1—C4	138.24 (6)	C18—C19—C20	118.74 (15)
N1—Ru1—C4	142.73 (6)	C18—C19—H19	120.6
C6—Ru1—C4	67.79 (6)	C20—C19—H19	120.6
C_2 —Ru1—C4	67 55 (7)	N_{2} C20 C19	122.40 (16)
C5—Ru1—C4	37 20 (6)	N2-C20-H20	118.8
C3—Ru1—C4	37.25 (6)	C19—C20—H20	118.8
C1— $Ru1$ — $C4$	80.61 (6)	C2A—C1A—C6A	114.66 (14)
N2—Ru1—Cl1	83.37 (4)	C2A— $C1A$ — $B1A$	125.09 (14)
N1—Ru1—C11	84 55 (4)	C6A - C1A - B1A	120.23(14)
		Bill	

C6—Ru1—Cl1	136.99 (5)	C3A—C2A—C1A	122.83 (16)
C2—Ru1—Cl1	135.91 (4)	C3A—C2A—H2A	118.6
C5—Ru1—Cl1	102.53 (5)	C1A—C2A—H2A	118.6
C3—Ru1—Cl1	102.34 (5)	C4A—C3A—C2A	120.43 (16)
C1— $Ru1$ — $C11$	168.54 (4)	C4A—C3A—H3A	119.8
C4— $Ru1$ — $Cl1$	87.95 (5)	C2A—C3A—H3A	119.8
$C_{11} = N_{1} = C_{15}$	119.01 (14)	C5A - C4A - C3A	118 61 (16)
C11—N1—Ru1	124 14 (11)	C5A - C4A - H4A	120.7
C15— $N1$ — $Ru1$	116 78 (10)	C3A - C4A - H4A	120.7
$C_{20} N_{2} C_{16}$	118.85 (14)	C4A - C5A - C6A	120.7 120.18(17)
$C_{20} = N_2 = R_{11}$	124.25(11)	C4A - C5A - H5A	110.0
C_{16} N2 Rul	124.23(11) 116.82(10)	C6A - C5A - H5A	119.9
$C_{10} = N_2 = R_{01}$	116.52(10)	C_{0}^{5}	117.7
$C_{0} = C_{1} = C_{2}$	120.89(14)	$C_{5A} = C_{6A} = H_{6A}$	123.28 (10)
$C_{0} = C_{1} = C_{7}$	120.09(14) 122.53(15)	$C_{1A} = C_{6A} = H_{6A}$	118.4
$C_2 = C_1 = C_7$	122.33(13)	$C_{A} C_{A} C_{A} C_{A} C_{A}$	110.4 115.15(14)
$C_0 = C_1 = R_{u1}$	60.72(0)	$C_{A} C_{A} D_{A}$	113.13(14)
$C_2 = C_1 = R_{u1}$	(9, 72, (9))	$C_{A} - C_{A} - D_{A}$	124.00(14)
$C^2 = C^2 = C^1$	155.05(11) 121.82(17)	C12A - C/A - B1A	120.25(13)
$C_3 = C_2 = C_1$	121.83(17)	C9A = C8A = U8A A	122.08 (10)
$C_3 = C_2 = R_{U1}$	72.29 (10)	C7A = C8A = H8AA	118.7
C1 = C2 = Kul	12.55 (9)	C/A - C8A - H8AA	118.7
$C_3 = C_2 = H_2$	118.6	C10A - C9A - C8A	120.37 (18)
C1—C2—H2	118.6	CIUA—C9A—H9AA	119.8
Ru1—C2—H2	118.6	С8А—С9А—Н9АА	119.8
C2—C3—C4	120.56 (15)	C9A—C10A—C11A	118.70 (16)
C2—C3—Ru1	70.29 (9)	C9A—C10A—H10D	120.6
C4—C3—Ru1	72.40 (9)	C11A—C10A—H10D	120.6
С2—С3—Н3	119.1	C10A—C11A—C12A	120.01 (16)
С4—С3—Н3	119.1	C10A—C11A—H11A	120.0
Ru1—C3—H3	119.1	C12A—C11A—H11A	120.0
C5—C4—C3	118.77 (15)	C11A—C12A—C7A	123.05 (16)
C5—C4—C10	120.99 (16)	C11A—C12A—H12A	118.5
C3—C4—C10	120.19 (16)	C7A—C12A—H12A	118.5
C5—C4—Ru1	69.92 (9)	C14A—C13A—C18A	114.82 (17)
C3—C4—Ru1	70.35 (9)	C14A—C13A—B1A	124.65 (13)
C10—C4—Ru1	129.54 (13)	C18A—C13A—B1A	120.52 (14)
C4—C5—C6	119.77 (15)	C15A—C14A—C13A	122.89 (16)
C4—C5—Ru1	72.88 (9)	C15A—C14A—H14A	118.6
C6—C5—Ru1	69.54 (9)	C13A—C14A—H14A	118.6
C4—C5—H5	119.6	C16A—C15A—C14A	120.36 (16)
С6—С5—Н5	119.6	C16A—C15A—H15A	119.8
Ru1—C5—H5	119.6	C14A—C15A—H15A	119.8
C1—C6—C5	122.41 (15)	C15A—C16A—C17A	118.46 (16)
C1—C6—Ru1	73.46 (9)	C15A—C16A—H16A	120.8
C5—C6—Ru1	72.43 (9)	C17A—C16A—H16A	120.8
С1—С6—Н6	118.4	C16A—C17A—C18A	120.57 (17)
С5—С6—Н6	118.4	C16A—C17A—H17A	119.7
Ru1—C6—H6	118.4	C18A—C17A—H17A	119.7

C1—C7—C8	113.99 (15)	C17A—C18A—C13A	122.89 (17)
C1—C7—C9	108.11 (15)	C17A—C18A—H18A	118.6
C8—C7—C9	111.16 (18)	C13A—C18A—H18A	118.6
С1—С7—Н7	107.8	C20A—C19A—C24A	115.58 (13)
С8—С7—Н7	107.8	C20A—C19A—B1A	124.13 (13)
С9—С7—Н7	107.8	C24A—C19A—B1A	120.29 (13)
С7—С8—Н8А	109.5	C21A—C20A—C19A	122.55 (14)
С7—С8—Н8В	109.5	C21A—C20A—H20A	118.7
H8A—C8—H8B	109.5	C19A - C20A - H20A	118.7
C7 - C8 - H8C	109.5	$C_{22}A = C_{21}A = C_{20}A$	120.11(15)
	109.5	$C_{22}A = C_{21}A = H_{21}A$	110.0
	109.5	$C_{22}A = C_{21}A = H_{21}A$	110.0
C7 C0 H0A	109.5	$C_{20A} = C_{21A} = H_{21A}$	119.9 110.07(14)
$C_7 = C_9 = H_9 A$	109.5	$C_{21A} = C_{22A} = C_{23A}$	119.07 (14)
	109.5	$C_{21}A = C_{22}A = H_{22}A$	120.5
H9A—C9—H9B	109.5	$C_{23}A - C_{22}A - H_{22}A$	120.5
C/C9H9C	109.5	C24A—C23A—C22A	120.06 (14)
Н9А—С9—Н9С	109.5	C24A—C23A—H23A	120.0
Н9В—С9—Н9С	109.5	C22A—C23A—H23A	120.0
C4—C10—H10A	109.5	C23A—C24A—C19A	122.58 (14)
C4—C10—H10B	109.5	C23A—C24A—H24A	118.7
H10A—C10—H10B	109.5	C19A—C24A—H24A	118.7
C4—C10—H10C	109.5	C7A—B1A—C19A	107.15 (12)
H10A—C10—H10C	109.5	C7A—B1A—C13A	110.50 (12)
H10B-C10-H10C	109.5	C19A—B1A—C13A	110.20 (12)
N1-C11-C12	122.04 (16)	C7A—B1A—C1A	109.50 (12)
N1—C11—H11	119.0	C19A—B1A—C1A	111.19 (12)
C12—C11—H11	119.0	C13A—B1A—C1A	108.31 (12)
C6—C1—C2—C3	3.2 (2)	C18—C19—C20—N2	0.1 (3)
C7—C1—C2—C3	-175.93(15)	C6A—C1A—C2A—C3A	-0.4(2)
Ru1 - C1 - C2 - C3	55 22 (15)	B1A—C1A—C2A—C3A	-17856(15)
C_{6} C_{1} C_{2} R_{11}	-52.00(13)	C1A - C2A - C3A - C4A	0.9(3)
C_{7} C_{1} C_{2} R_{u1}	128 85 (15)	C_{2A} C_{3A} C_{4A} C_{5A}	-0.5(3)
$C_1 = C_2 = C_4$	-1.1(3)	$C_{2A} = C_{3A} = C_{4A} = C_{5A} = C_{6A}$	-0.3(3)
$C_1 = C_2 = C_3 = C_4$	1.1(3)	$C_{A} C_{A} C_{A$	0.3(3)
$C_1 = C_2 = C_3 = C_4$	54.22(14)	$C_{A} = C_{A} = C_{A} = C_{A}$	0.9(3)
C1 = C2 = C3 = Ku1	-33.33(14)	C_{2A} C_{1A} C_{0A} C_{5A}	-0.3(2)
$C_2 = C_3 = C_4 = C_5$	-1.0(2)	BIA - CIA - COA - COA	1//.80 (16)
Ru1 - C3 - C4 - C5	52.27 (14)	C12A - C7A - C8A - C9A	-1.0(3)
C2—C3—C4—C10	-178.31 (16)	BIA-C/A-C8A-C9A	178.62 (18)
Ru1—C3—C4—C10	-125.06 (16)	C7A—C8A—C9A—C10A	-0.8(3)
C2—C3—C4—Ru1	-53.25 (14)	C8A—C9A—C10A—C11A	1.3 (3)
C3—C4—C5—C6	0.8 (2)	C9A—C10A—C11A—C12A	-0.1(3)
C10-C4-C5-C6	178.13 (16)	C10A—C11A—C12A—C7A	-1.8 (3)
Ru1—C4—C5—C6	53.30 (14)	C8A—C7A—C12A—C11A	2.3 (3)
C3—C4—C5—Ru1	-52.47 (14)	B1A—C7A—C12A—C11A	-177.37 (16)
C10-C4-C5-Ru1	124.83 (16)	C18A—C13A—C14A—C15A	-1.0 (2)
C2-C1-C6-C5	-3.4 (2)	B1A—C13A—C14A—C15A	179.59 (15)
C7—C1—C6—C5	175.78 (15)	C13A—C14A—C15A—C16A	0.6 (3)

Ru1—C1—C6—C5	-55.84 (14)	C14A—C15A—C16A—C17A	0.0 (3)
C2-C1-C6-Ru1	52.45 (13)	C15A—C16A—C17A—C18A	-0.1 (3)
C7—C1—C6—Ru1	-128.39 (14)	C16A—C17A—C18A—C13A	-0.4 (3)
C4—C5—C6—C1	1.4 (2)	C14A—C13A—C18A—C17A	0.9 (2)
Ru1—C5—C6—C1	56.31 (14)	B1A-C13A-C18A-C17A	-179.66 (15)
C4—C5—C6—Ru1	-54.87 (14)	C24A—C19A—C20A—C21A	-0.8 (2)
C6—C1—C7—C8	146.08 (18)	B1A-C19A-C20A-C21A	179.82 (14)
C2—C1—C7—C8	-34.8 (2)	C19A—C20A—C21A—C22A	-0.9 (2)
Ru1—C1—C7—C8	57.1 (2)	C20A—C21A—C22A—C23A	1.3 (2)
C6—C1—C7—C9	-89.8 (2)	C21A—C22A—C23A—C24A	0.1 (2)
C2—C1—C7—C9	89.3 (2)	C22A—C23A—C24A—C19A	-2.0 (2)
Ru1—C1—C7—C9	-178.77 (14)	C20A—C19A—C24A—C23A	2.3 (2)
C15—N1—C11—C12	-1.1 (3)	B1A-C19A-C24A-C23A	-178.31 (14)
Ru1—N1—C11—C12	-177.98 (18)	C8A—C7A—B1A—C19A	127.43 (16)
N1-C11-C12-C13	0.0 (4)	C12A—C7A—B1A—C19A	-52.97 (18)
C11—C12—C13—C14	0.7 (4)	C8A—C7A—B1A—C13A	-112.49 (17)
C12—C13—C14—C15	-0.2 (3)	C12A—C7A—B1A—C13A	67.11 (18)
C11—N1—C15—C14	1.6 (3)	C8A—C7A—B1A—C1A	6.7 (2)
Ru1—N1—C15—C14	178.68 (14)	C12A—C7A—B1A—C1A	-173.66 (14)
C11—N1—C15—C16	-176.66 (17)	C20A—C19A—B1A—C7A	129.97 (15)
Ru1—N1—C15—C16	0.40 (18)	C24A—C19A—B1A—C7A	-49.35 (18)
C13—C14—C15—N1	-0.9 (3)	C20A—C19A—B1A—C13A	9.70 (19)
C13—C14—C15—C16	177.17 (18)	C24A—C19A—B1A—C13A	-169.62 (13)
C20—N2—C16—C17	-1.6 (2)	C20A—C19A—B1A—C1A	-110.41 (16)
Ru1—N2—C16—C17	-178.47 (11)	C24A—C19A—B1A—C1A	70.27 (17)
C20—N2—C16—C15	176.78 (14)	C14A—C13A—B1A—C7A	-17.8 (2)
Ru1—N2—C16—C15	-0.12 (17)	C18A—C13A—B1A—C7A	162.90 (13)
N1-C15-C16-N2	-0.2 (2)	C14A—C13A—B1A—C19A	100.45 (16)
C14—C15—C16—N2	-178.42 (16)	C18A—C13A—B1A—C19A	-78.87 (17)
N1—C15—C16—C17	178.13 (14)	C14A—C13A—B1A—C1A	-137.72 (14)
C14—C15—C16—C17	-0.1 (3)	C18A—C13A—B1A—C1A	42.96 (18)
N2-C16-C17-C18	0.9 (2)	C2A—C1A—B1A—C7A	96.69 (17)
C15—C16—C17—C18	-177.30 (15)	C6A—C1A—B1A—C7A	-81.38 (18)
C16—C17—C18—C19	0.3 (2)	C2A—C1A—B1A—C19A	-21.5 (2)
C17—C18—C19—C20	-0.8 (2)	C6A—C1A—B1A—C19A	160.42 (14)
C16—N2—C20—C19	1.1 (2)	C2A—C1A—B1A—C13A	-142.74 (15)
Ru1—N2—C20—C19	177.71 (12)	C6A—C1A—B1A—C13A	39.19 (19)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C19A-C24A and N2/C16-C20, respectively.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
C2—H2···Cl1 ⁱ	1.00	2.66	3.421 (2)	133
C11—H11···Cl1 ⁱ	0.95	2.62	3.484 (2)	151
C7—H7···Cg1 ⁱⁱ	1.00	2.67	3.616 (2)	158
С9—Н9 <i>В…Сg</i> 2 ^{ііі}	0.98	2.91	3.733 (2)	143

				data reports
C18—H18…Cg1	0.95	2.73	3.431 (2)	131
C23 <i>A</i> —H23 <i>A</i> ··· <i>Cg</i> 2 ^{iv}	0.95	2.60	3.461 (2)	151

Symmetry codes: (i) -*x*, *y*-1/2, -*z*; (ii) -*x*+1, *y*-1/2, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, *y*+1/2, -*z*+1.