ISSN 2414-3146

Received 10 July 2019 Accepted 13 July 2019

Edited by M. Weil, Vienna University of Technology, Austria

IUCrData

Keywords: crystal structure; hydroxamate; Hirshfeld surface analysis; zinc(II).

CCDC reference: 1940726

Structural data: full structural data are available from iucrdata.iucr.org

trans-Bis(dimethyl sulfoxide- κ O)bis(3-nitrobenzo-hydroxamato- κ^2 O,O')zinc(II)

Bruna Lisboa Gonçalves,^a Samantha Oliveira Monteiro,^a Roberta Cargnelutti^b and Juliano Rosa de Menezes Vicenti^a*

^aLaboratório de Físico-Química Aplicada e Tecnológica, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900, Rio Grande-RS, Brazil, and ^bLaboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil. *Correspondence e-mail: julianovicenti@gmail.com

Single crystals of the title complex, $[Zn(C_7H_5N_2O_4)_2(C_2H_6OS)_2]$ or $[Zn(NBZH)_2(DMSO)_2]$, were isolated from a dimethyl sulfoxide (DMSO) solution containing $[Zn(NBZH)_2]\cdot 2H_2O$ (NBZH = 3-nitrobenzohydroxamate anion). The asymmetric unit comprises of one *O*,*O'*-chelating NBZH anion, one O-bound DMSO ligand and one zinc(II) cation localized on an inversion centre. The three-dimensional crystal packing includes $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonding, as well as $O\cdots H$ and $H\cdots H$ contacts identified by Hirshfeld isosurface analysis.

Structure description

Hydroxamic acids, RC(=O)–NH–OH (where R = alkyl, aryl), play important roles in biology and medicine and have been a source of great interest because they present a wide variety of biological activities (Codd, 2008; Marmion *et al.*, 2004). These are related to the ability to form stable complexes with metal ions, especially iron(III) (Ugwu *et al.*, 2014; Griffith *et al.*, 2008). In addition, this class of compounds provides several sites for hydrogen-bonding interactions with enzyme structures, thus becoming potent and selective inhibitors of a number of enzymes such as matrix metalloproteinase (Muri *et al.*, 2002; Sani *et al.*, 2004), peroxidases (O'Brien *et al.*, 2000; Indiani *et al.*, 2003), histone deacetylases (Richon, 2006; Krennhrubec *et al.*, 2007), or ureases (Xiao *et al.*, 2013; Krajewska, 2009; Shi *et al.*, 2016). In our previous work, we have synthesized, characterized and investigated some physical-chemical properties of zinc(II) aromatic hydroxamates (Gonçalves *et al.*, 2019) and report here the crystal structure of $[Zn(C_7H_5N_2O_4)_2(C_2H_6OS)_2]$ or $[Zn(NBZH)_2(DMSO)_2]$.

Figure 1

Molecular structure of $[Zn(NBZH)_2(DMSO)_2]$. Ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x + 1, -y + 1, -z + 2].

A slightly distorted octahedral environment around the zinc(II) cation (site symmetry $\overline{1}$) is generated by symmetry operation 2 - x, -y, -z, leading to an all-*trans* configuration of the two ligands (Fig. 1). In the molecular structure, the Obound DMSO molecule has a distance of 2.3473 (12) Å for

Figure 2

Hydrogen bonding in $[Zn(NBZH)_2(DMSO)_2]$ along the [010] and [001] directions.

Figure 3 Hydrogen bonding in [Zn(NBZH)₂(DMSO)₂] along the [100] direction.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C8-H8C\cdots O4^{i}$ $C8-H8A\cdots O1^{ii}$ $N1-H1\cdots O5^{iii}$	0.96 0.96 0.84 (2)	2.55 2.66 2.08 (2)	3.381 (3) 3.533 (3) 2.916 (1)	145 150 175 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 2; (iii) x + 1, y, z.

Zn1-O5, indicating an elongation along the axial position. The O,O'-chelating NBZH ligand shows shorter distances of 2.0029 (11) Å for Zn1-O1 and 2.0675 (11) Å for Zn1-O2 in the equatorial positions. The nitro group attached to the NBZH ligand is almost planar with the aromatic ring, displaying a dihedral angle of 3.2 (2)°.

In the crystal structure, discrete molecular units of $[Zn(NBZH)_2(DMSO)_2]$ (Fig. 2) are packed along the [010] and [001] directions. The intermolecular interactions collated in Table 1 are suggestive of two weak non-classical $C-H \cdots O$ hydrogen bonds involving dimethylsulfoxide molecules. As shown in Fig. 3, the hydroxamate fragment plays a dominant role in the packing through an N-H···O5 hydrogen bond of medium strength along [100] (Table 1). These structural features generate a three-dimensional supramolecular network that was further investigated by Hirshfeld surface analysis (Fig. 4), as determined with CrystalExplorer (Turner et al., 2017). The results indicate a significant contribution by O···H contacts, corresponding to 43.1% of the two-dimensional fingerprint plots. $H \cdots H$ and $C \cdots H$ contacts are also observed, covering 30.1% and 11.6% of the isosurface, respectively, followed by C···C (2.9%), S···H (2.6%) and $N \cdots H$ (1%) interactions.

Synthesis and crystallization

Suitable single crystals of the title compound were obtained within one week from a dimethylsulfoxide solution containing $[Zn(NBZH)_2]\cdot 2H_2O$, previously reported by us (Gonçalves *et al.*, 2019).

Figure 4 Results of Hirshfeld analysis for [Zn(NBZH)₂(DMSO)₂].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors acknowledge CT-Infra (FINEP).

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Codd, R. (2008). Coord. Chem. Rev. 252, 1387-1408.
- Gonçalves, B. L., Ramos, D. F., Halicki, P. C. B., da Silva, P. E. A. & Vicenti, J. R. M. (2019). Chemical Data Collections, 22, 100240-100248.
- Griffith, D., Krot, K., Comiskey, J., Nolan, K. B. & Marmion, C. J. (2008). Dalton Trans. pp. 137-147.
- Indiani, C., Santoni, E., Becucci, B., Boffi, A., Fukuyama, K. & Smulevich, G. (2003). Biochemistry, 42, 14066-14074.
- Krajewska, B. (2009). J. Mol. Catal. B Enzym. 59, 9-21.
- Krennhrubec, K., Marshall, B. L., Hedglin, M., Verdin, E. & Ulrich, S. M. (2007). Bioorg. Med. Chem. Lett. 17, 2874-2878.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Marmion, C. J., Griffith, D. & Nolan, K. B. (2004). Eur. J. Inorg. Chem. 2004, 3003-3016.
- Muri, E. M. F., Nieto, M. J., Sindelar, R. D. & Williamson, J. S. (2002). Curr. Med. Chem. 9, 1631-1653.
- O'Brien, E. C., Farkas, E., Gil, M. J., Fitzgerald, D., Castineras, A. & Nolan, K. B. (2000). J. Inorg. Biochem. 79, 47-51.
- Richon, V. M. (2006). Br. J. Cancer, 95, S2-S6.
- Sani, M., Belotti, D., Giavazzi, R., Panzeri, W., Volonterio, A. & Zanda, M. (2004). Tetrahedron Lett. 45, 1611-1615.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, W.-K., Deng, R.-C., Wang, P.-F., Yue, Q.-Q., Liu, Q., Ding, K.-L., Yang, M.-H., Zhang, H.-Y., Gong, S.-H., Deng, M., Liu, W.-R., Feng, Q.-J., Xiao, Z.-P. & Zhu, -L. (2016). Bioorg. Med. Chem. 24, 4519-4527.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017).

Table 2
Experimental details.

Crystal data	
Chemical formula	$[Zn(C_7H_5N_2O_4)_2(C_2H_6OS)_2]$
M _r	583.91
Crystal system, space group	Triclinic, P1
Temperature (K)	294
a, b, c (Å)	6.4899 (2), 7.8961 (3), 11.4224 (4)
α, β, γ (°)	83.496 (1), 84.591 (1), 89.567 (1)
$V(\dot{A}^3)$	578.98 (3)
Z	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.30
Crystal size (mm)	$0.20 \times 0.15 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.786, 0.880
No. of measured, independent and	30874, 3558, 2961
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.032
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.715
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.097, 0.92
No. of reflections	3558
No. of parameters	166
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.65, -0.53

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), DIAMOND (Brandenburg, 2006), Mercury (Macrae et al., 2006), CrystalExplorer17 (Turner et al., 2017) and publCIF (Westrip, 2010).

CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net

- Ugwu, D. I., Ezema, B. E., Eze, F. U., Avogu, J. I., Ezema, C. G. & Ugwuja, D. I. (2014). Am. J. Org. Chem. 4, 26-51.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xiao, Z.-P., Peng, Z.-P., Dong, J.-J., Deng, R.-C., Wang, X.-D., Ouyang, H., Yang, P., He, J., Wang, W.-F., Zhu, M., Peng, X.-C., Peng, W.-X. & Zhu, H.-L. (2013). Eur. J. Med. Chem. 68, 212-221.

full crystallographic data

IUCrData (2019). **4**, x191005 [https://doi.org/10.1107/S2414314619010058]

trans-Bis(dimethyl sulfoxide- κO)bis(3-nitrobenzohydroxamato- $\kappa^2 O, O'$)zinc(II)

Bruna Lisboa Gonçalves, Samantha Oliveira Monteiro, Roberta Cargnelutti and Juliano Rosa de Menezes Vicenti

> Z = 1F(000) = 298

 $D_{\rm x} = 1.663 {\rm Mg} {\rm m}^{-3}$

 $\theta = 3.0 - 30.3^{\circ}$

 $\mu = 1.30 \text{ mm}^{-1}$

Block, yellow

 $0.20 \times 0.15 \times 0.10$ mm

T = 294 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9996 reflections

trans-Bis(dimethyl sulfoxide-κO)bis(3-nitrobenzohydroxamato-κ²O,O')zinc(II)

Crystal data $[Zn(C_7H_5N_2O_4)_2(C_2H_6OS)_2]$ $M_r = 583.91$ Triclinic, $P\overline{1}$ a = 6.4899 (2) Å b = 7.8961 (3) Å c = 11.4224 (4) Å a = 83.496 (1)° $\beta = 84.591$ (1)° $\gamma = 89.567$ (1)° V = 578.98 (3) Å³

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2014) $T_{\min} = 0.786, T_{\max} = 0.880$	3558 independent reflections 2961 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 30.6^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$
$T_{\min} = 0.786, T_{\max} = 0.880$ 30874 measured reflections	$k = -11 \rightarrow 11$ $l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: mixed
$wR(F^2) = 0.097$	H atoms treated by a mixture of independent
S = 0.92	and constrained refinement
3558 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0663P)^2 + 0.1979P]$
166 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.65 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$
	-

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.500000	0.500000	1.000000	0.03291 (10)	
S1	0.35743 (8)	0.88919 (6)	0.91043 (4)	0.04435 (13)	
C1	0.8166 (2)	0.47473 (18)	0.82661 (13)	0.0259 (3)	
01	0.75668 (17)	0.64360 (15)	0.98049 (10)	0.0319 (2)	
N1	0.88330 (19)	0.58558 (17)	0.89218 (12)	0.0281 (3)	
H1	1.006 (3)	0.618 (3)	0.8898 (19)	0.037 (5)*	
C3	0.8709 (2)	0.32583 (19)	0.64935 (13)	0.0288 (3)	
H3	0.730590	0.299127	0.659747	0.035*	
O2	0.63195 (17)	0.41942 (16)	0.84399 (10)	0.0350 (3)	
05	0.30496 (19)	0.70808 (15)	0.89650 (12)	0.0388 (3)	
C6	1.2902 (3)	0.3979 (3)	0.61715 (16)	0.0396 (4)	
H6	1.431200	0.421972	0.607033	0.048*	
O4	1.0035 (3)	0.1408 (2)	0.38495 (13)	0.0596 (4)	
C5	1.2036 (3)	0.3072 (2)	0.53664 (15)	0.0386 (4)	
Н5	1.283893	0.269754	0.472840	0.046*	
O3	0.7091 (3)	0.1606 (2)	0.48421 (16)	0.0629 (4)	
C4	0.9935 (3)	0.2746 (2)	0.55502 (14)	0.0317 (3)	
C2	0.9584 (2)	0.41788 (18)	0.72915 (12)	0.0259 (3)	
C8	0.1489 (5)	1.0145 (3)	0.8571 (3)	0.0721 (8)	
H8A	0.165888	1.130499	0.872306	0.108*	
H8B	0.020259	0.970410	0.896870	0.108*	
H8C	0.148280	1.010210	0.773505	0.108*	
N2	0.8946 (3)	0.18484 (19)	0.46896 (13)	0.0413 (3)	
C7	1.1708 (2)	0.4532 (2)	0.71197 (15)	0.0331 (3)	
H7	1.231884	0.514253	0.764663	0.040*	
C9	0.5491 (5)	0.9574 (4)	0.7945 (3)	0.0868 (10)	
H9A	0.507520	0.927737	0.720948	0.130*	
H9B	0.677978	0.902758	0.809873	0.130*	
H9C	0.565880	1.078767	0.789709	0.130*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.02448 (13)	0.04346 (16)	0.03212 (15)	-0.01039 (10)	0.00407 (9)	-0.01494 (11)
0.0614 (3)	0.0350 (2)	0.0395 (2)	-0.01645 (19)	-0.0177 (2)	-0.00475 (17)
0.0233 (6)	0.0292 (7)	0.0254 (6)	-0.0030 (5)	-0.0023 (5)	-0.0036 (5)
0.0265 (5)	0.0382 (6)	0.0324 (5)	-0.0062 (4)	0.0034 (4)	-0.0145 (4)
0.0212 (5)	0.0331 (6)	0.0303 (6)	-0.0053 (5)	0.0014 (4)	-0.0082 (5)
0.0265 (6)	0.0305 (7)	0.0298 (7)	-0.0011 (5)	-0.0033 (5)	-0.0046 (5)
0.0234 (5)	0.0491 (7)	0.0346 (6)	-0.0105 (4)	0.0028 (4)	-0.0179 (5)
0.0351 (6)	0.0337 (6)	0.0491 (7)	-0.0088 (5)	-0.0093 (5)	-0.0071 (5)
0.0250 (7)	0.0538 (10)	0.0398 (9)	0.0008 (7)	0.0016 (6)	-0.0084 (7)
0.0774 (11)	0.0651 (10)	0.0399 (8)	0.0042 (8)	-0.0002 (7)	-0.0262 (7)
0.0355 (8)	0.0470 (9)	0.0328 (8)	0.0067 (7)	0.0037 (6)	-0.0090 (7)
0.0543 (9)	0.0770 (11)	0.0651 (10)	-0.0103 (8)	-0.0140 (7)	-0.0338 (8)
	U^{11} 0.02448 (13) 0.0614 (3) 0.0233 (6) 0.0265 (5) 0.0212 (5) 0.0265 (6) 0.0234 (5) 0.0250 (7) 0.0774 (11) 0.0355 (8) 0.0543 (9)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.02448 (13) & 0.04346 (16) \\ \hline 0.0614 (3) & 0.0350 (2) \\ \hline 0.0233 (6) & 0.0292 (7) \\ \hline 0.0265 (5) & 0.0382 (6) \\ \hline 0.0212 (5) & 0.0331 (6) \\ \hline 0.0265 (6) & 0.0305 (7) \\ \hline 0.0234 (5) & 0.0491 (7) \\ \hline 0.0351 (6) & 0.0337 (6) \\ \hline 0.0250 (7) & 0.0538 (10) \\ \hline 0.0774 (11) & 0.0651 (10) \\ \hline 0.0355 (8) & 0.0470 (9) \\ \hline 0.0543 (9) & 0.0770 (11) \\ \end{array}$	U^{11} U^{22} U^{33} $0.02448 (13)$ $0.04346 (16)$ $0.03212 (15)$ $0.0614 (3)$ $0.0350 (2)$ $0.0395 (2)$ $0.0233 (6)$ $0.0292 (7)$ $0.0254 (6)$ $0.0265 (5)$ $0.0382 (6)$ $0.0324 (5)$ $0.0265 (6)$ $0.0305 (7)$ $0.0298 (7)$ $0.0234 (5)$ $0.0491 (7)$ $0.0346 (6)$ $0.0250 (7)$ $0.0538 (10)$ $0.0398 (9)$ $0.0774 (11)$ $0.0651 (10)$ $0.0328 (8)$ $0.0543 (9)$ $0.0770 (11)$ $0.0651 (10)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.02448 (13)$ $0.04346 (16)$ $0.03212 (15)$ $-0.01039 (10)$ $0.00407 (9)$ $0.0614 (3)$ $0.0350 (2)$ $0.0395 (2)$ $-0.01645 (19)$ $-0.0177 (2)$ $0.0233 (6)$ $0.0292 (7)$ $0.0254 (6)$ $-0.0030 (5)$ $-0.0023 (5)$ $0.0265 (5)$ $0.0382 (6)$ $0.0324 (5)$ $-0.0062 (4)$ $0.0034 (4)$ $0.0212 (5)$ $0.0331 (6)$ $0.0303 (6)$ $-0.0053 (5)$ $0.0014 (4)$ $0.0265 (6)$ $0.0305 (7)$ $0.0298 (7)$ $-0.0011 (5)$ $-0.0033 (5)$ $0.0234 (5)$ $0.0491 (7)$ $0.0346 (6)$ $-0.0105 (4)$ $0.0028 (4)$ $0.0351 (6)$ $0.0337 (6)$ $0.0491 (7)$ $-0.0088 (5)$ $-0.0093 (5)$ $0.0250 (7)$ $0.0538 (10)$ $0.0398 (9)$ $0.0042 (8)$ $-0.0002 (7)$ $0.0355 (8)$ $0.0470 (9)$ $0.0328 (8)$ $0.0067 (7)$ $0.0037 (6)$ $0.0543 (9)$ $0.0770 (11)$ $0.0651 (10)$ $-0.0103 (8)$ $-0.0140 (7)$

data reports

C4	0.0375 (8)	0.0303 (7)	0.0284 (7)	0.0026 (6)	-0.0055 (6)	-0.0057 (6)
C2	0.0244 (6)	0.0275 (6)	0.0258 (6)	0.0001 (5)	-0.0019 (5)	-0.0032 (5)
C8	0.102 (2)	0.0500 (13)	0.0705 (16)	0.0217 (13)	-0.0284 (15)	-0.0171 (12)
N2	0.0558 (9)	0.0359 (7)	0.0350 (7)	0.0027 (6)	-0.0089 (6)	-0.0124 (6)
C7	0.0250 (7)	0.0431 (8)	0.0323 (7)	-0.0027 (6)	-0.0028 (5)	-0.0092 (6)
C9	0.0757 (18)	0.090 (2)	0.086 (2)	-0.0402 (16)	-0.0005 (15)	0.0262 (17)

Geometric parameters (Å, °)

Zn1—O1 ⁱ	2.0029 (11)	C6—C7	1.381 (2)
Zn1—O1	2.0029 (11)	C6—C5	1.389 (3)
Zn1—O2 ⁱ	2.0675 (11)	С6—Н6	0.9300
Zn1—O2	2.0675 (11)	O4—N2	1.219 (2)
Zn1—O5	2.3473 (12)	C5—C4	1.381 (3)
Zn1—O5 ⁱ	2.3474 (12)	С5—Н5	0.9300
S1—O5	1.5019 (13)	O3—N2	1.214 (2)
S1—C9	1.769 (3)	C4—N2	1.471 (2)
S1—C8	1.783 (3)	C2—C7	1.400 (2)
C1—O2	1.2686 (17)	C8—H8A	0.9600
C1—N1	1.3153 (19)	C8—H8B	0.9600
C1—C2	1.484 (2)	C8—H8C	0.9600
01—N1	1.3584 (16)	С7—Н7	0.9300
N1—H1	0.84 (2)	С9—Н9А	0.9600
C3—C4	1.375 (2)	С9—Н9В	0.9600
C3—C2	1.391 (2)	С9—Н9С	0.9600
С3—Н3	0.9300		
O1 ⁱ —Zn1—O1	180.0	C7—C6—C5	121.26 (15)
$O1^{i}$ —Zn1— $O2^{i}$	81.79 (4)	С7—С6—Н6	119.4
$O1$ — $Zn1$ — $O2^{i}$	98.20 (4)	С5—С6—Н6	119.4
O1 ⁱ —Zn1—O2	98.21 (4)	C4—C5—C6	117.40 (15)
O1—Zn1—O2	81.80 (4)	C4—C5—H5	121.3
O2 ⁱ —Zn1—O2	180.0	С6—С5—Н5	121.3
O1 ⁱ —Zn1—O5	86.04 (4)	C3—C4—C5	122.78 (16)
O1—Zn1—O5	93.96 (4)	C3—C4—N2	118.22 (15)
O2 ⁱ —Zn1—O5	88.40 (5)	C5—C4—N2	118.98 (15)
O2—Zn1—O5	91.60 (5)	C3—C2—C7	118.73 (14)
$O1^{i}$ —Zn1— $O5^{i}$	93.96 (4)	C3—C2—C1	116.91 (13)
$O1$ —Zn1— $O5^i$	86.04 (4)	C7—C2—C1	124.35 (13)
$O2^{i}$ —Zn1—O5 ⁱ	91.60 (5)	S1—C8—H8A	109.5
$O2$ —Zn1— $O5^{i}$	88.40 (5)	S1—C8—H8B	109.5
$O5$ —Zn1— $O5^i$	180.00 (5)	H8A—C8—H8B	109.5
O5—S1—C9	106.83 (13)	S1—C8—H8C	109.5
O5—S1—C8	105.71 (11)	H8A—C8—H8C	109.5
C9—S1—C8	97.80 (16)	H8B—C8—H8C	109.5
O2—C1—N1	120.85 (13)	O3—N2—O4	123.43 (17)
O2—C1—C2	119.91 (13)	O3—N2—C4	118.52 (15)
N1—C1—C2	119.22 (12)	O4—N2—C4	118.04 (17)

N1—O1—Zn1	106.70 (8)	C6—C7—C2	120.31 (15)
C1—N1—O1	120.95 (12)	С6—С7—Н7	119.8
C1—N1—H1	124.8 (15)	С2—С7—Н7	119.8
O1—N1—H1	113.9 (15)	S1—C9—H9A	109.5
C4—C3—C2	119.51 (14)	S1—C9—H9B	109.5
C4—C3—H3	120.2	H9A—C9—H9B	109.5
С2—С3—Н3	120.2	S1—C9—H9C	109.5
C1—O2—Zn1	107.94 (9)	H9A—C9—H9C	109.5
S1—O5—Zn1	115.22 (7)	H9B—C9—H9C	109.5
O2-C1-N1-O1	0.2 (2)	C4—C3—C2—C1	177.88 (13)
C2-C1-N1-O1	178.50 (12)	O2—C1—C2—C3	9.7 (2)
Zn1—O1—N1—C1	9.65 (16)	N1—C1—C2—C3	-168.60 (14)
N1—C1—O2—Zn1	-9.65 (17)	O2—C1—C2—C7	-171.33 (15)
C2-C1-O2-Zn1	172.04 (10)	N1—C1—C2—C7	10.3 (2)
C9—S1—O5—Zn1	91.19 (13)	C3—C4—N2—O3	0.5 (2)
C8—S1—O5—Zn1	-165.37 (12)	C5—C4—N2—O3	-178.16 (18)
C7—C6—C5—C4	0.1 (3)	C3—C4—N2—O4	179.45 (16)
C2—C3—C4—C5	1.5 (2)	C5—C4—N2—O4	0.8 (2)
C2—C3—C4—N2	-177.04 (13)	C5—C6—C7—C2	0.3 (3)
C6—C5—C4—C3	-1.0 (3)	C3—C2—C7—C6	0.3 (2)
C6—C5—C4—N2	177.56 (15)	C1—C2—C7—C6	-178.66 (15)
C4—C3—C2—C7	-1.1 (2)		

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
C8—H8 <i>C</i> ···O4 ⁱⁱ	0.96	2.55	3.381 (3)	145
C8—H8A····O1 ⁱⁱⁱ	0.96	2.66	3.533 (3)	150
N1—H1····O5 ^{iv}	0.84 (2)	2.08 (2)	2.916 (1)	175 (2)

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*+2; (iv) *x*+1, *y*, *z*.