

IUCrData

ISSN 2414-3146

Received 23 August 2019 Accepted 23 November 2019

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; fluorinated ligand; copper; methanol.

CCDC reference: 1947862

Structural data: full structural data are available from iucrdata.iucr.org

μ_2 -Methanol- $\kappa^2 O$:O-bis[(1,10-phenanthroline- $\kappa^2 N, N'$)bis(2,3,4,5-tetrafluorobenzoato)- $\kappa O; \kappa^2 O, O'$ -copper(II)]

Junshan Sun*

College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271000, Shandong Province, People's Republic of China. *Correspondence e-mail: sunjunshan79@163.com

In the title compound, $[Cu_2(C_7HF_4O_2)_4(C_{12}H_8N_2)_2(CH_3OH)]$, the molecule lies on a twofold rotation axis in space group C2/c. The Cu²⁺ ion exhibits a distorted octahedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetrafluorobenzoate ligands and one O atom from a methanol molecule. The distortion from an octahedral shape is a consequence of the Jahn–Teller effect of Cu^{II} and the small bite angle for the bidentate fluorobenzoate ligand [54.50 (11)°]. The methanol molecule bridges two symmetry-related Cu^{II} atoms to form the complete molecule. In the bidentate fluorobenzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak intermolecular interactions are observed.

Structure description

The rational design and synthesis of metal–organic coordination compounds has received great interest owing to their magnetic, luminescence, gas storage/separation and catalytic properties (Wu & Lee, 2006; Han *et al.*, 2006; Noro *et al.*, 2000). The general strategy for the choice of organic building blocks and the framework of the coordination complex relies on the utilization of multidentate ligands, which can act as bridging ligands. It is well known that the spacer ligands with appropriate backbones and coordination complexes, especially carboxylates, because of their diverse coordination modes in the construction of coordination complexes (Sun *et al.*, 2009). In this study, we selected 2,3,4,5-tetra-fluorobenzoic acid as ligand, with 1,10-phenanthroline and methanol as co-ligands.

Figure 1

The molecular structure of the title compound, with atom labels for the asymmetric unit, and 20% probability displacement ellipsoids. Non-labelled atoms are generated by the symmetry operation 1 - x, y, $\frac{3}{2} - z$. H atoms are omitted for clarity.

The asymmetric unit of the title complex contains two 2,3,4,5-tetrafluorobenzoate anions, one 1,10-phenanthroline, and one coordinating methanol molecule. The Cu^{II} atom exhibits a distorted octahedral sphere, which is formed by two 1,10-phenanthroline N atoms, two O atoms from one bidentate tetrafluorobenzoate ligand, one O atom from the other independent tetrafluorobenzoate ligand and one O atom from the methanol molecule. The distortion is ascribed to the Jahn-Teller effect of Cu^{II} and the small bite angle of the bidentate tetrafluorobenzoate ligand, $O1 - Cu1 - O2 = 54.50 (11)^{\circ}$. The Cu-N bond lengths are 2.010 (3) and 2.014 (3) Å. The Cu-Ocoordination bond lengths are in the range 1.919 (3) to 2.686 (4) Å. The latter distance is very long, while the other distances are close to the literature reported distances [for example 1.942 (3) Å; Sun, 2014]. The methanol molecule is located on a twofold rotation axis of space group C2/c and bridges two metal centres, forming a dinuclear complex (Fig. 1).

Synthesis and crystallization

2,3,4,5-Tetrafluorobenzoic acid (0.194 g, 1 mmol), copper acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.198 g, 1 mmol) were dissolved in methanol. The mixture was heated to 40°C for 3 h, resulting in a blue-coloured solution. Crystals of the title compound were obtained by slow evaporation within one week (yield: 78%). Elemental analysis: calculated for $C_{53}H_{24}Cu_2F_{16}N_4O_9$: C 49.28, H 1.87, N 4.34; found: C 49.31, H 1.49, N 4.54.

Experimental details.	
Crystal data	
Chemical formula	$\begin{array}{c} [Cu_2(C_7HF_4O_2)_4(C_{12}H_8N_2)_{2} - \\ (CH_4O)] \end{array}$
$M_{\rm r}$	1291.84
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	295
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.5119 (12), 24.8953 (19), 15.2514 (17)
β (°)	115.360 (1)
$V(Å^3)$	4979.0 (8)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.98
Crystal size (mm)	$0.34\times0.31\times0.28$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.741, 0.794
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14347, 5087, 3096
R _{int}	0.083
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.183, 0.97
No. of reflections	5087
No. of parameters	389
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.93, -0.50

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXT2018 (Sheldrick, 2015a), SHELXL2015 (Sheldrick, 2015b), XP in SHELXTL-Plus (Sheldrick, 2008) and publCIF (Westrip, 2010).

Refinement

Table 1

Crystal data, data collection and structure refinement details are summarized in Table 1. One F atom on the C2–C7 ring was found to be disordered over two chemically equivalent positions (F1 and F1'); the occupancies for these F atoms were fixed at 0.5.

Funding information

Financial support from the Shandong Provincial Higher Education Research and Development Program Project (No. J18KB049) and Talent Foundation of Taishan University (No. Y2015–1–002) are gratefully acknowledged.

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Han, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006). Eur. J. Inorg. Chem. pp. 1594–1600.
- Noro, S.-I., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. **39**, 2081–2084.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. & Zheng, L.-S. (2009). Polyhedron, 28, 2983–2988.
- Sun, J. (2014). Acta Cryst. E70, m365-m366.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, M.-C. & Lee, C.-S. (2006). Inorg. Chem. 45, 9634-9636.

full crystallographic data

IUCrData (2019). **4**, x191583 [https://doi.org/10.1107/S2414314619015839]

 μ_2 -Methanol- $\kappa^2 O$:O-bis[(1,10-phenanthroline- $\kappa^2 N$,N')bis(2,3,4,5-tetrafluorobenzoato)- κO ; $\kappa^2 O$,O'-copper(II)]

Junshan Sun

 μ_2 -Methanol- $\kappa^2 O:O$ -bis[(1,10-phenanthroline- $\kappa^2 N, N'$)bis(2,3,4,5-tetrafluorobenzoato)- $\kappa O; \kappa^2 O, O'$ -copper(II)]

F(000) = 2576.0

 $\theta = 2.7 - 22.7^{\circ}$ $\mu = 0.98 \text{ mm}^{-1}$

T = 295 K

Block, blue

 $R_{\rm int} = 0.083$

 $h = -18 \rightarrow 12$ $k = -30 \rightarrow 31$ $l = -9 \rightarrow 19$

 $D_{\rm x} = 1.721 {\rm Mg} {\rm m}^{-3}$

 $0.34 \times 0.31 \times 0.28 \text{ mm}$

 $\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$

5087 independent reflections 3096 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3671 reflections

Crystal data

 $[Cu_{2}(C_{7}HF_{4}O_{2})_{4}(C_{12}H_{8}N_{2})_{2}(CH_{4}O)]$ $M_{r} = 1291.84$ Monoclinic, C2/c a = 14.5119 (12) Å b = 24.8953 (19) Å c = 15.2514 (17) Å $\beta = 115.360$ (1)° V = 4979.0 (8) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.741, \ T_{\max} = 0.794$
14347 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from
$wR(F^2) = 0.183$	neighbouring sites
S = 0.97	H-atom parameters constrained
5087 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1076P)^2]$
389 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: dual	$\Delta ho_{ m max} = 0.93 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.50 \ { m e} \ { m \AA}^{-3}$

Special details

Refinement. All H atoms bonded to C atoms were placed in idealized positions, while the H atom for the hydroxy group in methanol was found in a difference map. They were refined with calculated isotropic displacement parameters, $U_{iso}(H) = 1.5U_{eq}(\text{carrier atom})$ for the methanol molecule, and $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$ for other H atoms.

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.34551 (4)	0.11688 (2)	0.66779 (4)	0.0594 (2)	
F1	0.2002 (3)	-0.04902 (16)	0.6375 (4)	0.0661 (13)	0.5
F1′	-0.0297 (6)	0.0968 (3)	0.6070 (7)	0.138 (3)	0.5
F2	0.0645 (2)	-0.11549 (9)	0.6484 (3)	0.0951 (10)	
F3	-0.1166 (2)	-0.08059 (10)	0.6335 (2)	0.0861 (8)	
F4	-0.1603 (2)	0.02528 (11)	0.6133 (2)	0.0949 (9)	
F5	0.3880 (4)	0.1024 (2)	1.0631 (3)	0.1549 (16)	
F6	0.2833 (5)	0.1509 (2)	1.1452 (3)	0.183 (2)	
F7	0.1278 (4)	0.2134 (2)	1.0437 (4)	0.174 (2)	
F8	0.0803 (4)	0.2335 (2)	0.8579 (4)	0.191 (2)	
N1	0.3711 (2)	0.19254 (11)	0.6371 (2)	0.0524 (8)	
N2	0.3552 (2)	0.10156 (12)	0.5426 (2)	0.0541 (8)	
01	0.1410 (3)	0.11257 (12)	0.5917 (3)	0.0948 (12)	
O2	0.2644 (2)	0.05231 (11)	0.6604 (2)	0.0669 (8)	
O3	0.3402 (3)	0.14324 (12)	0.7838 (2)	0.0859 (10)	
O4	0.4020 (3)	0.07702 (14)	0.8920 (3)	0.0880 (10)	
O5	0.500000	0.06843 (17)	0.750000	0.114 (2)	
H5	0.507559	0.087454	0.718056	0.170*	0.5
C1	0.1719 (3)	0.06834 (15)	0.6248 (3)	0.0638 (11)	
C2	0.0938 (3)	0.02777 (15)	0.6269 (3)	0.0558 (10)	
C3	0.1167 (3)	-0.02735 (16)	0.6371 (3)	0.0609 (10)	
H3A	0.179641	-0.039620	0.643094	0.073*	0.5
C4	0.0439 (3)	-0.06323 (15)	0.6380 (3)	0.0618 (10)	
C5	-0.0490 (3)	-0.04519 (16)	0.6303 (3)	0.0641 (11)	
C6	-0.0700 (3)	0.00815 (16)	0.6191 (3)	0.0613 (10)	
C7	0.0008 (3)	0.04419 (15)	0.6171 (3)	0.0596 (10)	
H7A	-0.015434	0.080538	0.608791	0.072*	0.5
C8	0.3517 (4)	0.11736 (17)	0.8595 (4)	0.0669 (12)	
C9	0.2945 (3)	0.14200 (17)	0.9129 (3)	0.0640 (11)	
C10	0.3157 (5)	0.1326 (2)	1.0070 (4)	0.0913 (16)	
C11	0.2593 (6)	0.1583 (3)	1.0534 (4)	0.1020 (19)	
C12	0.1783 (6)	0.1904 (3)	0.9955 (6)	0.111 (2)	
C13	0.1601 (6)	0.1995 (3)	0.9059 (6)	0.118 (2)	
C14	0.2117 (5)	0.1761 (2)	0.8620 (5)	0.0988 (18)	
H14A	0.192403	0.182506	0.796444	0.119*	
C15	0.3733 (3)	0.23756 (15)	0.6848 (3)	0.0581 (10)	
H15A	0.369135	0.235347	0.743833	0.070*	
C16	0.3816 (3)	0.28796 (15)	0.6491 (3)	0.0630 (11)	
H16A	0.382954	0.318711	0.684241	0.076*	
C17	0.3879 (3)	0.29221 (15)	0.5628 (3)	0.0631 (11)	
H17A	0.392998	0.325803	0.538613	0.076*	
C18	0.3864 (3)	0.24496 (15)	0.5100 (3)	0.0552 (9)	
C19	0.3773 (3)	0.19618 (14)	0.5514 (3)	0.0488 (9)	
C20	0.3699 (3)	0.14693 (14)	0.4999 (3)	0.0509 (9)	
C21	0.3765 (3)	0.14670 (17)	0.4121 (3)	0.0641 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C22	0.3703 (3)	0.0972(2)	0.3674 (3)	0.0720 (12)		
H22A	0.375267	0.095025	0.308735	0.086*		
C23	0.3568 (3)	0.05181 (18)	0.4108 (4)	0.0753 (13)		
H23A	0.353094	0.018445	0.382027	0.090*		
C24	0.3485 (3)	0.05565 (17)	0.4976 (3)	0.0671 (12)		
H24A	0.337867	0.024404	0.525349	0.081*		
C25	0.3883 (4)	0.1983 (2)	0.3731 (4)	0.0784 (13)		
H25A	0.393410	0.199276	0.314372	0.094*		
C26	0.3922 (4)	0.24431 (19)	0.4199 (3)	0.0714 (12)		
H26A	0.398746	0.276591	0.392409	0.086*		
C27	0.500000	0.0126 (2)	0.750000	0.087 (2)		
H27A	0.468494	-0.000260	0.789962	0.130*	0.5	
H27B	0.568936	-0.000260	0.775153	0.130*	0.5	
H27C	0.462570	-0.000260	0.684885	0.130*	0.5	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cu1	0.0700 (4)	0.0378 (3)	0.0787 (4)	-0.0107 (2)	0.0399 (3)	-0.0006 (2)
F1	0.043 (2)	0.036 (2)	0.117 (4)	0.0006 (18)	0.033 (2)	0.007 (2)
F1′	0.118 (6)	0.076 (4)	0.224 (9)	0.001 (4)	0.078 (6)	0.021 (5)
F2	0.093 (2)	0.0375 (13)	0.156 (3)	-0.0039 (12)	0.0553 (19)	0.0089 (13)
F3	0.0818 (18)	0.0639 (16)	0.123 (2)	-0.0259 (13)	0.0534 (16)	0.0013 (14)
F4	0.0665 (17)	0.0773 (19)	0.147 (3)	-0.0014 (14)	0.0520 (17)	0.0028 (17)
F5	0.134 (3)	0.199 (4)	0.132 (3)	0.030 (3)	0.057 (3)	0.038 (3)
F6	0.240 (5)	0.242 (6)	0.085 (3)	-0.063 (5)	0.086 (3)	-0.015 (3)
F7	0.207 (5)	0.180 (4)	0.206 (5)	-0.008(4)	0.155 (4)	-0.039 (3)
F8	0.156 (4)	0.202 (5)	0.228 (5)	0.095 (4)	0.097 (4)	0.037 (4)
N1	0.0495 (18)	0.0399 (16)	0.068 (2)	-0.0079 (13)	0.0252 (16)	0.0004 (14)
N2	0.0499 (18)	0.0406 (16)	0.071 (2)	-0.0052 (14)	0.0256 (16)	-0.0031 (14)
01	0.086 (2)	0.0580 (19)	0.131 (3)	-0.0046 (16)	0.038 (2)	0.0402 (18)
O2	0.0623 (19)	0.0488 (15)	0.093 (2)	-0.0109 (14)	0.0362 (16)	0.0031 (14)
O3	0.141 (3)	0.0483 (17)	0.098 (2)	-0.0090 (18)	0.079 (2)	0.0014 (16)
O4	0.082 (2)	0.080(2)	0.107 (3)	0.0179 (18)	0.0459 (19)	0.0157 (19)
05	0.088 (4)	0.050(3)	0.130 (4)	0.000	-0.022 (3)	0.000
C1	0.070 (3)	0.042 (2)	0.079 (3)	-0.014 (2)	0.031 (2)	0.0069 (19)
C2	0.059 (2)	0.045 (2)	0.060(2)	-0.0071 (18)	0.0223 (19)	0.0126 (17)
C3	0.060(2)	0.047 (2)	0.072 (3)	-0.0040 (18)	0.025 (2)	0.0090 (18)
C4	0.068 (3)	0.0377 (19)	0.074 (3)	-0.0110 (18)	0.025 (2)	0.0028 (17)
C5	0.067 (3)	0.054 (2)	0.070 (3)	-0.023 (2)	0.028 (2)	-0.0004 (19)
C6	0.053 (2)	0.055 (2)	0.070 (3)	-0.0047 (19)	0.021 (2)	-0.0006 (19)
C7	0.062 (3)	0.0377 (19)	0.076 (3)	-0.0010 (18)	0.027 (2)	0.0099 (18)
C8	0.070 (3)	0.053 (2)	0.085 (3)	-0.013 (2)	0.041 (2)	-0.004 (2)
C9	0.067 (3)	0.058 (2)	0.070 (3)	-0.010 (2)	0.033 (2)	0.003 (2)
C10	0.091 (4)	0.087 (4)	0.085 (4)	0.000 (3)	0.028 (3)	0.031 (3)
C11	0.128 (5)	0.124 (5)	0.065 (3)	-0.039 (4)	0.051 (4)	-0.003 (3)
C12	0.118 (6)	0.105 (5)	0.128 (6)	-0.015 (4)	0.069 (5)	-0.020 (4)
C13	0.113 (5)	0.116 (5)	0.121 (6)	0.016 (4)	0.046 (5)	0.021 (4)

C14	0.101 (4)	0.083 (4)	0.144 (5)	0.010 (3)	0.082 (4)	-0.005 (3)
C15	0.059 (2)	0.043 (2)	0.072 (3)	-0.0046 (17)	0.028 (2)	-0.0050 (18)
C16	0.062 (3)	0.039 (2)	0.084 (3)	-0.0066 (18)	0.027 (2)	-0.0075 (19)
C17	0.060 (3)	0.038 (2)	0.079 (3)	-0.0079 (17)	0.018 (2)	0.0084 (18)
C18	0.046 (2)	0.050 (2)	0.063 (2)	-0.0105 (17)	0.0171 (18)	0.0065 (18)
C19	0.0370 (19)	0.0411 (18)	0.064 (2)	-0.0056 (15)	0.0171 (17)	0.0031 (16)
C20	0.041 (2)	0.045 (2)	0.065 (2)	-0.0044 (15)	0.0209 (18)	0.0004 (17)
C21	0.055 (2)	0.066 (3)	0.072 (3)	-0.005 (2)	0.028 (2)	-0.003 (2)
C22	0.068 (3)	0.071 (3)	0.077 (3)	-0.004 (2)	0.031 (2)	-0.013 (2)
C23	0.074 (3)	0.056 (3)	0.096 (4)	0.000 (2)	0.036 (3)	-0.020 (2)
C24	0.066 (3)	0.044 (2)	0.092 (3)	-0.0065 (19)	0.035 (2)	-0.009 (2)
C25	0.086 (3)	0.081 (3)	0.071 (3)	-0.014 (3)	0.035 (3)	0.004 (2)
C26	0.071 (3)	0.064 (3)	0.076 (3)	-0.016 (2)	0.028 (2)	0.011 (2)
C27	0.083 (5)	0.054 (4)	0.129 (6)	0.000	0.050 (4)	0.000

Geometric parameters (Å, °)

Cu1-01	2.686 (4)	С8—С9	1.519 (6)
Cu1—O2	1.967 (3)	C9—C10	1.354 (7)
Cu1—O3	1.919 (3)	C9—C14	1.403 (7)
Cu1—O5	2.376 (2)	C10—C11	1.440 (9)
Cu1—N1	2.014 (3)	C11—C12	1.383 (9)
Cu1—N2	2.010 (3)	C12—C13	1.297 (9)
F1—C3	1.324 (6)	C13—C14	1.332 (9)
F1′—C7	1.370 (8)	C14—H14A	0.9300
F2—C4	1.329 (4)	C15—C16	1.393 (5)
F3—C5	1.336 (4)	C15—H15A	0.9300
F4—C6	1.345 (5)	C16—C17	1.361 (6)
F5—C10	1.277 (6)	C16—H16A	0.9300
F6—C11	1.303 (6)	C17—C18	1.421 (6)
F7—C12	1.366 (8)	C17—H17A	0.9300
F8—C13	1.366 (8)	C18—C19	1.401 (5)
N1-C15	1.329 (5)	C18—C26	1.413 (6)
N1-C19	1.350 (5)	C19—C20	1.435 (5)
N2-C24	1.316 (5)	C20—C21	1.383 (6)
N2-C20	1.366 (5)	C21—C22	1.393 (6)
01—C1	1.214 (5)	C21—C25	1.456 (6)
O2—C1	1.278 (5)	C22—C23	1.364 (6)
O3—C8	1.270 (5)	C22—H22A	0.9300
O4—C8	1.216 (5)	C23—C24	1.383 (6)
O5—C27	1.390 (7)	C23—H23A	0.9300
O5—H5	0.7207	C24—H24A	0.9300
$O5-H5^i$	0.7207	C25—C26	1.338 (7)
C1-C2	1.528 (5)	C25—H25A	0.9300
C2—C7	1.356 (6)	C26—H26A	0.9300
C2—C3	1.405 (5)	С27—Н27А	0.9600
C3—C4	1.388 (6)	С27—Н27В	0.9600
С3—НЗА	0.9300	С27—Н27С	0.9600

data reports

C4—C5	1.377 (6)	C27—H27A ⁱ	0.9600
C5—C6	1.357 (6)	C27—H27B ⁱ	0.9600
C6—C7	1.374 (6)	C27—H27C ⁱ	0.9600
C7—H7A	0.9300		
$O_2 C_{12} O_2$	04.16(12)	E6 C11 C10	121 2 (7)
$O_3 = Cu1 = O_2$	94.10 (13)	F0 - C11 - C10	121.2(7)
$O_3 = Cu_1 = N_2$	1/0.84(12)	C12— $C11$ — $C10$	110.8(3)
$O_2 = Cu_1 = N_2$	94.23 (12)	C13 - C12 - F/	123.3(8) 120.4(7)
$O_3 - C_{u1} - N_1$	88.80 (13)	C13 - C12 - C11	120.4 (7)
02—CuI—NI	156.46 (13)	F/-CI2-CII	113.9 (7)
N2-Cul-Nl	82.04 (13)	C12-C13-C14	123.3 (7)
03-Cul-05	95.09 (12)	C12-C13-F8	114.5 (7)
02—Cu1—05	91.23 (12)	C14—C13—F8	122.1 (7)
N2—Cu1—O5	88.34 (9)	C13—C14—C9	121.3 (6)
N1—Cu1—O5	111.79 (12)	C13—C14—H14A	119.4
03—Cu1—O1	86.47 (15)	C9—C14—H14A	119.4
02—Cu1—O1	54.50 (11)	N1—C15—C16	122.1 (4)
N2—Cu1—O1	95.49 (13)	N1—C15—H15A	119.0
N1—Cu1—O1	102.52 (11)	C16—C15—H15A	119.0
05—Cu1—O1	145.68 (10)	C17—C16—C15	120.0 (4)
C15—N1—C19	118.5 (3)	C17—C16—H16A	120.0
C15—N1—Cu1	128.7 (3)	C15—C16—H16A	120.0
C19—N1—Cu1	112.5 (2)	C16—C17—C18	119.5 (4)
C24—N2—C20	117.4 (4)	C16—C17—H17A	120.2
C24—N2—Cu1	129.9 (3)	C18—C17—H17A	120.2
C20—N2—Cu1	112.7 (3)	C19—C18—C26	119.0 (4)
C1-O2-Cu1	105.3 (2)	C19—C18—C17	116.4 (4)
C8—O3—Cu1	128.6 (3)	C26—C18—C17	124.7 (4)
C27—O5—Cu1	120.51 (9)	N1-C19-C18	123.5 (3)
C27—O5—Cul ⁱ	120.51 (9)	N1-C19-C20	116.9 (3)
Cu1—O5—Cu1 ⁱ	118.98 (18)	C18—C19—C20	119.6 (4)
С27—О5—Н5	131.1	N2-C20-C21	123.3 (4)
Cu1—O5—H5	72.1	N2—C20—C19	115.8 (4)
Cu1 ⁱ —O5—H5	68.9	C21—C20—C19	120.9 (3)
C27—O5—H5 ⁱ	131.077 (4)	C20—C21—C22	117.4 (4)
$Cu1 - 05 - H5^{i}$	68.94 (5)	C20—C21—C25	117.4 (4)
$Cu1^i - 05 - H5^i$	72.07 (6)	$C_{22} = C_{21} = C_{25}$	125 1 (5)
H5-05-H5 ⁱ	97.8	C^{23} C^{22} C^{21}	119 2 (4)
01-C1-02	126 4 (4)	C23—C22—H22A	120.4
01 - C1 - C2	117.6(4)	C_{21} C_{22} H_{22A}	120.1
$01 \ C1 \ C2$ $02 \ C1 \ C2$	117.0(4)	$C_{21} = C_{22} = C_{24}$	120.4 119 7 (4)
C7 - C2 - C3	118.9 (4)	C22—C23—H23A	120.1
$C_{7} C_{2} C_{3}$	120.7(4)	C24—C23—H23A	120.1
$C_{3} - C_{2} - C_{1}$	120.7(7) 120.4(4)	N2 - C23 - M23A	120.1
$E_{1} = C_{2} = C_{1}$	120.7 (7)	N2 - C24 - C23	112 5
$F_1 = -C_3 = -C_4$	113.7(4) 124.8(A)	$C^{23} C^{24} H^{24A}$	110.5
$C_{1} = C_{2} = C_{2}$	127.0(4)	$C_{25} - C_{24} - 1124A$	121 5 (5)
$C4 - C3 - H3\Delta$	120.5	$C_{20} = C_{20} = C_{21}$	121.3 (3)
	120.2	$\overline{}$	117.4

С2—С3—НЗА	120.5	C21—C25—H25A	119.2
F2—C4—C5	119.4 (4)	C25—C26—C18	121.5 (4)
F2—C4—C3	119.9 (4)	C25—C26—H26A	119.3
C5—C4—C3	120.7 (4)	C18—C26—H26A	119.3
F3—C5—C6	121.4 (4)	O5—C27—H27A	109.5
F3—C5—C4	119.3 (4)	O5—C27—H27B	109.5
C6—C5—C4	119.3 (4)	H27A—C27—H27B	109.5
F4—C6—C5	118.6 (4)	05—C27—H27C	109.5
F4—C6—C7	120.6 (4)	H27A—C27—H27C	109.5
$C_{5}-C_{6}-C_{7}$	120.8 (4)	H_27B C_27 H_27C	109.5
$C^2 - C^7 - F1'$	124.0 (4)	$05-C27-H27A^{i}$	109.2 109.470(2)
$C_2 - C_7 - C_6$	121.3(4)	$H27A - C27 - H27A^{i}$	141 1
$E_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	1147(5)	$H27B - C27 - H27A^{i}$	56.3
$C_2 - C_7 - H_7 A$	119.4	$H27C - C27 - H27A^{i}$	56.3
C6-C7-H7A	119.4	$05-027-H27B^{i}$	109470(3)
04 - C8 - 03	117.4 127.7(5)	$H_{27} = C_{27} = H_{27}B^{i}$	10). 4 70 (3) 56 3
04 $C8$ $C9$	127.7(3) 1101(4)	$H27R C27 H27B^{i}$	141.1
$O_{1} = C_{0} = C_{2}$	119.1(4) 113.2(4)	$H27C$ $C27$ $H27B^{i}$	56.2
$C_{10} = C_{9} = C_{14}$	115.2 (4)	$H_2/C - C_2/-H_2/B$	100.5
$C_{10} = C_{9} = C_{14}$	110.3(5)	$M_2/A = C_2/-M_2/B$	109.5
C10 - C9 - C8	124.8(3)	$U_2 = U_2 $	109.470 (3)
C14 - C9 - C8	116.9 (4)	$H_2/A = C_2/=H_2/C^2$	50.5
F_{5} C_{10} C_{9}	124.1(0)	$H_2/B = C_2/=H_2/C^2$	30.3
F5-C10-C11	114.2 (6)	$H_2/C - C_2/-H_2/C^4$	141.1
	121.6 (5)	$H2/A - C2/-H2/C^4$	109.5
F6—C11—C12	122.0 (7)	$H2/B^{-}C2/-H2/C^{-}$	109.5
$C_{11} = 0^{2} = C_{11} = 0^{1}$	82(6)	C10-C11-C12-F7	1797(5)
Cu1 = 02 = C1 = C2	-1702(3)	F7-C12-C13-C14	179.7(3)
01 - C1 - C2 - C7	-172(7)	C_{11} C_{12} C_{13} C_{14}	51(12)
01 - 01 - 02 - 07 02 - 01 - 02 - 07	17.2(7)	F7 C12 C13 F8	-2.8(11)
$O_2 = C_1 = C_2 = C_7$	161.4(4)	$C_{11} C_{12} C_{13} F_{8}$	-177.6(6)
01 - 01 - 02 - 03	-100(4)	$C_{12} = C_{12} = C_{13} = C_{14} = C_{16}$	-4.0(11)
02-01-02-03	-19.9(0) 173.0(5)	$C_{12} - C_{13} - C_{14} - C_{9}$	-4.0(11)
$C_{1} = C_{2} = C_{3} = F_{1}$	1/5.0(3)	F_{8} C_{13} C_{14} C_{9} C_{10} C_{0} C_{14} C_{12}	1/0.9(0)
C1 - C2 - C3 - F1	-3.8(7)	$C_{10} - C_{9} - C_{14} - C_{13}$	2.0 (0)
$C_{1} = C_{2} = C_{3} = C_{4}$	-0.8(0)	$C_{0} = C_{14} = C_{15}$	-1/8.8(0)
C1 - C2 - C3 - C4	-1/9.6(4)	C_{19} N1 C_{15} C_{16}	0.0(6)
F1 - C3 - C4 - F2	0.3(0)	CuI = NI = CIS = CI6	-1/3.2(3)
$C_2 = C_3 = C_4 = F_2$	-1/9.4(4)	NI = CI3 = CI0 = CI7	0.0 (6)
F1 - C3 - C4 - C5	-1/5.1(4)	C15 - C10 - C17 - C18	-0.4(6)
$C_2 = C_3 = C_4 = C_5$	-0.8(6)	C16 - C17 - C18 - C19	0.7(6)
F2-C4-C5-F3	0.1 (6)	C16-C1/-C18-C26	1/9.9 (4)
$C_3 - C_4 - C_5 - F_3$	-1/8.5 (4)	C15—N1—C19—C18	0.4 (5)
F2 - C4 - C5 - C6	-1/9.7 (4)	Cu1 - N1 - C19 - C18	1/4.7 (3)
C3—C4—C5—C6	1.7 (7)	C15—N1—C19—C20	-177.2(3)
F3-C5-C6-F4	1.3 (6)	Cu1—N1—C19—C20	-2.9 (4)
C4—C5—C6—F4	-178.9 (4)	C26—C18—C19—N1	-179.9 (3)
F3—C5—C6—C7	179.2 (4)	C17—C18—C19—N1	-0.7 (5)
C4 - C5 - C6 - C7	-10(7)	C_{26} — C_{18} — C_{19} — C_{20}	-2.4(5)

C3-C2-C7-F1'	179.7 (6)	C17—C18—C19—C20	176.7 (3)
C1—C2—C7—F1′	-1.5(8)	C24—N2—C20—C21	1.0 (6)
C3—C2—C7—C6	1.5 (6)	Cu1—N2—C20—C21	-178.4 (3)
C1—C2—C7—C6	-179.8 (4)	C24—N2—C20—C19	-179.7 (3)
F4—C6—C7—C2	177.3 (4)	Cu1—N2—C20—C19	0.9 (4)
C5—C6—C7—C2	-0.6 (7)	N1-C19-C20-N2	1.3 (5)
F4—C6—C7—F1′	-1.2 (7)	C18—C19—C20—N2	-176.3 (3)
C5—C6—C7—F1′	-179.0 (6)	N1-C19-C20-C21	-179.3 (3)
Cu1—O3—C8—O4	28.6 (7)	C18—C19—C20—C21	3.0 (5)
Cu1—O3—C8—C9	-151.9 (3)	N2-C20-C21-C22	-1.7 (6)
O4—C8—C9—C10	19.5 (7)	C19—C20—C21—C22	179.0 (4)
O3—C8—C9—C10	-160.1 (5)	N2-C20-C21-C25	177.7 (4)
O4—C8—C9—C14	-158.8 (5)	C19—C20—C21—C25	-1.6 (6)
O3—C8—C9—C14	21.6 (6)	C20—C21—C22—C23	0.9 (6)
C14—C9—C10—F5	179.7 (6)	C25—C21—C22—C23	-178.5 (4)
C8—C9—C10—F5	1.4 (9)	C21—C22—C23—C24	0.6 (7)
C14—C9—C10—C11	-3.0 (8)	C20—N2—C24—C23	0.6 (6)
C8—C9—C10—C11	178.7 (5)	Cu1—N2—C24—C23	179.9 (3)
F5-C10-C11-F6	0.8 (9)	C22—C23—C24—N2	-1.4 (7)
C9—C10—C11—F6	-176.8 (5)	C20—C21—C25—C26	-0.4 (7)
F5-C10-C11-C12	-178.3 (6)	C22—C21—C25—C26	179.0 (5)
C9—C10—C11—C12	4.1 (9)	C21—C25—C26—C18	1.0 (7)
F6—C11—C12—C13	175.9 (6)	C19—C18—C26—C25	0.5 (6)
C10-C11-C12-C13	-5.0 (10)	C17—C18—C26—C25	-178.6 (4)
F6-C11-C12-F7	0.6 (9)		

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
O5—H5…N2	0.72	2.67	3.067 (3)	118	
O5—H5…O3 ⁱ	0.72	2.62	3.184 (4)	137	
O5—H5…O4 ⁱ	0.72	2.55	3.065 (4)	130	

Symmetry code: (i) -x+1, y, -z+3/2.