ISSN 2414-3146

Received 1 August 2019 Accepted 13 November 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; molybdenum; molybdenum oxide; octamolybdate; polyoxomolybdate.

CCDC reference: 1965627

Structural data: full structural data are available from iucrdata.iucr.org

[Oxybis(ethane-1,2-diyl)]bis(dimethylammonium) octamolybdate dihydrate

David M. Ermert,^a* Milan Gembicky^b and Arnold L. Rheingold^b

^aEntegris, Inc., 7 Commerce Dr., Danbury, CT, 06810, USA, and ^bDepartment of Chemistry, University of California, 9500 Gilman Drive, La Jolla, CA, 92093, USA. *Correspondence e-mail: David.Ermert@entegris.com

The title compound, $(C_8H_{22}N_2O)_2[Mo_8O_{26}]\cdot H_2O$, $(cis-H_2L)_2[\beta-Mo_8O_{26}]\cdot H_2O$, where L = (bis[2-N,N-dimethylamino)ethyl] ether), was synthesized from bis[2-(dimethylamino)ethyl] ether and MoO₃ under solvothermal conditions and characterized by multinuclear NMR and single-crystal X-ray diffraction techniques. The structure displays two [oxybis(ethane-1,2-diyl)]bis(dimethylammonium), or $[cis-H_2L]^{2+}$, cations, a central $[\beta-Mo_8O_{26}]^{4-}$ anionic cluster consisting of eight distorted MoO₆ octahedra, and two water molecules in their deuterated form. The central anion lies across an inversion center. The $[cis-H_2L]^{2+}$ cations are hydrogen bonded to the central $[\beta-Mo_8O_{26}]^{4-}$ cluster *via* bridging water molecules. In the crystal, $O-H\cdots O$ hydrogen bonds link the components into chains along [010]. Weak $C-H\cdots O$ hydrogen bonds link these chains into a three-dimensional network.

Structure description

Polyoxometalates (POMs) are self-assembled metal clusters finding broad application in coatings, the pulp and paper industry, catalysis, microelectronics, and medicine (Katsoulis, 1998; Chaidogiannos *et al.*, 2004; Long *et al.*, 2007; Rhule *et al.*, 1998). Generally, group 5 and 6 POMs are more common and can adopt a wide range of nuclearity (Pope, 1983; Pope & Müller, 1991). Within the context of molybdenum, seven isomers of the octamolybdate anion, $[Mo_8O_{26}]^{4-}$, have been reported (Bridgeman, 2002; Allis *et al.*, 2004). Here, we report the isolation of the title compound (1), which is characterized by a protonated bis(dialkyl)ammonium ether salt linked to an octamolybdate anion through hydrogen bonding (Table 1).

Compound (1) (Fig. 1) crystallizes as a salt containing two $[bis(2-N,N-dimethyl-ammonium)ethyl ether]^{2+}$ cations and a $[\beta-Mo_8O_{26}]^{4-}$ anion hydrogen bonded through a single water molecule (deuterated)of hydration per $[H_2L]^{2+}$. The anion lies across a

Table 1	
Hydrogen-bond	geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O14	1.00	2.26	2.737 (6)	108
$N1-H1\cdots O15$	1.00	1.97	2.916 (7)	157
N2-H2···O14	1.00	2.46	2.808 (7)	100
$N2-H2 \cdot \cdot \cdot O15$	1.00	1.87	2.863 (6)	170
$O15-D15A\cdots O4$	0.87	1.99	2.854 (5)	170
$O15-D15B\cdots O4^{ii}$	0.87	1.99	2.863 (6)	177
$C1 - H1A \cdots O5^{iii}$	0.98	2.56	3.440 (6)	149
$C1 - H1B \cdots O9$	0.98	2.36	3.189 (7)	142
$C1 - H1C \cdots O11^{ii}$	0.98	2.39	3.355 (8)	168
$C2-H2A\cdots O3^{iv}$	0.98	2.44	3.343 (7)	153
$C2-H2B\cdots O10^{ii}$	0.98	2.34	3.300 (8)	167
$C3-H3A\cdots O13^{i}$	0.99	2.52	3.407 (7)	150
$C3-H3B\cdots O11^{iii}$	0.99	2.42	3.266 (7)	143
$C4-H4A\cdots O6^{v}$	0.99	2.50	3.472 (8)	167
$C6-H6B\cdots O6^{i}$	0.99	2.44	3.360 (8)	154
$C7 - H7A \cdots O12^{v}$	0.98	2.49	3.316 (8)	142
$C7 - H7B \cdot \cdot \cdot O8^{ii}$	0.98	2.26	3.227 (8)	170
$C8-H8A\cdots O9^{vi}$	0.98	2.48	3.402 (7)	157
$C8-H8B\cdots O9^{ii}$	0.98	2.48	3.461 (8)	176
C8−H8C···O11	0.98	2.40	3.155 (7)	134
$C8-H8C\cdots O7^{i}$	0.98	2.52	3.270 (8)	133

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) x + 1, y, z.

center of inversion. The protonated amino arms of the ether groups are arranged in a *cis* orientation and create a hydrogen-bonding pocket for D₂O coordination between both N-H protons of a given ether group and a μ_2 -O-atom of the $[Mo_8O_{26}]^{4-}$ anion. Overall, hydrogen-bond lengths range from 1.87-2.46 Å, with the close proximity of the ammonium protons to the oxygen atom of the ether group facilitating the longer (2.26-2.46 Å) hydrogen bonding. In the crystal, O-H···O hydrogen bonds link the components into chains (Fig. 2) along [010]. Furthermore, weak C-H···O hydrogen bonds link these chains into a three-dimensional network (Fig. 3). Although **1** was crystallized from D₂O, only the

Figure 1

The molecular entities in the title compound with ellipsoids drawn at the 50% probability level. Only the symmetry-unique cation and solvent water molecules are shown. H atoms bonded to C atoms are omitted for the sake of clarity. Atoms labeled with the suffix 'a' are related by the symmetry operator (-x + 1, -y + 1, -z + 1).

solvent molecules have been modeled with deuterium atoms; however, deuterium exchange with N-H protons is likely and supported by ¹H-NMR experiments (*see below*).

In 1, the octamolybate anion consists of six-coordinate Mo atoms in a distorted octahedral shape bound to oxygen through combinations of terminal, μ_2 , μ_3 , or μ_5 modes. Relevant bond metrics are reported in Table 2. Most notable, the μ_2 -O13 bond lengths are closer to that of terminal [Mo4– O13: 1.759 (4) Å] and higher-coordination environment oxides [Mo2–O13: 2.270 (4) Å], respectively. The atypical bridging Mo–O bond lengths are a hallmark of the β -isomer and have been described as 'pseudoterminal' (Bridgeman, 2002). Taken together, these data are consistent with the structural trends present in reported [β -Mo₈O₂₆]^{4–} motifs (Bridgeman, 2002).

Figure 3

Part of the crystal structure with N-H···O, O-H···O and weak C-H···O hydrogen bonds shown as dashed lines viewed along the [010] direction of the unit cell.

Table 2Selected bond lengths (Å).

Mo1-O1	2.340 (4)	Mo3-O1	2.277 (4)
Mo1-O2	2.015 (4)	Mo3-O2 ⁱ	2.334 (4)
Mo1-O3	1.893 (4)	Mo3-O4	1.933 (4)
Mo1-O5 ⁱ	2.357 (4)	Mo3-O5	1.984 (4)
Mo1-O6	1.696 (4)	Mo3-O10	1.705 (4)
Mo1-O7	1.700 (4)	Mo3-O11	1.699 (4)
Mo2-O1	2.450 (4)	Mo4-O1	2.172 (4)
Mo2-O3	1.901 (4)	Mo4-O1 ⁱ	2.368 (4)
Mo2-O4	1.968 (4)	Mo4-O2	1.942 (4)
Mo2-O8	1.699 (4)	Mo4-O5	1.963 (4)
Mo2-O9	1.696 (4)	Mo4-O12	1.692 (4)
$M_{0}^{2} = 013^{i}$	2270(4)	$M_{04} - 013$	1.759(4)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

The octamolybdate anion, $[Mo_8O_{26}]^{4-}$, is common. A search of the Cambridge Structural Database (CSD version 5.40 up to May 2019; Groom *et al.*, 2016) listed 278 deposited structures. However, the *cis*-[bis(2-*N*,*N*-dimethylammonium)ethyl ether]²⁺ cation reported here is the first crystal-lographic example in the literature.

Synthesis and crystallization

Synthesis of the title complex (1): All reagents were purchased from Sigma-Aldrich and used without further purification. MoO₃ (5.0 g, 34.7 mmol) and bis[2-(N,N-dimethylamino)ethyl] ether (13.1 ml, 69.4 mmol) were loaded into a 250 ml round-bottom flask equipped with a magnetic stir bar and diluted with 100 ml of H₂O. The resulting mint-green mixture was heated to 373 K. After 20 minutes the reaction presented as a colorless solution and was cooled to room temperature. The solution was transferred to a 500 ml beaker and diluted with 2-propanol (300 ml), resulting in the formation of a fine colorless precipitate. The solid was allowed to settle, the mother liquor decanted off, and the white solid collected and dried under reduced pressure at 333 K. ¹H NMR (400 MHz, D₂O) in p.p.m.: $\delta = 4.79$ (s, 6H), 3.92 (t, 5.34 Hz, 4H), 3.42 (t, 5.34 Hz, 4H), 2.96 (s, 12H). ¹³C NMR (100 MHz, D₂O) in p.p.m.: $\delta = 64.40, 56.78, 43.26$.

The title complex (1) precipitated as colorless crystals from a D_2O solution stored inside of an NMR tube for three days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3	
Experimental details.	
Crystal data	
Chemical formula	$(C_8H_{22}N_2O)_2[Mo_8O_{26}]\cdot 2D_2O$
M _r	1548.13
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	10.139 (3), 11.350 (3), 17.815 (5)
β (°)	96.773 (3)
$V(\text{\AA}^3)$	2035.7 (9)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.48
Crystal size (mm)	$0.28 \times 0.23 \times 0.02$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2017)
T_{\min}, T_{\max}	0.581, 0.646
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8296, 3652, 2992
R _{int}	0.029
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.603
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.074, 1.08
No. of reflections	3652
No. of parameters	269
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.75, -0.88

Computer programs: *APEX3* and *SAINT* (Bruker, 2017), *SHELXS97* (Sheldrick, 2008), *SHELXL2016* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *OLEX2* (Dolomanov *et al.*, 2009).

References

- Allis, D. G., Burkholder, E. & Zubieta, J. (2004). Polyhedron, 23, 1145–1152.
- Bridgeman, A. J. (2002). J. Phys. Chem. A, 106, 12151-12160.
- Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Chaidogiannos, G., Velessiotis, D., Argitis, P., Koutsolelos, P., Diakoumakos, C. D., Tsamakis, D. & Glezos, N. (2004). *Microelectron. Eng.* **73–74**, 746–751.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Katsoulis, D. E. (1998). Chem. Rev. 98, 359-388.
- Long, D., Burkholder, E. & Cronin, L. (2007). Chem. Soc. Rev. 36, 105–121.
- Pope, M. T. (1983). *Heteropoly and Isopoly Oxometalates*. Heidelberg: Springer-Verlag.
- Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48.
- Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. *Rev.* 98, 327–358.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2019). **4**, x191536 [https://doi.org/10.1107/S2414314619015360]

[Oxybis(ethane-1,2-diyl)]bis(dimethylammonium) octamolybdate dihydrate

David M. Ermert, Milan Gembicky and Arnold L. Rheingold

[Oxybis(ethane-1,2-diyl)]bis(dimethylammonium) octamolybdate dihydrate

Crystal data F(000) = 1496 $(C_8H_{22}N_2O)_2[Mo_8O_{26}]\cdot 2D_2O$ $M_r = 1548.13$ $D_{\rm x} = 2.526 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1/n$ a = 10.139 (3) Å Cell parameters from 4105 reflections b = 11.350 (3) Å $\theta = 2.2 - 25.4^{\circ}$ $\mu = 2.48 \text{ mm}^{-1}$ c = 17.815 (5) Å $\beta = 96.773 (3)^{\circ}$ T = 100 KV = 2035.7 (9) Å³ Block, colourless Z = 2 $0.28\times0.23\times0.02~mm$ Data collection Bruker APEXII CCD 3652 independent reflections diffractometer 2992 reflections with $I > 2\sigma(I)$ Detector resolution: 8.258 pixels mm⁻¹ $R_{\rm int} = 0.029$ $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ φ and ω scans Absorption correction: multi-scan $h = -10 \rightarrow 12$ (SADABS; Bruker, 2017) $k = -9 \rightarrow 13$ $T_{\rm min} = 0.581, T_{\rm max} = 0.646$ $l = -21 \rightarrow 19$ 8296 measured reflections Refinement Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.032$ Hydrogen site location: mixed $wR(F^2) = 0.074$ H-atom parameters constrained S = 1.08 $w = 1/[\sigma^2(F_o^2) + (0.0204P)^2 + 11.0569P]$ 3652 reflections where $P = (F_0^2 + 2F_c^2)/3$ 269 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.75 \text{ e } \text{\AA}^{-3}$ 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.88 \ {\rm e} \ {\rm \AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mo4	0.51222 (5)	0.56859 (4)	0.59121 (2)	0.00664 (12)	
Mo3	0.57308 (5)	0.29183 (4)	0.58295 (2)	0.00758 (12)	
Mo2	0.27674 (5)	0.24855 (5)	0.49345 (3)	0.00926 (13)	
Mo1	0.21926 (5)	0.52804 (5)	0.50414 (3)	0.00963 (13)	
05	0.6544 (4)	0.4504 (3)	0.59792 (19)	0.0083 (8)	
04	0.4575 (4)	0.1866 (3)	0.52022 (19)	0.0082 (8)	
01	0.4160 (4)	0.4202 (3)	0.53033 (19)	0.0081 (8)	
O2	0.3639 (4)	0.6471 (3)	0.53276 (19)	0.0078 (8)	
03	0.1739 (4)	0.3814 (3)	0.45750 (19)	0.0090 (8)	
015	0.5610 (4)	0.0398 (4)	0.4110 (2)	0.0102 (9)	
D15A	0.538031	0.090272	0.443795	0.015*	
D15B	0.552187	-0.028589	0.431848	0.015*	
013	0.6163 (4)	0.6926 (3)	0.6051 (2)	0.0102 (8)	
07	0.1035 (4)	0.6188 (4)	0.4579 (2)	0.0138 (9)	
014	0.6350 (4)	0.1851 (4)	0.2749 (2)	0.0138 (9)	
011	0.7115 (4)	0.2063 (4)	0.5948 (2)	0.0127 (9)	
09	0.2025 (4)	0.1352 (4)	0.4428 (2)	0.0161 (9)	
O10	0.5105 (4)	0.2820 (4)	0.6675 (2)	0.0116 (9)	
08	0.2277 (4)	0.2344 (4)	0.5810(2)	0.0162 (9)	
012	0.4551 (4)	0.5481 (4)	0.6757 (2)	0.0117 (9)	
06	0.1744 (4)	0.5114 (4)	0.5923 (2)	0.0148 (9)	
N1	0.8289 (5)	0.1047 (4)	0.3826 (2)	0.0108 (10)	
H1	0.731353	0.088198	0.377628	0.013*	
N2	0.4038 (5)	0.0472 (4)	0.2666 (3)	0.0120 (11)	
H2	0.465967	0.050370	0.314483	0.014*	
C4	0.5429 (6)	0.1940 (6)	0.2073 (3)	0.0163 (14)	
H4A	0.567447	0.138138	0.168577	0.020*	
H4B	0.543593	0.274796	0.186460	0.020*	
C6	0.8473 (6)	0.2142 (6)	0.3394 (3)	0.0159 (13)	
H6A	0.942746	0.224333	0.334054	0.019*	
H6B	0.818449	0.282736	0.367715	0.019*	
C2	0.4473 (7)	-0.0508 (6)	0.2199 (3)	0.0221 (15)	
H2A	0.385925	-0.057648	0.173291	0.033*	
H2B	0.447599	-0.124628	0.248378	0.033*	
H2C	0.536992	-0.034577	0.207200	0.033*	
C5	0.7685 (6)	0.2105 (6)	0.2617 (3)	0.0185 (14)	
H5A	0.773187	0.287257	0.235703	0.022*	
H5B	0.802965	0.148390	0.230206	0.022*	
C8	0.8742 (6)	0.1196 (6)	0.4648 (3)	0.0172 (14)	
H8A	0.969481	0.137400	0.471856	0.026*	
H8B	0.857809	0.046710	0.491716	0.026*	
H8C	0.825183	0.184516	0.484942	0.026*	
C3	0.4072 (6)	0.1646 (6)	0.2288 (3)	0.0153 (13)	
H3A	0.380344	0.226151	0.263347	0.018*	
H3B	0.342107	0.164899	0.182807	0.018*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C7	0.8937 (7)	0.0006 (6)	0.3518 (4)	0.0244 (16)	
H7A	0.866396	-0.005198	0.297311	0.037*	
H7B	0.866965	-0.070964	0.376808	0.037*	
H7C	0.990385	0.009487	0.361060	0.037*	
C1	0.2683 (6)	0.0247 (6)	0.2869 (3)	0.0209 (15)	
H1A	0.205718	0.018943	0.240680	0.031*	
H1B	0.241766	0.089540	0.318142	0.031*	
H1C	0.267874	-0.049343	0.315157	0.031*	

Atomic	displacement	parameters	$(Å^2)$
--------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo4	0.0060 (3)	0.0080 (3)	0.0061 (2)	-0.0005 (2)	0.00142 (17)	-0.00017 (18)
Mo3	0.0070 (3)	0.0078 (3)	0.0080 (2)	-0.0009 (2)	0.00073 (18)	0.00107 (19)
Mo2	0.0070 (3)	0.0099 (3)	0.0112 (2)	-0.0009 (2)	0.00251 (18)	0.0000 (2)
Mo1	0.0070 (3)	0.0103 (3)	0.0118 (2)	-0.0009 (2)	0.00221 (19)	-0.0002 (2)
05	0.009 (2)	0.008 (2)	0.0078 (17)	-0.0009 (16)	0.0008 (15)	0.0025 (15)
04	0.007 (2)	0.008 (2)	0.0096 (18)	0.0003 (16)	0.0029 (15)	-0.0001 (15)
01	0.008 (2)	0.009 (2)	0.0073 (17)	-0.0017 (16)	0.0010 (15)	-0.0002 (15)
O2	0.007 (2)	0.005 (2)	0.0108 (18)	-0.0014 (16)	0.0003 (15)	0.0010 (15)
03	0.007 (2)	0.009 (2)	0.0107 (18)	0.0000 (16)	0.0007 (15)	0.0011 (16)
015	0.011 (2)	0.008 (2)	0.0122 (19)	0.0018 (18)	0.0033 (16)	-0.0002 (16)
013	0.007 (2)	0.012 (2)	0.0113 (18)	-0.0006 (17)	0.0012 (15)	-0.0023 (16)
O7	0.011 (2)	0.013 (2)	0.018 (2)	-0.0020 (18)	0.0013 (16)	0.0032 (18)
O14	0.009 (2)	0.021 (3)	0.0116 (19)	-0.0033 (18)	0.0017 (16)	0.0065 (17)
011	0.009 (2)	0.014 (2)	0.0151 (19)	-0.0011 (17)	-0.0002 (16)	-0.0001 (17)
09	0.010 (2)	0.018 (3)	0.021 (2)	-0.0008 (18)	0.0049 (17)	-0.0042 (18)
O10	0.015 (2)	0.012 (2)	0.0082 (18)	-0.0027 (18)	0.0037 (16)	0.0010 (16)
08	0.016 (2)	0.020 (3)	0.014 (2)	-0.0002 (19)	0.0061 (17)	0.0020 (18)
O12	0.015 (2)	0.013 (2)	0.0075 (18)	0.0002 (18)	0.0039 (16)	0.0027 (16)
06	0.011 (2)	0.016 (2)	0.018 (2)	0.0006 (18)	0.0059 (16)	-0.0006 (18)
N1	0.008 (3)	0.012 (3)	0.013 (2)	-0.001 (2)	0.0044 (19)	0.000 (2)
N2	0.013 (3)	0.011 (3)	0.012 (2)	-0.002 (2)	0.0012 (19)	-0.001 (2)
C4	0.019 (3)	0.017 (4)	0.013 (3)	-0.002 (3)	0.001 (2)	0.003 (3)
C6	0.013 (3)	0.017 (4)	0.018 (3)	-0.004 (3)	0.003 (2)	0.002 (3)
C2	0.034 (4)	0.014 (4)	0.017 (3)	0.002 (3)	-0.002 (3)	0.001 (3)
C5	0.016 (3)	0.020 (4)	0.020 (3)	-0.005 (3)	0.004 (3)	0.008 (3)
C8	0.010 (3)	0.028 (4)	0.014 (3)	0.000 (3)	0.001 (2)	-0.002 (3)
C3	0.015 (3)	0.017 (3)	0.013 (3)	0.005 (3)	-0.002 (2)	0.003 (2)
C7	0.034 (4)	0.019 (4)	0.022 (3)	0.003 (3)	0.011 (3)	-0.006 (3)
C1	0.014 (3)	0.033 (4)	0.016 (3)	-0.009 (3)	0.003 (3)	0.004 (3)

Geometric parameters (Å, °)

Mo1—O1	2.340 (4)	N1—H1	1.0000	
Mo1—O2	2.015 (4)	N1—C6	1.485 (7)	
Mo103	1.893 (4)	N1—C8	1.493 (7)	
Mo1—O5 ⁱ	2.357 (4)	N1—C7	1.487 (8)	

Mo1O6	1.696 (4)	N2—H2	1.0000
Mo1—O7	1.700 (4)	N2—C2	1.486 (8)
Mo2—O1	2.450 (4)	N2—C3	1.494 (8)
Mo2—O3	1.901 (4)	N2—C1	1.484 (7)
Mo2—O4	1.968 (4)	C4—H4A	0.9900
Mo2—O8	1.699 (4)	C4—H4B	0.9900
Mo2—O9	1.696 (4)	C4—C3	1.509 (8)
Mo2—O13 ⁱ	2.270 (4)	С6—Н6А	0.9900
Mo3—O1	2.277 (4)	С6—Н6В	0.9900
Mo3—O2 ⁱ	2.334 (4)	C6—C5	1.516 (7)
Mo3—O4	1.933 (4)	C2—H2A	0.9800
Mo3—O5	1.984 (4)	C2—H2B	0.9800
Mo3—O10	1.705 (4)	C2—H2C	0.9800
Mo3—O11	1.699 (4)	С5—Н5А	0.9900
Mo4—O1	2.172 (4)	С5—Н5В	0.9900
Mo4—O1 ⁱ	2.368 (4)	C8—H8A	0.9800
Mo4—O2	1.942 (4)	C8—H8B	0.9800
Mo4—O5	1.963 (4)	C8—H8C	0.9800
Mo4—O12	1.692 (4)	С3—НЗА	0.9900
Mo4—O13	1.759 (4)	С3—Н3В	0.9900
Mo4—Mo3	3.2081 (11)	С7—Н7А	0.9800
Mo4—Mo1	3.2177 (9)	С7—Н7В	0.9800
O15—D15A	0.8701	С7—Н7С	0.9800
O15—D15B	0.8698	C1—H1A	0.9800
O14—C4	1.437 (6)	C1—H1B	0.9800
O14—C5	1.430 (7)	C1—H1C	0.9800
Mo3—Mo4—Mo1	90.539 (19)	O6—Mo1—O3	103.34 (18)
O5—Mo4—Mo3	35.86 (11)	O6—Mo1—O7	105.74 (19)
O5—Mo4—Mo1	124.14 (11)	Mo4—O5—Mo3	108.74 (17)
O5—Mo4—O1	77.51 (15)	Mo4—O5—Mo1 ⁱ	110.13 (16)
O5—Mo4—O1 ⁱ	77.85 (14)	Mo3—O5—Mo1 ⁱ	104.21 (16)
O1—Mo4—Mo3	45.18 (10)	Mo3—O4—Mo2	113.77 (19)
O1 ⁱ —Mo4—Mo3	85.93 (9)	Mo4—O1—Mo4 ⁱ	104.28 (15)
O1—Mo4—Mo1	46.64 (10)	Mo4—O1—Mo3	92.26 (13)
O1 ⁱ —Mo4—Mo1	86.14 (9)	Mo4—O1—Mo2	164.06 (18)
O1—Mo4—O1 ⁱ	75.72 (15)	Mo4 ⁱ —O1—Mo2	91.55 (12)
O2—Mo4—Mo3	124.45 (11)	Mo4—O1—Mo1	90.93 (14)
O2—Mo4—Mo1	36.36 (11)	Mo3—O1—Mo4 ⁱ	97.77 (14)
O2—Mo4—O5	149.67 (15)	Mo3—O1—Mo2	87.39 (13)
O2-Mo4-O1 ⁱ	77.70 (14)	Mo3—O1—Mo1	162.78 (18)
O2—Mo4—O1	79.29 (15)	Mo1-O1-Mo4 ⁱ	97.84 (13)
O13—Mo4—Mo3	132.42 (13)	Mo1—O1—Mo2	84.95 (12)
O13—Mo4—Mo1	133.35 (12)	Mo4—O2—Mo3 ⁱ	109.56 (17)
O13—Mo4—O5	96.57 (17)	Mo4	108.81 (18)
O13—Mo4—O1	156.57 (16)	Mo1-O2-Mo3 ⁱ	104.03 (14)
O13—Mo4—O1 ⁱ	80.88 (15)	Mo1-O3-Mo2	117.03 (18)
O13—Mo4—O2	97.00 (16)	D15A—O15—D15B	104.5

O12—Mo4—Mo3	89.67 (14)	Mo4—O13—Mo2 ⁱ	117.40 (18)
O12—Mo4—Mo1	90.91 (13)	C5—O14—C4	112.4 (4)
O12—Mo4—O5	100.26 (17)	C6—N1—H1	107.1
O12—Mo4—O1	99.04 (17)	C6—N1—C8	111.7 (5)
O12-Mo4-O1 ⁱ	174.68 (17)	C6—N1—C7	112.7 (5)
O12—Mo4—O2	102.45 (17)	C8—N1—H1	107.1
O12—Mo4—O13	104.33 (18)	C7—N1—H1	107.1
O5—Mo3—Mo4	35.40 (11)	C7—N1—C8	110.7 (5)
O5—Mo3—O1	74.60 (14)	C2—N2—H2	107.8
$05-M03-02^{i}$	72.35 (14)	$C_2 - N_2 - C_3$	113.0 (5)
$04 - M_03 - M_04$	121.63 (11)	C3—N2—H2	107.8
04 - Mo3 - 05	148 38 (15)	C1 - N2 - H2	107.8
$04 - M_0 3 - 01$	79.08 (14)	C1 - N2 - C2	1106(5)
$04 - Mo3 - 02^{i}$	83 29 (14)	C1 - N2 - C3	1095(5)
01 - Mo3 - Mo4	42 56 (9)	O14 - C4 - H4A	110.3
$01 - M_0 3 - 02^i$	72.39(13)	O14 $C4$ $H4B$	110.3
Ω^{i} Mo3 Ω^{2}	79.86 (9)	014 C4 H4D 014 C4 C3	107.0(4)
$O_1 MO_3 MO_4$	13557(14)	$H_{A} = C_{A} = C_{A}$	107.0 (4)
011 Mo3 05	133.37(14) 100.21(17)	$\begin{array}{cccccccccc} & \Pi 4 \Lambda \\ & C_{2} & C_{4} & \Pi 4 \Lambda \end{array}$	110.3
011 Mo3 04	100.21(17)	$C_3 = C_4 = \Pi_4 A$	110.3
011 - M03 - 04	90.09(17)	N1 C6 H6A	110.3
011 - M03 - 01	100.74(10)	NI-CO-HOA	109.3
$011 - M03 - 02^{\circ}$	88.55(10)	NI = C6 = C5	109.5
$010 M_{2} M_{2}$	103.94(18)		111.4 (5)
010 - M03 - M04	85.97 (14)		108.0
010—Mo3—05	97.61 (17)	С5—С6—Н6А	109.3
010—Mo3—04	101.94 (17)	C5-C6-H6B	109.3
010—Mo3—01	95.18 (16)	N2—C2—H2A	109.5
O10—Mo3—O2 ¹	165.54 (17)	N2—C2—H2B	109.5
O4—Mo2—O1	74.23 (14)	N2—C2—H2C	109.5
O4—Mo2—O13 ¹	77.07 (14)	H2A—C2—H2B	109.5
O3—Mo2—O4	145.37 (16)	H2A—C2—H2C	109.5
O3—Mo2—O1	74.65 (14)	H2B—C2—H2C	109.5
O3—Mo2—O13 ⁱ	78.41 (15)	O14—C5—C6	105.2 (5)
O13 ⁱ —Mo2—O1	70.16 (13)	O14—C5—H5A	110.7
O9—Mo2—O4	101.54 (17)	O14—C5—H5B	110.7
O9—Mo2—O1	162.10 (16)	C6—C5—H5A	110.7
O9—Mo2—O3	103.37 (18)	C6—C5—H5B	110.7
O9—Mo2—O13 ⁱ	91.97 (17)	H5A—C5—H5B	108.8
O9—Mo2—O8	104.9 (2)	N1—C8—H8A	109.5
O8—Mo2—O4	96.25 (17)	N1—C8—H8B	109.5
O8—Mo2—O1	92.90 (17)	N1—C8—H8C	109.5
O8—Mo2—O3	100.13 (18)	H8A—C8—H8B	109.5
O8—Mo2—O13 ⁱ	162.85 (17)	H8A—C8—H8C	109.5
O5 ⁱ —Mo1—Mo4	78.60 (9)	H8B—C8—H8C	109.5
O1—Mo1—Mo4	42.44 (9)	N2—C3—C4	112.4 (5)
O1—Mo1—O5 ⁱ	71.35 (13)	N2—C3—H3A	109.1
O2—Mo1—Mo4	34.83 (10)	N2—C3—H3B	109.1
O2—Mo1—O5 ⁱ	71.34 (14)	C4—C3—H3A	109.1

O2—Mo1—O1	73.89 (14)	C4—C3—H3B	109.1
O3—Mo1—Mo4	120.00 (11)	НЗА—СЗ—НЗВ	107.9
O3—Mo1—O5 ⁱ	83.03 (15)	N1—C7—H7A	109.5
O3—Mo1—O1	77.57 (14)	N1—C7—H7B	109.5
O3—Mo1—O2	146.37 (16)	N1—C7—H7C	109.5
O7—Mo1—Mo4	133.80 (14)	H7A—C7—H7B	109.5
O7—Mo1—O5 ⁱ	88.28 (16)	H7A—C7—H7C	109.5
O7—Mo1—O1	159.59 (16)	H7B—C7—H7C	109.5
O7—Mo1—O2	99.00 (17)	N2—C1—H1A	109.5
O7—Mo1—O3	101.67 (17)	N2—C1—H1B	109.5
O6—Mo1—Mo4	84.40 (13)	N2—C1—H1C	109.5
O6—Mo1—O5 ⁱ	162.77 (16)	H1A—C1—H1B	109.5
O6—Mo1—O1	94.14 (16)	H1A—C1—H1C	109.5
O6—Mo1—O2	96.14 (17)	H1B—C1—H1C	109.5

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O14	1.00	2.26	2.737 (6)	108
N1—H1…O15	1.00	1.97	2.916 (7)	157
N2—H2…O14	1.00	2.46	2.808 (7)	100
N2—H2…O15	1.00	1.87	2.863 (6)	170
O15—D15A····O4	0.87	1.99	2.854 (5)	170
O15—D15 <i>B</i> ···O4 ⁱⁱ	0.87	1.99	2.863 (6)	177
C1—H1A····O5 ⁱⁱⁱ	0.98	2.56	3.440 (6)	149
C1—H1 <i>B</i> ···O9	0.98	2.36	3.189 (7)	142
C1—H1 <i>C</i> ···O11 ⁱⁱ	0.98	2.39	3.355 (8)	168
C2—H2A····O3 ^{iv}	0.98	2.44	3.343 (7)	153
C2—H2 <i>B</i> ···O10 ⁱⁱ	0.98	2.34	3.300 (8)	167
C3—H3 <i>A</i> ···O13 ⁱ	0.99	2.52	3.407 (7)	150
C3—H3 <i>B</i> ···O11 ⁱⁱⁱ	0.99	2.42	3.266 (7)	143
C4—H4 A ···O6 ^v	0.99	2.50	3.472 (8)	167
C6—H6 <i>B</i> ···O6 ⁱ	0.99	2.44	3.360 (8)	154
C7—H7 <i>A</i> ···O12 ^v	0.98	2.49	3.316 (8)	142
C7—H7 <i>B</i> ···O8 ⁱⁱ	0.98	2.26	3.227 (8)	170
C8—H8A····O9 ^{vi}	0.98	2.48	3.402 (7)	157
C8—H8 <i>B</i> ···O9 ⁱⁱ	0.98	2.48	3.461 (8)	176
C8—H8 <i>C</i> ···O11	0.98	2.40	3.155 (7)	134
C8—H8 <i>C</i> ···O7 ⁱ	0.98	2.52	3.270 (8)	133

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+1/2, y-1/2, -z+1/2; (v) x+1/2, -y+1/2, z-1/2; (vi) x+1, y, z.

Selected bond lengths (Å)

Мо-О	(Å)	Mo-O	(Å)
Mol-Ol	2.340 (4)	Mo3-O1	2.277 (4)
Mo1-O2	2.015 (4)	Mo3-O2#1	2.334 (4)

Mo1-O3	1.893 (4)	Mo3-O4	1.933 (4)
Mo1-O5#1	2.357 (4)	Mo3-O5	1.984 (4)
Mo1-O6	1.696 (4)	Mo3-O10	1.705 (4)
Mo1-O7	1.700 (4)	Mo3-O11	1.699 (4)
Mo2-O1	2.450 (4)	Mo4-O1	2.172 (4)
Mo2-O3	1.901 (4)	Mo4-O1#1	2.368 (4)
Mo2-O4	1.968 (4)	Mo4-O2	1.942 (4)
Mo2-O8	1.699 (4)	Mo4-O5	1.963 (4)
Mo2-O9	1.696 (4)	Mo4-O12	1.692 (4)
Mo2-O13#1	2.270 (4)	Mo4-O13	1.759 (4)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1