

IUCrData

ISSN 2414-3146

Received 11 November 2019 Accepted 9 December 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; pyrrole; hydrogen bonding; Hirshfeld surface analysis.

CCDC reference: 1912418

Structural data: full structural data are available from iucrdata.iucr.org

5,5'-(1-Phenylethane-1,1-diyl)bis(1*H*-pyrrole-2carboxaldehyde)

Shiva Krishna Loke, Eswar Pagadala and Ravi K. Kottalanka*

Vignan's Foundation for Science Technology and Research, Division of Chemistry, Department of Sciences and Humanities, Vadlamudi, Andhra, Pradesh-522213, India. *Correspondence e-mail: ravikottalanka@gmail.com

In the title compound, $C_{18}H_{16}N_2O_2$, the dihedral angle between the pyrrole rings is 79.47 (9)°, with the N-H groups approximately orthogonal (H-N···N-H pseudo torsion angle = -106°). In the crystal, N-H···O hydrogen bonds link the molecules into [111] chains. A C-H···O interaction is also observed.

Structure description

Dipyrromethane-dialdehydes are intermediates for the preparation of various macrocyclic (Love *et al.*, 2003) and acyclic diiminodipyrromethane Schiff bases (*e.g.*: Deliomeroglu *et al.*, 2016). As a part of our studies in this area, we now report the crystal structure of the title compound.

The dihedral angles between the N1-pyrrole ring (*A*), N2-pyrrole ring (*B*) and the C13–C18 phenyl ring (*C*) are A/B = 79.47 (9), A/C = 87.21 (8) and B/C = 70.40 (8)°. The N1–C6–C7–O1 [–2.7 (2)°] and N2–C11–C12–O2 [2.8 (2)°] torsion angles indicate that the aldehyde groups are almost coplanar with their adjacent pyrrole ring systems (Fig. 1).

In the crystal, $N-H\cdots O$ hydrogen bonds (Table 1) link the molecules into [111] chains (Fig. 2). A weak $C-H\cdots O$ hydrogen bond consolidates the chains. The Hirshfeld surface and two-dimensional fingerprint plots were generated with *CrystalExplorer17.5* (Turner *et al.*, 2017) (see supplementary materials). The percentage contributions from the different interatomic contacts to the Hirshfeld surfaces are as follows: $H\cdots H$ (47.9%), $C\cdots H/H\cdots C$ (27.5%), $O\cdots H/H\cdots O$ (21.5%), $N\cdots H/H\cdots N$ (1.5%) and $C\cdots O/O\cdots C$ (1.5%).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Synthesis and crystallization

The title compound, $C_{18}H_{16}N_2O_2$ was prepared by the reported method (Fig. 3); Muwal *et al.* 2018) and colourless cubes were recrystallized from a toluene–hexane solvent mixture at $-4^{\circ}C$.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work was supported by the VFSTR Deemed to be University, Vadlamudi, Andhra Pradesh, India, under the scheme of seed grant for research faculties. SKL and EP thanks to VFSTR for providing facilities and fellowships.

Funding information

Funding for this research was provided by: Vignan's Foundation for Science, Technology and Research (grant No. VFSTRU/Reg/A4/14/2017-18/278 to Dr. Ravi K Kottalanka).

Figure 2

Illustration of the different hydrogen bonds (N-H···O and C-H···O) in the title compound viewed along [001]. Hydrogen bonds are drawn as dashed lines.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1-H1\cdots O1^i$	0.86	2.08	2.9321 (16)	171
$N2-H2\cdots O2^{ii}$	0.86	2.03	2.8838 (15)	173
$C1 - H1B \cdots O1^{i}$	0.96	2.58	3.3419 (18)	137

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 2, -y + 1, -z + 1.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{18}H_{16}N_2O_2$
M _r	292.33
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	293
a, b, c (Å)	7.0679 (2), 9.6856 (4), 12.1510 (5)
α, β, γ (°)	101.560 (3), 93.302 (3), 111.270 (4)
$V(\text{\AA}^3)$	751.66 (5)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.09
Crystal size (mm)	$0.18 \times 0.15 \times 0.13$
Data collection	
Diffractometer	XtaLAB Pro: Kappa dual offset/far
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku
	OD, 2015)
T_{\min}, T_{\max}	0.901, 1.000
No. of measured, independent and	13274, 4208, 3307
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.022
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.726
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.142, 1.03
No. of reflections	4208
No. of parameters	200
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.32, -0.19

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), , ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

References

- Deliomeroglu, M. K., Lynch, V. M. & Sessler, J. L. (2016). Chem. Sci. 7, 3843–3850.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Love, J. B., Blake, A. J., Wilson, C., Reid, S. D., Novak, A. & Hitchcock, P. B. (2003). *Chem. Commun.* pp. 1682–1684.

Figure 3 Reaction scheme.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. **41**, 466–470.
- Muwal, P. K., Nayal, A., Jaiswal, M. K. & Pandey, P. S. (2018). Tetrahedron Lett. 59, 29–32.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17. University of Western Australia.* http://hirshfeldsurface.net

full crystallographic data

IUCrData (2019). **4**, x191660 [https://doi.org/10.1107/S2414314619016602]

5,5'-(1-Phenylethane-1,1-diyl)bis(1*H*-pyrrole-2-carboxaldehyde)

Shiva Krishna Loke, Eswar Pagadala and Ravi K. Kottalanka

5,5'-(1-Phenylethane-1,1-diyl)bis(1H-pyrrole-2-carboxaldehyde)

Crystal data

 $C_{18}H_{16}N_2O_2$ $M_r = 292.33$ Triclinic, *P*1 a = 7.0679 (2) Å b = 9.6856 (4) Å c = 12.1510 (5) Å $a = 101.560 (3)^{\circ}$ $\beta = 93.302 (3)^{\circ}$ $\gamma = 111.270 (4)^{\circ}$ $V = 751.66 (5) Å^{3}$

Data collection

XtaLAB Pro: Kappa dual offset/far diffractometer Radiation source: fine-focus sealed X-ray tube ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) $T_{\min} = 0.901, T_{\max} = 1.000$ 13274 measured reflections 4208 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.142$ S = 1.034208 reflections 200 parameters 0 restraints Primary atom site location: dual Z = 2 F(000) = 308 $D_x = 1.292 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5094 reflections $\theta = 3.7-29.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Cube, colourless $0.18 \times 0.15 \times 0.13 \text{ mm}$

3307 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 31.1^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -9 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -17 \rightarrow 17$ Standard reflections: see text; every none reflections intensity decay: none

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0767P)^2 + 0.1364P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.69498 (16)	0.13760 (11)	0.87005 (8)	0.0348 (2)
H1	0.592279	0.131280	0.906260	0.042*
N2	0.94852 (16)	0.52913 (11)	0.69220 (8)	0.0350 (2)
H2	0.897693	0.470214	0.625766	0.042*
O2	1.18939 (19)	0.67425 (13)	0.53044 (9)	0.0593 (3)
01	0.63340 (19)	-0.10500 (15)	0.98826 (12)	0.0649 (3)
C8	0.87280 (19)	0.50458 (13)	0.78942 (10)	0.0349 (3)
C13	0.53349 (18)	0.30398 (14)	0.68621 (10)	0.0346 (3)
C6	0.8011 (2)	0.04229 (15)	0.86453 (11)	0.0399 (3)
C3	0.77809 (19)	0.24329 (14)	0.80925 (10)	0.0347 (3)
C2	0.69195 (19)	0.36169 (13)	0.79432 (10)	0.0338 (2)
C11	1.1197 (2)	0.66317 (14)	0.71604 (11)	0.0398 (3)
C14	0.4611 (2)	0.40434 (16)	0.64815 (12)	0.0445 (3)
H14	0.512212	0.506479	0.686836	0.053*
C18	0.4538 (2)	0.15255 (16)	0.62642 (12)	0.0452 (3)
H18	0.500715	0.083660	0.650140	0.054*
C7	0.7592 (2)	-0.07648 (17)	0.92390 (13)	0.0471 (3)
H7	0.835458	-0.137403	0.912050	0.057*
C12	1.2317 (2)	0.72554 (15)	0.63178 (13)	0.0464 (3)
H12	1.348509	0.814225	0.657358	0.056*
C9	0.9961 (2)	0.62497 (16)	0.87798 (11)	0.0470 (3)
H9	0.978635	0.637712	0.954118	0.056*
C5	0.9541 (2)	0.09002 (19)	0.79891 (13)	0.0505 (3)
H5	1.049116	0.046264	0.780729	0.061*
C1	0.5846 (3)	0.40046 (18)	0.89673 (12)	0.0478 (3)
H1A	0.677390	0.429200	0.965753	0.072*
H1B	0.465129	0.312760	0.898067	0.072*
H1C	0.544689	0.483480	0.889915	0.072*
C10	1.1508 (2)	0.72322 (16)	0.83195 (12)	0.0500 (3)
H10	1.255985	0.812989	0.871959	0.060*
C4	0.9407 (2)	0.21604 (18)	0.76469 (13)	0.0495 (3)
H4	1.025661	0.271584	0.720018	0.059*
C15	0.3139 (2)	0.3539 (2)	0.55333 (14)	0.0543 (4)
H15	0.267142	0.422408	0.528760	0.065*
C17	0.3053 (2)	0.10196 (19)	0.53181 (15)	0.0574 (4)
H17	0.252517	-0.000256	0.493242	0.069*
C16	0.2361 (2)	0.2028 (2)	0.49507 (15)	0.0587 (4)
H16	0.137392	0.169268	0.431307	0.070*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0370 (5)	0.0360 (5)	0.0340 (5)	0.0132 (4)	0.0090 (4)	0.0142 (4)
N2	0.0403 (5)	0.0302 (5)	0.0283 (5)	0.0065 (4)	0.0053 (4)	0.0066 (4)
O2	0.0674 (7)	0.0533 (6)	0.0445 (6)	0.0066 (5)	0.0180 (5)	0.0121 (5)

01	0.0602 (7)	0.0681 (7)	0.0862 (9)	0.0277 (6)	0.0297 (6)	0.0500 (7)
C8	0.0428 (6)	0.0322 (5)	0.0298 (5)	0.0134 (5)	0.0067 (4)	0.0090 (4)
C13	0.0334 (5)	0.0372 (6)	0.0361 (6)	0.0122 (5)	0.0132 (4)	0.0154 (5)
C6	0.0428 (6)	0.0395 (6)	0.0410 (6)	0.0172 (5)	0.0057 (5)	0.0147 (5)
C3	0.0404 (6)	0.0355 (6)	0.0300 (5)	0.0135 (5)	0.0095 (4)	0.0126 (4)
C2	0.0419 (6)	0.0336 (5)	0.0304 (5)	0.0157 (5)	0.0130 (4)	0.0129 (4)
C11	0.0420 (6)	0.0316 (6)	0.0398 (6)	0.0069 (5)	0.0042 (5)	0.0090 (5)
C14	0.0451 (7)	0.0405 (7)	0.0518 (8)	0.0176 (6)	0.0084 (6)	0.0168 (6)
C18	0.0481 (7)	0.0379 (6)	0.0485 (7)	0.0141 (6)	0.0066 (6)	0.0124 (5)
C7	0.0457 (7)	0.0445 (7)	0.0589 (8)	0.0201 (6)	0.0090 (6)	0.0237 (6)
C12	0.0457 (7)	0.0344 (6)	0.0493 (8)	0.0031 (5)	0.0105 (6)	0.0106 (5)
C9	0.0616 (8)	0.0420 (7)	0.0301 (6)	0.0133 (6)	0.0037 (6)	0.0057 (5)
C5	0.0530 (8)	0.0583 (9)	0.0560 (8)	0.0320 (7)	0.0202 (6)	0.0246 (7)
C1	0.0636 (9)	0.0518 (8)	0.0415 (7)	0.0306 (7)	0.0270 (6)	0.0191 (6)
C10	0.0560 (8)	0.0386 (7)	0.0404 (7)	0.0050 (6)	-0.0015 (6)	0.0036 (5)
C4	0.0522 (8)	0.0569 (8)	0.0554 (8)	0.0276 (7)	0.0270 (6)	0.0303 (7)
C15	0.0474 (8)	0.0620 (9)	0.0625 (9)	0.0251 (7)	0.0064 (7)	0.0270 (8)
C17	0.0521 (8)	0.0481 (8)	0.0589 (9)	0.0100 (7)	0.0009 (7)	0.0036 (7)
C16	0.0433 (8)	0.0718 (11)	0.0548 (9)	0.0165 (7)	-0.0016 (6)	0.0143 (8)

Geometric parameters (Å, °)

N1—C3	1.3622 (14)	C14—C15	1.384 (2)
N1—C6	1.3793 (16)	C14—H14	0.9300
N1—H1	0.8600	C18—C17	1.388 (2)
N2—C8	1.3533 (15)	C18—H18	0.9300
N2-C11	1.3795 (16)	С7—Н7	0.9300
N2—H2	0.8600	C12—H12	0.9300
O2—C12	1.2071 (18)	C9—C10	1.394 (2)
O1—C7	1.2113 (18)	С9—Н9	0.9300
С8—С9	1.3888 (18)	C5—C4	1.398 (2)
C8—C2	1.5202 (16)	С5—Н5	0.9300
C13—C18	1.3867 (19)	C1—H1A	0.9600
C13—C14	1.3907 (18)	C1—H1B	0.9600
C13—C2	1.5410 (17)	C1—H1C	0.9600
C6—C5	1.3798 (19)	C10—H10	0.9300
С6—С7	1.4288 (18)	C4—H4	0.9300
C3—C4	1.3850 (18)	C15—C16	1.380 (3)
C3—C2	1.5152 (17)	C15—H15	0.9300
C2—C1	1.5470 (16)	C17—C16	1.374 (3)
C11—C10	1.3833 (19)	C17—H17	0.9300
C11—C12	1.4261 (18)	C16—H16	0.9300
C3—N1—C6	109.44 (10)	O1—C7—C6	125.90 (14)
C3—N1—H1	125.3	O1—C7—H7	117.0
C6—N1—H1	125.3	С6—С7—Н7	117.0
C8—N2—C11	109.55 (10)	O2—C12—C11	126.24 (13)
C8—N2—H2	125.2	O2—C12—H12	116.9

125.2	C11—C12—H12	116.9
107.91 (11)	C8—C9—C10	107.53 (12)
123.11 (10)	С8—С9—Н9	126.2
128.86 (11)	С10—С9—Н9	126.2
118.02 (12)	C6—C5—C4	107.65 (12)
122.18 (11)	С6—С5—Н5	126.2
119.76 (11)	C4—C5—H5	126.2
107.49 (11)	C2-C1-H1A	109.5
123.62 (12)	C2—C1—H1B	109.5
128.80 (13)	H1A—C1—H1B	109.5
107.70 (11)	C2—C1—H1C	109.5
122.84 (10)	H1A—C1—H1C	109.5
129.42 (11)	H1B—C1—H1C	109.5
106.88 (10)	C11—C10—C9	107.68 (12)
111.23 (10)	C11—C10—H10	126.2
111.41 (9)	С9—С10—Н10	126.2
110.70 (9)	C3—C4—C5	107.72 (12)
108.65 (10)	C3—C4—H4	126.1
107.96 (11)	C5—C4—H4	126.1
107.32 (11)	C16—C15—C14	120.39 (15)
123.89 (12)	C16—C15—H15	119.8
128.73 (13)	C14—C15—H15	119.8
120.75 (14)	C16—C17—C18	120.05 (15)
119.6	С16—С17—Н17	120.0
119.6	C18—C17—H17	120.0
121.17 (14)	C17—C16—C15	119.60 (15)
119.4	С17—С16—Н16	120.2
119.4	C15—C16—H16	120.2
	125.2 107.91 (11) 123.11 (10) 128.86 (11) 118.02 (12) 122.18 (11) 119.76 (11) 107.49 (11) 123.62 (12) 128.80 (13) 107.70 (11) 122.84 (10) 129.42 (11) 106.88 (10) 111.23 (10) 111.41 (9) 110.70 (9) 108.65 (10) 107.96 (11) 107.32 (11) 123.89 (12) 128.73 (13) 120.75 (14) 119.6 119.4	125.2 $C11-C12-H12$ $107.91 (11)$ $C8-C9-C10$ $123.11 (10)$ $C8-C9-H9$ $128.86 (11)$ $C10-C9-H9$ $118.02 (12)$ $C6-C5-C4$ $122.18 (11)$ $C6-C5-H5$ $119.76 (11)$ $C4-C5-H5$ $107.49 (11)$ $C2-C1-H1A$ $123.62 (12)$ $C2-C1-H1B$ $128.80 (13)$ $H1A-C1-H1B$ $107.70 (11)$ $C2-C1-H1C$ $122.84 (10)$ $H1A-C1-H1C$ $129.42 (11)$ $H1B-C1-H1C$ $106.88 (10)$ $C11-C10-C9$ $111.23 (10)$ $C11-C10-H10$ $111.41 (9)$ $C9-C10-H10$ $110.70 (9)$ $C3-C4-C5$ $108.65 (10)$ $C3-C4-H4$ $107.32 (11)$ $C16-C15-C14$ $123.89 (12)$ $C16-C15-H15$ $128.73 (13)$ $C14-C15-H15$ $120.75 (14)$ $C16-C17-H17$ 119.6 $C18-C17-H17$ 119.4 $C17-C16-H16$ 119.4 $C15-C16-H16$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A
N1—H1···O1 ⁱ	0.86	2.08	2.9321 (16)	171
N2—H2···O2 ⁱⁱ	0.86	2.03	2.8838 (15)	173
C1— $H1B$ ···O1 ⁱ	0.96	2.58	3.3419 (18)	137

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*+2, -*y*+1, -*z*+1.