

IUCrData

ISSN 2414-3146

Received 22 November 2019 Accepted 6 December 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; dihydropyridine; dicarboxylate.

CCDC reference: 1970514

Structural data: full structural data are available from iucrdata.iucr.org

Diethyl 4-(3-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate

K. K. Mohammed Ameen,^a F. M. Mashood Ahamed,^a M. Syed Ali Padusha^a and B. Gunasekaran^b*

^aPG & Research Department of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli-620 020, Tamilnadu, India, and ^bDepartment of Physics & Nano Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai-603 203 Tamil Nadu, India. *Correspondence e-mail: phdguna@gmail.com

In the title compound, $C_{29}H_{26}CINO_4$, the dihydropyridine ring adopts a shallow boat conformation. The mean plane of the dihydropyridine ring (all atoms) subtends dihedral angles of 66.54 (1), 73.71 (1) and 79.47 (1)° with the two phenyl rings and the chlorophenyl ring, respectively. In the crystal, $N-H\cdots O$ hydrogen bonds link the molecules into [001] chains.

Structure description

The geometric parameters of the title molecule (Fig. 1) agree well with those of reported similar structures (Wang *et al.*, 2013; Ahamed *et al.*, 2016). The dihydropyridine ring adopts a flattened boat conformation: atoms N1 and C12 are displaced out of the C7/C8/C19/C23 plane (r.m.s. deviation = 0.019 Å) by 0.124 (1) and 0.220 (2) Å, respectively. The mean plane of the pyridine ring (all atoms) subtends dihedral angles of 66.54 (1), 73.71 (1) and 79.47 (1)° with the 2- and 6-phenyl rings and the chlorophenyl ring, respectively. In the crystal, N-H···O hydrogen bonds (Fig. 2, Table 1) link the molecules into [001] chains.

Synthesis and crystallization

To an ethanolic solution of ammonium acetate (7.7 g, 0.1 mol), was added ethyl benzoylacetate (17.3 ml, 0.1 mol) followed by 3-chloro benzaldehyde (14 g, 0.1 mol). The reaction mixture was refluxed for 8 h and the turbid solution obtained was stirred for 10 min. The product separated out was washed, filtered and recrystallized from ethanol solution as yellow blocks (m.p. = 144° C, yield = 98%).

Figure 1

The molecular structure, with 30% probability displacement ellipsoids for non-H atoms.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the college management and the Principal for their support and providing the necessary facilities.

Figure 2

The packing viewed down [100]. Hydrogen bonds are shown as dashed lines.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdotsO3^{i}$	0.86	2.10	2.910 (2)	158

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

 Table 2

 Experimental details.

C ₂₉ H ₂₆ ClNO ₄
487.96
Monoclinic, $P2_1/n$
295
10.519 (5), 22.059 (5), 11.246 (5)
97.867 (5)
2584.9 (18)
4
Μο Κα
0.18
$0.20 \times 0.15 \times 0.15$
Bruker APEXII CCD
Multi-scan (SADABS; Sheldrick, 1996)
0.968, 0.975
24505, 6384, 3478
0.029
0.668
0.060, 0.192, 1.06
6384
318
1
H-atom parameters constrained
0.28, -0.40

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *SHELXL2018* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

References

Ahamed, F. M. M., Padusha, M. S. A. & Gunasekaran, B. (2016). *IUCrData*, **1**, x160155.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, K., Wang, Y., Yao, M. & Xu, D. (2013). Acta Cryst. E69, 0785.

full crystallographic data

IUCrData (2019). **4**, x191644 [https://doi.org/10.1107/S2414314619016444]

Diethyl 4-(3-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate

F(000) = 1024

 $\theta = 1.9 - 28.4^{\circ}$

 $\mu = 0.18 \text{ mm}^{-1}$

Block, yellow

 $0.20\times0.15\times0.15~mm$

T = 295 K

 $D_{\rm x} = 1.254 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6384 reflections

K. K. Mohammed Ameen, F. M. Mashood Ahamed, M. Syed Ali Padusha and B. Gunasekaran

Diethyl 4-(3-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate

Crystal data

C29H26CINO4 $M_r = 487.96$ Monoclinic, $P2_1/n$ a = 10.519 (5) Åb = 22.059 (5) Åc = 11.246(5) Å $\beta = 97.867 (5)^{\circ}$ $V = 2584.9 (18) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD	6384 independent reflections
diffractometer	3478 reflections with $I > 2\sigma(I)$
ω and φ scans	$R_{\rm int} = 0.029$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 13$
$T_{\min} = 0.968, \ T_{\max} = 0.975$	$k = -29 \rightarrow 22$
24505 measured reflections	$l = -10 \longrightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.192$	$w = 1/[\sigma^2(F_o^2) + (0.0826P)^2 + 0.5988P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
6384 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
318 parameters	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were positioned geometrically (N—H = 0.86, C—H = 0.93-0.98 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(carrier)$ or $1.5U_{eq}(methyl carrier)$.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3290 (2)	0.12025 (10)	0.47589 (19)	0.0522 (5)	
H1	0.364970	0.156592	0.455041	0.063*	
C2	0.4059 (2)	0.07648 (12)	0.5367 (2)	0.0707 (7)	
H2	0.493445	0.083358	0.556614	0.085*	
C3	0.3535 (3)	0.02293 (13)	0.5679 (2)	0.0757 (8)	
Н3	0.405875	-0.006916	0.607098	0.091*	
C4	0.2245 (3)	0.01329 (11)	0.5414 (2)	0.0722 (7)	
H4	0.188850	-0.022728	0.564405	0.087*	
C5	0.1469 (2)	0.05674 (10)	0.4807 (2)	0.0582 (6)	
Н5	0.059071	0.049997	0.463143	0.070*	
C6	0.19914 (19)	0.11043 (9)	0.44583 (17)	0.0428 (5)	
C7	0.11605 (18)	0.15741 (9)	0.37990 (17)	0.0420 (5)	
C8	0.0443 (2)	0.15097 (9)	0.27198 (18)	0.0463 (5)	
C9	0.0366 (2)	0.09426 (11)	0.2012 (2)	0.0582 (6)	
C10	0.1382 (3)	0.00161 (12)	0.1628 (3)	0.0837 (9)	
H10A	0.114087	0.004609	0.076599	0.100*	
H10B	0.075277	-0.023292	0.195352	0.100*	
C11	0.2675 (4)	-0.02572 (15)	0.1905 (4)	0.1229 (14)	
H11A	0.327992	-0.002317	0.152983	0.184*	
H11B	0.265646	-0.066509	0.160525	0.184*	
H11C	0.292792	-0.026027	0.275777	0.184*	
C12	-0.0380 (2)	0.20264 (10)	0.21539 (18)	0.0519 (5)	
H12	-0.122409	0.185946	0.184374	0.062*	
C13	0.0185 (3)	0.22981 (12)	0.1105 (2)	0.0680 (7)	
C14	-0.0232 (3)	0.21119 (17)	-0.0070(2)	0.1011 (12)	
H14	-0.085904	0.181396	-0.021709	0.121*	
C15	0.0287 (5)	0.2370 (3)	-0.1013 (3)	0.145 (2)	
H15	0.000901	0.223983	-0.179177	0.173*	
C16	0.1202 (6)	0.2813 (2)	-0.0823 (5)	0.144 (3)	
H16	0.153730	0.298948	-0.146468	0.173*	
C17	0.1613 (4)	0.29910 (15)	0.0329 (4)	0.1202 (16)	
C18	0.1107 (3)	0.27333 (12)	0.1287 (3)	0.0807 (8)	
H18	0.140264	0.285992	0.206414	0.097*	
C19	-0.05774 (18)	0.25090 (9)	0.30708 (16)	0.0436 (5)	
C20	-0.1629 (2)	0.29297 (10)	0.26751 (18)	0.0472 (5)	
C21	-0.2648 (3)	0.38644 (12)	0.3016 (2)	0.0739 (8)	
H21A	-0.344665	0.368346	0.317869	0.089*	
H21B	-0.273729	0.397671	0.217502	0.089*	
C22	-0.2347 (5)	0.43973 (18)	0.3772 (4)	0.155 (2)	
H22A	-0.239300	0.429377	0.459385	0.232*	
H22B	-0.295244	0.471344	0.352380	0.232*	
H22C	-0.149612	0.453524	0.369464	0.232*	
C23	0.02010 (18)	0.25477 (8)	0.41280 (17)	0.0406 (4)	
C24	0.0185 (2)	0.30256 (9)	0.50681 (18)	0.0441 (5)	
C25	-0.0794 (3)	0.30666 (11)	0.5760 (2)	0.0629 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H25	-0.146413	0.278868	0.564751	0.075*	
C26	-0.0796 (3)	0.35092 (14)	0.6608 (2)	0.0842 (9)	
H26	-0.147338	0.353369	0.705811	0.101*	
C27	0.0169 (4)	0.39077 (16)	0.6798 (3)	0.0992 (11)	
H27	0.014864	0.421235	0.736649	0.119*	
C28	0.1178 (4)	0.38710 (14)	0.6167 (4)	0.1079 (12)	
H28	0.186047	0.414051	0.631768	0.129*	
C29	0.1177 (3)	0.34263 (12)	0.5293 (3)	0.0770 (8)	
H29	0.186363	0.340110	0.485386	0.092*	
N1	0.11284 (16)	0.21111 (7)	0.44327 (14)	0.0462 (4)	
H1A	0.170700	0.217468	0.503767	0.055*	
01	0.14323 (16)	0.06147 (7)	0.21670 (14)	0.0619 (4)	
O2	-0.0565 (2)	0.07963 (10)	0.1336 (2)	0.1071 (8)	
03	-0.24413 (15)	0.28243 (7)	0.18351 (14)	0.0628 (4)	
O4	-0.16058 (17)	0.34422 (8)	0.32941 (14)	0.0711 (5)	
Cl1	0.28030 (17)	0.35347 (5)	0.05870 (16)	0.1984 (9)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.0512 (13)	0.0519 (13)	0.0526 (13)	0.0048 (10)	0.0046 (10)	0.0055 (10)
C2	0.0581 (15)	0.0794 (18)	0.0730 (17)	0.0181 (13)	0.0034 (12)	0.0111 (14)
C3	0.092 (2)	0.0653 (17)	0.0690 (17)	0.0340 (15)	0.0064 (15)	0.0140 (13)
C4	0.102 (2)	0.0452 (14)	0.0692 (17)	0.0037 (14)	0.0108 (15)	0.0105 (12)
C5	0.0644 (14)	0.0484 (13)	0.0596 (14)	-0.0065 (11)	0.0007 (11)	0.0016 (11)
C6	0.0506 (12)	0.0378 (11)	0.0388 (11)	0.0021 (9)	0.0020 (9)	-0.0025 (8)
C7	0.0449 (11)	0.0408 (11)	0.0385 (11)	0.0007 (8)	-0.0001 (8)	-0.0020 (9)
C8	0.0507 (12)	0.0455 (12)	0.0403 (11)	0.0044 (9)	-0.0022 (9)	-0.0040 (9)
C9	0.0644 (15)	0.0546 (14)	0.0524 (13)	0.0029 (12)	-0.0039 (11)	-0.0124 (11)
C10	0.104 (2)	0.0551 (15)	0.092 (2)	0.0035 (15)	0.0138 (17)	-0.0272 (15)
C11	0.159 (4)	0.082 (2)	0.128 (3)	0.041 (2)	0.021 (3)	-0.018 (2)
C12	0.0555 (13)	0.0601 (13)	0.0364 (11)	0.0111 (10)	-0.0068 (9)	-0.0072 (10)
C13	0.0911 (18)	0.0708 (15)	0.0426 (13)	0.0412 (11)	0.0110 (12)	0.0098 (12)
C14	0.118 (3)	0.143 (3)	0.0401 (15)	0.069 (2)	0.0038 (15)	-0.0026 (17)
C15	0.185 (5)	0.209 (6)	0.0444 (18)	0.129 (4)	0.033 (3)	0.029 (3)
C16	0.199 (5)	0.150 (4)	0.106 (4)	0.124 (4)	0.101 (4)	0.076 (3)
C17	0.168 (4)	0.078 (2)	0.138 (3)	0.066 (2)	0.104 (3)	0.053 (2)
C18	0.111 (2)	0.0641 (16)	0.0769 (18)	0.0324 (12)	0.0474 (17)	0.0209 (14)
C19	0.0483 (11)	0.0482 (12)	0.0327 (10)	0.0067 (9)	-0.0002 (8)	-0.0019 (9)
C20	0.0525 (12)	0.0559 (13)	0.0328 (10)	0.0070 (10)	0.0050 (9)	0.0042 (10)
C21	0.0843 (19)	0.0685 (16)	0.0691 (16)	0.0350 (14)	0.0107 (14)	0.0115 (14)
C22	0.221 (5)	0.117 (3)	0.110 (3)	0.104 (3)	-0.036 (3)	-0.041 (2)
C23	0.0440 (11)	0.0396 (10)	0.0373 (10)	0.0006 (8)	0.0022 (8)	-0.0002 (8)
C24	0.0490 (12)	0.0406 (11)	0.0389 (11)	0.0031 (9)	-0.0072 (9)	-0.0024 (9)
C25	0.0761 (17)	0.0670 (15)	0.0465 (13)	-0.0036 (12)	0.0120 (12)	-0.0082 (11)
C26	0.113 (2)	0.094 (2)	0.0462 (15)	0.024 (2)	0.0122 (15)	-0.0156 (15)
C27	0.120 (3)	0.084 (2)	0.083 (2)	0.030 (2)	-0.025 (2)	-0.0421 (18)
C28	0.097 (2)	0.0656 (19)	0.149 (3)	-0.0134 (17)	-0.027(2)	-0.042 (2)

data reports

C29 N1	0.0648 (16)	0.0627 (16)	0.103(2) 0.0407(9)	-0.0076(13) 0.0060(8)	0.0079(15) -0.0105(7)	-0.0216(15) -0.0062(7)
01	0.0737 (11)	0.0501 (9)	0.0595 (10)	0.0076 (8)	0.0005 (8)	-0.0173(7)
02	0.0845 (14)	0.0985 (15)	0.1233 (17)	0.0145 (12)	-0.0388 (13)	-0.0616 (14)
03	0.0619 (10)	0.0706 (11)	0.0497 (9)	0.0097 (8)	-0.0143 (8)	0.0042 (8)
O4	0.0870 (12)	0.0666 (11)	0.0532 (10)	0.0368 (9)	-0.0139 (8)	-0.0104 (8)
Cl1	0.2676 (17)	0.0805 (7)	0.2945 (19)	0.0159 (8)	0.2084 (16)	0.0452 (8)

Geometric parameters (Å, °)

C1—C6	1.379 (3)	C15—C16	1.369 (7)
C1—C2	1.380 (3)	С15—Н15	0.9300
C1—H1	0.9300	C16—C17	1.366 (7)
C2—C3	1.369 (4)	C16—H16	0.9300
С2—Н2	0.9300	C17—C18	1.387 (4)
C3—C4	1.366 (4)	C17—Cl1	1.729 (5)
С3—Н3	0.9300	C18—H18	0.9300
C4—C5	1.378 (3)	C19—C23	1.351 (3)
C4—H4	0.9300	C19—C20	1.465 (3)
C5—C6	1.385 (3)	С20—ОЗ	1.207 (2)
С5—Н5	0.9300	C20—O4	1.326 (3)
C6—C7	1.487 (3)	C21—O4	1.440 (3)
C7—C8	1.346 (3)	C21—C22	1.460 (5)
C7—N1	1.385 (2)	C21—H21A	0.9700
C8—C9	1.479 (3)	C21—H21B	0.9700
C8—C12	1.518 (3)	C22—H22A	0.9600
C9—O2	1.199 (3)	C22—H22B	0.9600
C9—O1	1.326 (3)	С22—Н22С	0.9600
C10—O1	1.451 (3)	C23—N1	1.380 (2)
C10—C11	1.481 (4)	C23—C24	1.495 (3)
C10—H10A	0.9700	C24—C29	1.365 (3)
C10—H10B	0.9700	C24—C25	1.375 (3)
C11—H11A	0.9600	C25—C26	1.366 (4)
C11—H11B	0.9600	С25—Н25	0.9300
C11—H11C	0.9600	C26—C27	1.338 (5)
C12—C13	1.516 (3)	С26—Н26	0.9300
C12—C19	1.516 (3)	C27—C28	1.357 (5)
C12—H12	0.9800	С27—Н27	0.9300
C13—C18	1.360 (4)	C28—C29	1.389 (4)
C13—C14	1.395 (4)	C28—H28	0.9300
C14—C15	1.380 (6)	С29—Н29	0.9300
C14—H14	0.9300	N1—H1A	0.8600
C6—C1—C2	120.4 (2)	C17—C16—C15	118.5 (4)
C6—C1—H1	119.8	C17—C16—H16	120.8
C2-C1-H1	119.8	C15—C16—H16	120.8
C3—C2—C1	120.1 (3)	C16—C17—C18	120.9 (5)
С3—С2—Н2	119.9	C16—C17—Cl1	119.1 (3)

C1—C2—H2	119.9	C18—C17—Cl1	120.0 (4)
C4—C3—C2	120.1 (2)	C13—C18—C17	120.9 (4)
С4—С3—Н3	120.0	C13—C18—H18	119.5
С2—С3—Н3	120.0	C17—C18—H18	119.5
C3—C4—C5	120.2 (2)	C23—C19—C20	124.64 (18)
C3—C4—H4	119.9	C23—C19—C12	121.34 (18)
C5—C4—H4	119.9	C20—C19—C12	113.96 (16)
C4—C5—C6	120.3 (2)	O3—C20—O4	122.37 (19)
C4—C5—H5	119.8	O3—C20—C19	122.7 (2)
С6—С5—Н5	119.8	O4—C20—C19	114.95 (18)
C1—C6—C5	118.9 (2)	O4—C21—C22	107.3 (2)
C1—C6—C7	120.52 (18)	O4—C21—H21A	110.3
C5—C6—C7	120.57 (19)	C22—C21—H21A	110.3
C8—C7—N1	120.27 (17)	O4—C21—H21B	110.3
C8—C7—C6	126.50 (18)	C22—C21—H21B	110.3
N1—C7—C6	113.18 (16)	H21A—C21—H21B	108.5
C7—C8—C9	123.88 (19)	C21—C22—H22A	109.5
C7—C8—C12	121.08 (18)	C21—C22—H22B	109.5
C9—C8—C12	115.03 (17)	H22A—C22—H22B	109.5
02	122.6 (2)	C21—C22—H22C	109.5
02	123.3 (2)	H22A—C22—H22C	109.5
01	114.02 (19)	H22B—C22—H22C	109.5
O1—C10—C11	107.6 (2)	C19—C23—N1	119.80 (17)
O1—C10—H10A	110.2	C19—C23—C24	127.08 (17)
C11—C10—H10A	110.2	N1—C23—C24	113.12 (16)
O1—C10—H10B	110.2	C29—C24—C25	117.7 (2)
C11—C10—H10B	110.2	C29—C24—C23	120.3 (2)
H10A—C10—H10B	108.5	C25—C24—C23	121.89 (19)
C10—C11—H11A	109.5	C26—C25—C24	121.0 (3)
C10—C11—H11B	109.5	С26—С25—Н25	119.5
H11A—C11—H11B	109.5	С24—С25—Н25	119.5
C10—C11—H11C	109.5	C27—C26—C25	120.5 (3)
H11A—C11—H11C	109.5	С27—С26—Н26	119.8
H11B—C11—H11C	109.5	C25—C26—H26	119.8
C13—C12—C19	110.89 (19)	C26—C27—C28	120.5 (3)
C13—C12—C8	111.17 (18)	С26—С27—Н27	119.7
C19—C12—C8	111.44 (16)	С28—С27—Н27	119.7
C13—C12—H12	107.7	C27—C28—C29	119.2 (3)
C19—C12—H12	107.7	C27—C28—H28	120.4
C8—C12—H12	107.7	С29—С28—Н28	120.4
C18—C13—C14	118.4 (3)	C24—C29—C28	120.9 (3)
C18—C13—C12	120.7 (2)	С24—С29—Н29	119.5
C14—C13—C12	121.0 (3)	С28—С29—Н29	119.5
C15—C14—C13	120.0 (4)	C23—N1—C7	122.35 (16)
C15—C14—H14	120.0	C23—N1—H1A	118.8
C13—C14—H14	120.0	C7—N1—H1A	118.8
C16—C15—C14	121.2 (5)	C9—O1—C10	117.38 (19)
C16—C15—H15	119.4	C20-04-C21	118.62 (19)

C14—C15—H15	119.4		
C6—C1—C2—C3	-0.1 (4)	C16—C17—C18—C13	-0.2 (5)
C1—C2—C3—C4	-1.6 (4)	Cl1—C17—C18—C13	-179.0 (2)
C2—C3—C4—C5	1.6 (4)	C13—C12—C19—C23	-106.0 (2)
C3—C4—C5—C6	0.2 (4)	C8—C12—C19—C23	18.4 (3)
C2-C1-C6-C5	1.8 (3)	C13—C12—C19—C20	71.5 (2)
C2-C1-C6-C7	-179.8 (2)	C8—C12—C19—C20	-164.12 (18)
C4C5C6C1	-1.9 (3)	C23—C19—C20—O3	-166.5 (2)
C4—C5—C6—C7	179.7 (2)	C12—C19—C20—O3	16.2 (3)
C1—C6—C7—C8	120.3 (2)	C23—C19—C20—O4	14.9 (3)
C5—C6—C7—C8	-61.3 (3)	C12—C19—C20—O4	-162.47 (18)
C1—C6—C7—N1	-62.4 (2)	C20-C19-C23-N1	177.24 (18)
C5—C6—C7—N1	116.0 (2)	C12-C19-C23-N1	-5.6 (3)
N1—C7—C8—C9	-176.6 (2)	C20-C19-C23-C24	-2.3 (3)
C6—C7—C8—C9	0.5 (3)	C12—C19—C23—C24	174.84 (19)
N1-C7-C8-C12	2.0 (3)	C19—C23—C24—C29	-111.8 (3)
C6—C7—C8—C12	179.1 (2)	N1-C23-C24-C29	68.6 (3)
C7—C8—C9—O2	150.2 (3)	C19—C23—C24—C25	70.4 (3)
C12—C8—C9—O2	-28.4 (4)	N1-C23-C24-C25	-109.2 (2)
C7—C8—C9—O1	-31.4 (3)	C29—C24—C25—C26	2.6 (4)
C12—C8—C9—O1	150.0 (2)	C23—C24—C25—C26	-179.5 (2)
C7—C8—C12—C13	107.7 (2)	C24—C25—C26—C27	-1.1 (4)
C9—C8—C12—C13	-73.6 (3)	C25—C26—C27—C28	-1.3 (5)
C7—C8—C12—C19	-16.6 (3)	C26—C27—C28—C29	2.1 (5)
C9—C8—C12—C19	162.14 (18)	C25—C24—C29—C28	-1.8 (4)
C19—C12—C13—C18	39.7 (3)	C23—C24—C29—C28	-179.7 (3)
C8—C12—C13—C18	-84.9 (3)	C27—C28—C29—C24	-0.4 (5)
C19—C12—C13—C14	-139.9 (2)	C19—C23—N1—C7	-11.5 (3)
C8—C12—C13—C14	95.6 (3)	C24—C23—N1—C7	168.13 (17)
C18—C13—C14—C15	-0.2 (4)	C8—C7—N1—C23	13.4 (3)
C12-C13-C14-C15	179.3 (3)	C6-C7-N1-C23	-164.10 (17)
C13-C14-C15-C16	-0.6 (6)	O2—C9—O1—C10	-9.3 (4)
C14—C15—C16—C17	1.0 (7)	C8—C9—O1—C10	172.2 (2)
C15-C16-C17-C18	-0.6 (6)	C11—C10—O1—C9	179.2 (3)
C15—C16—C17—Cl1	178.1 (3)	O3—C20—O4—C21	5.3 (3)
C14—C13—C18—C17	0.7 (4)	C19—C20—O4—C21	-176.1 (2)
C12—C13—C18—C17	-178.9 (2)	C22—C21—O4—C20	-176.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H…A
N1—H1A····O3 ⁱ	0.86	2.10	2.910 (2)	158

Symmetry code: (i) x+1/2, -y+1/2, z+1/2.