

IUCrData

ISSN 2414-3146

Received 28 November 2019 Accepted 2 December 2019

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; metal cluster; N-H···Cl contact; cadmium.

CCDC reference: 1969371

Structural data: full structural data are available from iucrdata.iucr.org

Di- μ_3 -chlorido-tetra- μ_2 -chlorido-dichloridotetrakis(N,N-diethylethane-1,2-diamine- $\kappa^2 N,N'$)tetracadmium(II)

Abdul-Razak H. Al-Sudani,^a Myasim Qasim Abdulridha^a and Benson M. Kariuki^{b*}

^aDepartment of Chemistry, College of Science for Women, University of Baghdad, Iraq, and ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, UK. *Correspondence e-mail: kariukib@cardiff.ac.uk

In the title compound, $[Cd_4Cl_8(C_6H_{16}N_2)_4]$, the Cd^{2+} cations and Cl^- anions form M_4Cl_8 clusters with six of the Cl^- ions bridging Cd^{2+} cations and two being pendant. Each Cd^{2+} cation has distorted octahedral coordination completed by four Cl^- ions and two N atoms of the asymmetrical bidentate amino ligand. The cluster consists of pairs of face-sharing hexahedra linked by a shared edge.

Structure description

The coordination chemistry of cadmium is of interest to a wide range of disciplines ranging from toxicology to catalysis (Melnik *et al.*, 2009; Andersen *et al.*, 1984).

In the crystal structure, each complex unit has four amino ligands with two nitrogen atoms of each ligand coordinating to one Cd^{2+} ion (Fig. 1). The complex is centrosymmetric with the asymmetric unit consisting of half of the complex unit. One ligand of the asymmetric unit is disordered with two components of 0.553 (13) and 0.447 (13) occupancy.

The Cd^{2+} cations and Cl^- ions form Cd_4Cl_8 clusters with six bridging and two pendant Cl^- ions. $Cd \cdots Cl$ distances range from 2.5158 (19) to 2.8227 (18) Å in the cluster. A similar M_4Cl_8 core has been reported for an Ni^{II} complex (Kermagoret *et al.*, 2007). Each Cd^{2+} cation has a distorted octahedral coordination completed by four Cl^- ions and two nitrogen atoms of the bidentate amino ligand. The cluster consists of pairs of face-sharing hexahedra linked by a shared edge. The complex units are linked by intermolecular N-H···Cl contacts with N···Cl distances in the range 3.407 (6) to 3.548 (6) Å and N-H···Cl angles in the range 140.5 to 146.3° (Fig. 2, Table 1). Each complex unit donates four and accepts four N-H···Cl contacts with each pendant Cl^- accepting two bonds from different units.

Table 1			
Hydrogen-bond	geometry (Å, °)		
$D - H \cdots A$	D-H	$H \cdots A$	D···

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2C\cdots Cl4^{i}$	0.89	2.82	3.548 (6)	141
$N2-H2D\cdots Cl4^{ii}$	0.89	2.63	3.407 (6)	146
$N4-H4D\cdots Cl4^{iii}$	0.89	2.71	3.463 (6)	143

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z; (iii) -x + 2, -y, -z.

Synthesis and crystallization

The cadmium complex was prepared by direct reaction of equimolar amounts of cadmium dichloride and *N*-diethyl-aminoethylamine in ethanol at room temperature. The white solid obtained was separated by filtration after three hours, washed with 5 ml cold ethanol and then three times (5 ml each) with diethyl ether. Based on the cadmium dichloride used, the yield was 85%. Crystallization from warm methanol solution in open air produced colourless crystals.

Figure 1

An *ORTEP* representation of the complex showing 50% probability ellipsoids (only the major component of the disordered ligand is shown). Symmetry code: (i) 1 - x, 1 - y, -z.

Figure 2

A segment of the crystal packing showing intermolecular $N{-}H{\cdots}Cl$ contacts as red dotted lines.

Table 2Experimental details.	
Crystal data	
Chemical formula	$[Cd_2Cl_4(C_6H_{16}N_2)_2]$
M _r	599.01
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.3622 (10), 9.4023 (10), 12.4248 (9)
α, β, γ (°)	87.667 (7), 86.171 (7), 81.993 (9)
$V(Å^3)$	1080.08 (18)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	2.46
Crystal size (mm)	$0.26 \times 0.17 \times 0.06$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Dual, Cu at home/near, Atlas
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.498, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15671, 5120, 3897
R _{int}	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.701
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.131, 1.07
No. of reflections	5120
No. of parameters	247
No. of restraints	390
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.01, -1.42

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The geometry and displacement parameters associated with the disordered atoms of the ligand were restrained during refinement.

Acknowledgements

Continued support by Cardiff University is acknowledged.

References

- Andersen, O. (1984). EHP, Environ. Health Perspect. 54, 249-266.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kermagoret, A., Pattacini, R., Chavez Vasquez, P., Rogez, G., Welter, R. & Braunstein, P. (2007). Angew. Chem. Int. Ed. 46, 6438–6441.
- Melnik, M., Valent, A. & Kohutova, M. (2009). *Main Group Met. Chem.* **32**, 269–295.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2019). **4**, x191618 [https://doi.org/10.1107/S2414314619016183]

Di- μ_3 -chlorido-tetra- μ_2 -chlorido-dichloridotetrakis(N,N-diethylethane-1,2-diamine- $\kappa^2 N, N'$)tetracadmium(II)

Abdul-Razak H. Al-Sudani, Myasim Qasim Abdulridha and Benson M. Kariuki

 $\text{Di-}\mu_3$ -chlorido-tetra- μ_2 -chlorido-dichloridotetrakis(N,N-diethylethane-1,2-diamine- $\kappa^2 N,N'$)tetracadmium(II)

Z = 2

F(000) = 592

 $\theta = 4.3 - 29.0^{\circ}$

 $\mu = 2.46 \text{ mm}^{-1}$

Plate, colourless

 $0.26 \times 0.17 \times 0.06 \text{ mm}$

 $\theta_{\rm max} = 29.9^\circ, \ \theta_{\rm min} = 2.2^\circ$

5120 independent reflections

3897 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.042$

 $h = -12 \rightarrow 12$

 $k = -13 \rightarrow 11$

 $l = -16 \rightarrow 17$

 $D_{\rm x} = 1.842 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3382 reflections

Crystal data

 $\begin{bmatrix} Cd_2Cl_4(C_6H_{16}N_2)_2 \end{bmatrix} \\ M_r = 599.01 \\ \text{Triclinic, } P1 \\ a = 9.3622 (10) \text{ Å} \\ b = 9.4023 (10) \text{ Å} \\ c = 12.4248 (9) \text{ Å} \\ a = 87.667 (7)^{\circ} \\ \beta = 86.171 (7)^{\circ} \\ \gamma = 81.993 (9)^{\circ} \\ V = 1080.08 (18) \text{ Å}^3 \end{bmatrix}$

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas diffractometer ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) $T_{\min} = 0.498, T_{\max} = 1.000$ 15671 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.0348P)^2 + 6.2177P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
5120 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
247 parameters	$\Delta \rho_{\rm max} = 1.01 \text{ e } \text{\AA}^{-3}$
390 restraints	$\Delta \rho_{\min} = -1.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times $U_{eq}(C)$. C—H distances for methylene groups were set to 0.97 Å and their $U_{iso}(H)$ set to 1.2 times the $U_{eq}(C)$. N—H distances for methylene groups were set to 0.89 Å and their $U_{iso}(H)$ set to 1.2 times the $U_{eq}(N)$.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.3866 (10)	0.7344 (10)	0.3329 (9)	0.082 (3)	
H1A	0.465814	0.696964	0.284423	0.123*	
H1B	0.407495	0.704330	0.405591	0.123*	
H1C	0.372739	0.837455	0.326914	0.123*	
C2	0.2507 (8)	0.6784 (7)	0.3041 (7)	0.0558 (19)	
H2A	0.173933	0.708569	0.358127	0.067*	
H2B	0.221937	0.722091	0.235435	0.067*	
C3	0.2355 (13)	0.4747 (12)	0.4994 (6)	0.089 (3)	
H3A	0.142236	0.444258	0.496016	0.133*	
H3B	0.223962	0.575986	0.511236	0.133*	
H3C	0.284821	0.423647	0.557614	0.133*	
C4	0.3231 (8)	0.4433 (8)	0.3941 (5)	0.0545 (18)	
H4A	0.419740	0.466318	0.401386	0.065*	
H4B	0.331569	0.340956	0.382622	0.065*	
C5	0.1245 (7)	0.4757 (8)	0.2735 (5)	0.0514 (17)	
H5A	0.132528	0.371930	0.281572	0.062*	
H5B	0.051170	0.516084	0.326825	0.062*	
C6	0.0763 (8)	0.5190 (9)	0.1657 (6)	0.060 (2)	
H6A	0.063721	0.622981	0.158022	0.073*	
H6B	-0.016600	0.487290	0.157711	0.073*	
N1	0.2651 (5)	0.5211 (5)	0.2966 (4)	0.0394 (12)	
C7	0.714 (4)	-0.077 (3)	0.4663 (12)	0.073 (6)	0.553 (13)
H7A	0.635299	-0.063720	0.520053	0.110*	0.553 (13)
H7B	0.730646	-0.176329	0.446588	0.110*	0.553 (13)
H7C	0.799720	-0.052313	0.494931	0.110*	0.553 (13)
C8	0.6775 (13)	0.0172 (16)	0.3676 (9)	0.048 (3)	0.553 (13)
H8A	0.588856	-0.007556	0.341762	0.057*	0.553 (13)
H8B	0.657684	0.116019	0.389934	0.057*	0.553 (13)
C9	0.926 (2)	0.1786 (15)	0.3716 (14)	0.072 (5)	0.553 (13)
H9A	1.021730	0.188722	0.390221	0.108*	0.553 (13)
H9B	0.889663	0.258784	0.326183	0.108*	0.553 (13)
H9C	0.863855	0.175657	0.436148	0.108*	0.553 (13)
C10	0.9295 (11)	0.0413 (15)	0.3123 (12)	0.060 (4)	0.553 (13)
H10A	0.969293	-0.038212	0.358338	0.072*	0.553 (13)
H10B	0.995039	0.044716	0.248637	0.072*	0.553 (13)
C11	0.8223 (14)	-0.1326 (11)	0.2264 (10)	0.056 (3)	0.553 (13)
H11A	0.922980	-0.142333	0.200069	0.067*	0.553 (13)
H11B	0.813489	-0.206590	0.282200	0.067*	0.553 (13)
C12	0.7378 (10)	-0.1610 (8)	0.1385 (7)	0.064 (2)	0.553 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12A	0.785831	-0.246872	0.103918	0.076*	0.553 (13)
H12B	0.644811	-0.182497	0.169054	0.076*	0.553 (13)
N3	0.7854 (6)	0.0103 (6)	0.2774 (4)	0.0485 (13)	0.553 (13)
C7A	0.717 (5)	-0.036 (4)	0.4747 (16)	0.086 (10)	0.447 (13)
H7D	0.660368	0.008251	0.534889	0.129*	0.447 (13)
H7E	0.682484	-0.124036	0.459786	0.129*	0.447 (13)
H7F	0.816379	-0.055382	0.491673	0.129*	0.447 (13)
C8A	0.703 (2)	0.0650 (18)	0.3765 (11)	0.054 (4)	0.447 (13)
H8C	0.601901	0.086166	0.361723	0.065*	0.447 (13)
H8D	0.735526	0.154681	0.393546	0.065*	0.447 (13)
C9A	1.006 (2)	0.109 (2)	0.320 (2)	0.086 (6)	0.447 (13)
H9D	1.108561	0.084451	0.324111	0.129*	0.447 (13)
H9E	0.987038	0.186474	0.267480	0.129*	0.447 (13)
H9F	0.963054	0.138641	0.388936	0.129*	0.447 (13)
C10A	0.9423 (11)	-0.0202 (18)	0.2858 (17)	0.066 (4)	0.447 (13)
H10C	0.987562	-0.050771	0.216465	0.079*	0.447 (13)
H10D	0.963571	-0.098619	0.337960	0.079*	0.447 (13)
C11A	0.7214 (17)	-0.1211 (14)	0.2495 (9)	0.049 (3)	0.447 (13)
H11C	0.764720	-0.201795	0.292893	0.059*	0.447 (13)
H11D	0.618980	-0.105711	0.270666	0.059*	0.447 (13)
C12A	0.7378 (10)	-0.1610 (8)	0.1385 (7)	0.064 (2)	0.447 (13)
H12C	0.673030	-0.231003	0.129259	0.076*	0.447 (13)
H12D	0.835534	-0.209166	0.125144	0.076*	0.447 (13)
N3A	0.7854 (6)	0.0103 (6)	0.2774 (4)	0.0485 (13)	0.447 (13)
N2	0.1805 (6)	0.4578 (6)	0.0801 (4)	0.0433 (13)	
H2C	0.174767	0.515162	0.021306	0.052*	
H2D	0.159441	0.372377	0.063023	0.052*	
N4	0.7120 (7)	-0.0498 (6)	0.0565 (5)	0.0477 (14)	
H4C	0.627621	-0.054594	0.028690	0.057*	
H4D	0.781024	-0.062664	0.003613	0.057*	
C11	0.41595 (19)	0.15941 (18)	0.19230 (15)	0.0480 (4)	
C12	0.44096 (18)	0.68635 (17)	0.04175 (13)	0.0431 (4)	
C13	0.66065 (18)	0.41883 (19)	0.21743 (14)	0.0473 (4)	
Cl4	0.9546 (2)	0.2105 (2)	0.04702 (19)	0.0635 (5)	
Cd1	0.40910 (5)	0.43345 (5)	0.13790 (4)	0.03912 (14)	
Cd2	0.70911 (5)	0.17078 (5)	0.12779 (4)	0.04159 (15)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.085 (7)	0.066 (6)	0.097 (7)	-0.025 (5)	0.027 (6)	-0.028 (5)
C2	0.059 (5)	0.041 (4)	0.064 (4)	-0.002 (3)	0.017 (4)	-0.010 (3)
C3	0.109 (8)	0.107 (8)	0.044 (5)	-0.001 (6)	0.013 (5)	0.000 (5)
C4	0.056 (4)	0.064 (5)	0.042 (4)	-0.005 (4)	0.001 (3)	-0.002(3)
C5	0.040 (4)	0.064 (4)	0.049 (4)	-0.008 (3)	0.013 (3)	-0.005 (3)
C6	0.040 (4)	0.068 (5)	0.068 (5)	0.007 (3)	0.001 (4)	0.001 (4)
N1	0.037 (3)	0.043 (3)	0.038 (3)	-0.007 (2)	0.004 (2)	-0.002 (2)
C7	0.102 (12)	0.076 (13)	0.043 (9)	-0.022 (11)	-0.010 (9)	0.023 (8)

C8	0.051 (6)	0.051 (7)	0.044 (6)	-0.018 (5)	-0.003 (5)	0.005 (5)
C9	0.076 (11)	0.056 (9)	0.091 (12)	-0.023 (8)	-0.033 (9)	-0.003 (8)
C10	0.057 (7)	0.059 (8)	0.055 (7)	0.024 (6)	-0.002 (6)	0.016 (6)
C11	0.065 (6)	0.039 (5)	0.058 (6)	0.007 (5)	-0.004 (5)	-0.001 (5)
C12	0.076 (5)	0.047 (4)	0.070 (4)	-0.014 (4)	-0.012 (4)	0.000 (3)
N3	0.063 (3)	0.039 (3)	0.042 (3)	0.001 (2)	-0.006 (3)	-0.001 (2)
C7A	0.109 (16)	0.080 (18)	0.061 (13)	0.007 (15)	0.009 (12)	0.006 (11)
C8A	0.065 (8)	0.049 (8)	0.049 (7)	-0.011 (7)	-0.007 (7)	0.005 (6)
C9A	0.082 (14)	0.087 (14)	0.093 (14)	-0.018 (11)	-0.018 (12)	-0.005 (12)
C10A	0.059 (7)	0.058 (8)	0.069 (8)	0.019 (7)	0.002 (7)	0.014 (7)
C11A	0.055 (6)	0.039 (6)	0.051 (6)	-0.008 (5)	0.006 (6)	-0.001 (5)
C12A	0.076 (5)	0.047 (4)	0.070 (4)	-0.014 (4)	-0.012 (4)	0.000 (3)
N3A	0.063 (3)	0.039 (3)	0.042 (3)	0.001 (2)	-0.006 (3)	-0.001 (2)
N2	0.044 (3)	0.043 (3)	0.044 (3)	-0.008 (2)	-0.001 (2)	-0.001 (2)
N4	0.054 (4)	0.045 (3)	0.042 (3)	0.001 (3)	-0.004 (3)	-0.005 (2)
Cl1	0.0453 (9)	0.0411 (8)	0.0549 (10)	-0.0014 (7)	0.0034 (8)	0.0047 (7)
Cl2	0.0476 (9)	0.0430 (8)	0.0370 (8)	-0.0030 (7)	0.0026 (7)	0.0002 (6)
Cl3	0.0386 (9)	0.0483 (9)	0.0544 (10)	0.0014 (7)	-0.0098 (7)	-0.0096 (7)
Cl4	0.0472 (10)	0.0562 (11)	0.0829 (14)	-0.0023 (8)	0.0150 (10)	0.0002 (10)
Cd1	0.0324 (3)	0.0429 (3)	0.0388 (3)	0.00378 (19)	0.00272 (19)	-0.00057 (19)
Cd2	0.0398 (3)	0.0354 (3)	0.0466 (3)	0.00223 (19)	0.0016 (2)	0.0013 (2)

Geometric parameters (Å, °)

C1—C2	1.512 (10)	C12—H12A	0.9700
C1—H1A	0.9600	C12—H12B	0.9700
C1—H1B	0.9600	N3—Cd2	2.427 (5)
C1—H1C	0.9600	C7A—C8A	1.516 (11)
C2—N1	1.473 (7)	C7A—H7D	0.9600
C2—H2A	0.9700	С7А—Н7Е	0.9600
C2—H2B	0.9700	C7A—H7F	0.9600
C3—C4	1.514 (9)	C8A—N3A	1.479 (9)
С3—НЗА	0.9600	C8A—H8C	0.9700
С3—Н3В	0.9600	C8A—H8D	0.9700
С3—Н3С	0.9600	C9A—C10A	1.514 (12)
C4—N1	1.484 (8)	C9A—H9D	0.9600
C4—H4A	0.9700	С9А—Н9Е	0.9600
C4—H4B	0.9700	C9A—H9F	0.9600
C5—C6	1.465 (9)	C10A—N3A	1.467 (10)
C5—N1	1.488 (7)	C10A—H10C	0.9700
C5—H5A	0.9700	C10A—H10D	0.9700
С5—Н5В	0.9700	C11A—C12A	1.436 (10)
C6—N2	1.473 (9)	C11A—N3A	1.508 (9)
С6—Н6А	0.9700	C11A—H11C	0.9700
С6—Н6В	0.9700	C11A—H11D	0.9700
N1—Cd1	2.419 (5)	C12A—N4	1.437 (9)
С7—С8	1.516 (11)	C12A—H12C	0.9700
С7—Н7А	0.9600	C12A—H12D	0.9700

С7—Н7В	0.9600	N3A—Cd2	2.427 (5)
C7—H7C	0.9600	N2—Cd1	2.282 (6)
C8—N3	1.455 (9)	N2—H2C	0.8900
C8—H8A	0.9700	N2—H2D	0.8900
C8—H8B	0.9700	N4—Cd2	2.285 (6)
C9—C10	1.507 (12)	N4—H4C	0.8900
С9—Н9А	0.9600	N4—H4D	0.8900
С9—Н9В	0.9600	C11—Cd1	2.6302 (17)
С9—Н9С	0.9600	C11—Cd2	2.8227 (18)
C10—N3	1.514 (10)	C12—Cd1	2.6625 (17)
С10—Н10А	0.9700	Cl2—Cd1 ⁱ	2.7509 (16)
C10—H10B	0.9700	$C12$ — $Cd2^{i}$	2.8027 (17)
C11—C12	1.445 (10)	Cl3—Cd2	2.5952 (18)
C11—N3	1.495 (9)	Cl3—Cd1	2.5983 (18)
C11—H11A	0.9700	Cl4—Cd2	2.5158 (19)
C11—H11B	0.9700	Cd1—Cd2	3.4713 (8)
C12—N4	1 437 (9)		5.1,15 (0)
	1.107 (3)		
С2—С1—Н1А	109.5	C10A—C9A—H9D	109.5
C_2 — C_1 — H_1B	109.5	C10A - C9A - H9E	109.5
HIA-CI-HIB	109.5	H9D—C9A—H9E	109.5
$C^2 - C^1 - H^1 C$	109.5	C10A - C9A - H9F	109.5
HIA-CI-HIC	109.5	H9D—C9A—H9F	109.5
HIB-C1-HIC	109.5	H9F_C9A_H9F	109.5
N1-C2-C1	114 4 (6)	N3A—C10A—C9A	112.3 (11)
N1-C2-H2A	108 7	N3A—C10A—H10C	109.1
C1 - C2 - H2A	108.7	C9A - C10A - H10C	109.1
N1-C2-H2B	108.7	N3A—C10A—H10D	109.1
C1-C2-H2B	108.7	C9A - C10A - H10D	109.1
H_2A — C_2 — H_2B	107.6	H10C-C10A-H10D	107.9
C4—C3—H3A	109.5	C12A— $C11A$ — $N3A$	116.9 (8)
C4—C3—H3B	109.5	C12A - C11A - H11C	108.1
H3A-C3-H3B	109.5	N3A—C11A—H11C	108.1
C4-C3-H3C	109.5	C12A— $C11A$ — $H11D$	108.1
H3A-C3-H3C	109.5	N3A—C11A—H11D	108.1
H3B-C3-H3C	109.5	$H_{11}C_{}C_{11}A_{}H_{11}D$	107.3
N1-C4-C3	116.0 (6)	C11A - C12A - N4	118.4 (8)
N1—C4—H4A	108.3	C11A - C12A - H12C	107.7
C3—C4—H4A	108.3	N4—C12A—H12C	107.7
N1—C4—H4B	108.3	C_{11A} C_{12A} H_{12D}	107.7
C3-C4-H4B	108.3	N4—C12A—H12D	107.7
H4A—C4—H4B	107.4	H12C— $C12A$ — $H12D$	107.1
C6	114 4 (6)	C10A - N3A - C8A	114.8(10)
C6-C5-H5A	108 7	C10A - N3A - C11A	114.0(10) 112.0(9)
N1—C5—H5A	108 7	C8A - N3A - C11A	106.0 (8)
C6—C5—H5B	108 7	C10A - N3A - Cd2	114 9 (9)
N1-C5-H5B	108 7	C8A - N3A - Cd2	107 9 (8)
H5A_C5_H5B	107.6	$C11A = N3A = Cd^2$	99 9 (6)
	107.0	01111 11011 042	<i>(</i>), <i>(</i>)

C5—C6—N2	111.8 (6)	C6—N2—Cd1	109.8 (4)
С5—С6—Н6А	109.3	C6—N2—H2C	109.7
N2—C6—H6A	109.3	Cd1—N2—H2C	109.7
С5—С6—Н6В	109.3	C6—N2—H2D	109.7
N2—C6—H6B	109.3	Cd1—N2—H2D	109.7
H6A—C6—H6B	107.9	H2C—N2—H2D	108.2
C2—N1—C4	113.0 (5)	C12A—N4—Cd2	110.2 (4)
C2—N1—C5	110.5 (5)	C12—N4—Cd2	110.2 (4)
C4—N1—C5	110.6 (5)	C12—N4—H4C	109.6
C2—N1—Cd1	112.9 (4)	Cd2—N4—H4C	109.6
C4—N1—Cd1	109.5 (4)	C12—N4—H4D	109.6
C5—N1—Cd1	99.5 (4)	Cd2—N4—H4D	109.6
С8—С7—Н7А	109.5	H4C—N4—H4D	108.1
C8—C7—H7B	109.5	Cd1—Cl1—Cd2	78.99 (5)
H7A—C7—H7B	109.5	$Cd1$ — $Cl2$ — $Cd1^i$	93.97 (5)
C8—C7—H7C	109.5	$Cd1$ — $Cl2$ — $Cd2^i$	128.87 (7)
H7A—C7—H7C	109.5	$Cd1^{i}$ — $Cl2$ — $Cd2^{i}$	77.36 (4)
H7B-C7-H7C	109.5	Cd2— $Cl3$ — $Cd1$	83.89 (5)
N3—C8—C7	117.1 (11)	N2—Cd1—N1	78.02 (18)
N3—C8—H8A	108.0	N2—Cd1—Cl3	175.17 (15)
C7—C8—H8A	108.0	N1—Cd1—Cl3	97.32 (13)
N3—C8—H8B	108.0	N2—Cd1—Cl1	94.40 (15)
С7—С8—Н8В	108.0	N1—Cd1—Cl1	95.61 (12)
H8A—C8—H8B	107.3	Cl3—Cd1—Cl1	87.24 (6)
С10—С9—Н9А	109.5	N2—Cd1—Cl2	88.67 (14)
С10—С9—Н9В	109.5	N1—Cd1—Cl2	98.15 (12)
H9A—C9—H9B	109.5	Cl3—Cd1—Cl2	90.80 (6)
С10—С9—Н9С	109.5	Cl1—Cd1—Cl2	166.24 (5)
Н9А—С9—Н9С	109.5	N2—Cd1—Cl2 ⁱ	99.30 (14)
H9B—C9—H9C	109.5	N1—Cd1—Cl2 ⁱ	174.93 (12)
C9—C10—N3	115.6 (9)	Cl3—Cd1—Cl2 ⁱ	85.45 (5)
С9—С10—Н10А	108.4	Cl1—Cd1—Cl2 ⁱ	80.24 (5)
N3—C10—H10A	108.4	Cl2—Cd1—Cl2 ⁱ	86.03 (5)
C9—C10—H10B	108.4	N2—Cd1—Cd2	136.10 (14)
N3—C10—H10B	108.4	N1—Cd1—Cd2	127.43 (12)
H10A—C10—H10B	107.4	Cl3—Cd1—Cd2	48.02 (4)
C12—C11—N3	117.2 (7)	Cl1—Cd1—Cd2	52.96 (4)
C12—C11—H11A	108.0	Cl2—Cd1—Cd2	116.86 (4)
N3—C11—H11A	108.0	Cl2 ⁱ —Cd1—Cd2	51.98 (4)
C12—C11—H11B	108.0	N4—Cd2—N3	78.04 (19)
N3—C11—H11B	108.0	N4—Cd2—N3A	78.04 (19)
H11A—C11—H11B	107.2	N4—Cd2—Cl4	95.52 (17)
N4—C12—C11	117.4 (8)	N3—Cd2—Cl4	98.54 (15)
N4—C12—H12A	108.0	N3A—Cd2—Cl4	98.54 (15)
C11—C12—H12A	108.0	N4—Cd2—Cl3	170.42 (17)
N4—C12—H12B	108.0	N3—Cd2—Cl3	102.29 (13)
C11—C12—H12B	108.0	N3A—Cd2—Cl3	102.29 (13)
H12A—C12—H12B	107.2	Cl4—Cd2—Cl3	93.90 (6)

C8—N3—C11	115.9 (8)	N4—Cd2—Cl2 ⁱ	93.02 (15)
C8—N3—C10	111.3 (8)	N3—Cd2—Cl2 ⁱ	164.69 (14)
C11—N3—C10	103.2 (7)	$Cl4$ — $Cd2$ — $Cl2^i$	94.66 (6)
C8—N3—Cd2	112.4 (7)	$Cl3$ — $Cd2$ — $Cl2^i$	84.45 (5)
C11—N3—Cd2	103.4 (5)	N4—Cd2—Cl1	87.06 (16)
C10—N3—Cd2	110.0 (6)	N3—Cd2—Cl1	90.86 (14)
C8A—C7A—H7D	109.5	N3A—Cd2—Cl1	90.86 (14)
С8А—С7А—Н7Е	109.5	Cl4—Cd2—Cl1	170.58 (6)
H7D—C7A—H7E	109.5	Cl3—Cd2—Cl1	83.36 (5)
C8A—C7A—H7F	109.5	Cl2 ⁱ —Cd2—Cl1	76.14 (5)
H7D—C7A—H7F	109.5	N4—Cd2—Cd1	123.88 (16)
H7E—C7A—H7F	109.5	N3—Cd2—Cd1	124.95 (13)
N3A—C8A—C7A	115.2 (11)	N3A—Cd2—Cd1	124.95 (13)
N3A—C8A—H8C	108.5	Cl4—Cd2—Cd1	124.18 (5)
С7А—С8А—Н8С	108.5	Cl3—Cd2—Cd1	48.10 (4)
N3A—C8A—H8D	108.5	Cl2 ⁱ —Cd2—Cd1	50.65 (3)
C7A—C8A—H8D	108.5	Cl1—Cd2—Cd1	48.05 (4)
H8C—C8A—H8D	107.5		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H…A
N2—H2C···Cl4 ⁱ	0.89	2.82	3.548 (6)	141
N2—H2D····Cl4 ⁱⁱ	0.89	2.63	3.407 (6)	146
N4—H4D····Cl4 ⁱⁱⁱ	0.89	2.71	3.463 (6)	143

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+2, -*y*, -*z*.