

ISSN 2414-3146

Received 1 December 2019 Accepted 9 January 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: cobalt(II) complex; crystal structure; Isothiocyanate; DABCO.

CCDC reference: 1976544

Structural data: full structural data are available from iucrdata.iucr.org

Bis(1-dodecyl-4-aza-1-azoniabicyclo[2.2.2]octane)-tetraisothiocyanatocobalt(II)

Niels Ole Giltzau^a and Martin Köckerling^{a,b}*

^aUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany, and ^bDepartment Life, Light and Matter, Universität Rostock, 18051 Rostock, Germany. *Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

The title compound, $[Co(C_{18}H_{37}N_2)_2(NCS)_4]$, consists of a cobalt(II) ion positioned on the origin of the triclinic unit cell. It is coordinated by the N atoms of two *trans*-oriented 1-dodecyl-4-aza-1-azoniabicyclo[2.2.2]octane (DABCO⁺) cations, which carry *n*-dodecyl chains at the non-coordinating N atoms. The distorted octahedral coordination environment of the Co^{II} ion is completed through four N atoms of isothiocyanate ions, which are arranged within the equatorial plane. Non-classical hydrogen bonding of the types C-H···N and C-H···S between the filamentous molecules lead to the formation of layers parallel to (001).

Structure description

Ionic liquids (IL) are known as designer solvents for their special applications and properties (Santos *et al.*, 2014; Clark *et al.*, 2016), and such systems have been widely investigated over the past few years. The title compound has a low melting point and can be considered as a magnetic IL in the molten state.

The asymmetric unit consists of a $Co_{0.5}(NCS)_2$ moiety and one 1-dodecyl-4-aza-1azoniabicyclo[2.2.2]octane cation (Fig. 1), with the cobalt(II) atom located on the origin of the unit cell. Four isothiocyanate groups are arranged in a twisted square plane around the Co^{II} ion. Corresponding N–Co–N bond angles are 88.95 (7)° for N1–Co1– N2(-*x*, 2 - *y*, -*z*) and 91.05 (7)° for N1–Co1–N2. The N1–C1 distance measures 1.162 (3), Å indicating a strong π -interaction, and the C1–S1 distance is 1.629 (2) Å. The coordination polyhedron around the Co^{II} ion consists of the four N atoms of the NCS groups and two further N atoms of the positively charged DABCO ligands, leading to filamentous molecules (Fig. 2). The Co–N1 and Co–N2 distances are, at 2.072 (2) and 2.090 (2) Å, in the expected range for a six-coordinate Co^{II} atom (Orpen *et al.*, 1989).

Table 1		
Hydrogen-bond	geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C5-H5A\cdots N1$	0.99	2.48	3.060 (3)	117
$C5-H5A\cdots S1^{i}$	0.99	2.70	3.467 (2)	134
$C7-H7A\cdots S1^{ii}$	0.99	3.00	3.755 (2)	134
$C7-H7A\cdots N2^{iii}$	0.99	2.58	3.244 (3)	124
$C8-H8B\cdots S1^{ii}$	0.99	2.89	3.695 (2)	139
$C9-H9B\cdots S1^{iv}$	0.99	2.78	3.580 (2)	138

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z; (iii) -x, -y + 2, -z; (iv) -x, -y + 1, -z.

With the Co $-N_{(DABCO)}$ distances of 2.350 (2) Å, the octahedron is considerably elongated. This can be explained through the steric demand of the DABCO⁺ units.

In the crystal, the filamentous molecules are stacked with the long *n*-dodecyl chains aligned parallel to each other (Fig. 3). Because the complex molecule has no acidic H atoms, only weak, non-classical hydrogen bonds are present. Those with N as acceptor atoms are intra- and intermolecular, those with S atoms as acceptors bridge between the filamentous molecules, leading to a layer-like arrangement parallel to (001). Hydrogen-bonding parameters up to a $H \cdots A$ distance of 3.0 Å are listed in Table 1.

Examples of CoN_6 coordination with four isothiocyanato ligands can be found in, for example, Adach & Daszkiewicz (2016) and Wang *et al.* (2018). 1,4-Diazabicylco[2.2.2]octane (DABCO) is a standard chemical in organic synthesis and catalysis, and overviews of its chemistry can be found in Baghernejad (2010), Banerjee (2018) and Yang *et al.* (2007).

Synthesis and crystallization

The compound is accessible through the reaction of 1-dodecyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride with

Figure 1 The asymmetric unit of the title compound with atom labelling.

Figure 3 Stacking of the filamentous molecules in the crystal. Hydrogen-bonding interactions are omitted for clarity.

K₂[(Co(NCS)₄]. 1-Dodecyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (Dodeca-DABCO-Cl) was prepared by the reaction of DABCO (1.4 g, 12.5 mmol) with 1-chlorododecane (3.6 g, 12.5 mmol) in 20 ml of acetonitrile. The mixture was refluxed for 10 h and the solvent removed under reduced pressure. Potassium tetra-(isothiocyanato)cobaltate(II) was prepared through the reaction of potassium isothiocyanate (15 g, 154.0 mmol) with cobalt(II) chloride (5.0 g, 38.5 mmol) in 250 ml of acetone. The mixture was refluxed for 2 h, the solvent removed and the raw product extracted with ethyl acetate in a soxhlet extractor. Dodeca-DABCO-Cl (0.374 g, 1.18 mmol) and $K_2[(Co(NCS)_4]$ (0.218 g, 0.59 mmol) were mixed in 10 ml of acetonitrile and stirred for 1 d at ambient temperature. The mixture was filtered and the solvent removed under reduced pressure. The resulting blue solid was washed several times with acetone. Large blue crystals were grown by leaving the flask open and allowing the solvent acetonitrile to evaporate over the course of three days. The melting point is 331 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Some low-angle reflections were omitted from the structure refinement because their intensities were affected by the beam stop (001, 002, 411, 311, 010, 323).

Figure 2 Structure of the centrosymmetric, neutral, filamentous complex molecule of the title compound with the atoms being presented as 50% displacement ellipsoids.

Table 2Experimental details.

Crystal data	
Chemical formula	$[Co(C_{18}H_{37}N_2)_2(NCS)_4]$
$M_{ m r}$	854.24
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.484 (1), 8.587 (1), 18.523 (2)
α, β, γ (°)	83.782 (4), 81.868 (4), 71.189 (4)
$V(Å^3)$	1112.9 (2)
Ζ	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.61
Crystal size (mm)	$0.17\times0.10\times0.05$
Data collection	
Diffractometer	Bruker Kappa APFXII CCD
Absorption correction	Multi-scan (SADABS: Bruker
	2017)
No. of measured, independent and	35032, 6802, 4509
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.084
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.715
Refinement	
$R[F^2 > 2\sigma(F^2)] = wR(F^2)$ S	0.049 0.106 1.04
No of reflections	6802
No. of parameters	241
H-atom treatment	H-atom parameters constrained
$\Lambda_0 = \Lambda_0 \cdot (e \ {\rm A}^{-3})$	0.53 - 0.65
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (c 1)$	0.55, 0.05

Computer programs: *APEX2* and *SAINT* (Bruker, 2017), *SHELXT* (Sheldrick, 2015*a*), *SHELXS* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2019) and *publCIF* (Westrip, 2010).

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).

Funding information

Funding for this research was provided by: DFG-SPP 1708, Material Synthesis Near Room Temperature.

References

- Adach, A. & Daszkiewicz, M. (2016). Inorg. Chim. Acta, 445, 87-95.
- Baghernejad, B. (2010). Eur. J. Chem. 1, 54-60.
- Banerjee, B. (2018). Curr. Org. Chem. 22, 208-233.
- Brandenburg, K. & Putz, H. (2019). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2017). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Clark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9–21.

- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.
- Santos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008–40018.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, J., Zhang, F., Pan, Q. & Zheng, A. (2018). J. Coord. Chem. 71, 35–45.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, H., Tian, R. & Li, Y. (2007). Huaxue Tongbao, 70, 759-765.

full crystallographic data

IUCrData (2020). **5**, x200023 [https://doi.org/10.1107/S2414314620000231]

Bis(1-dodecyl-4-aza-1-azoniabicyclo[2.2.2]octane)tetraisothiocyanatocobalt(II)

Niels Ole Giltzau and Martin Köckerling

 $Bis (1-dodecyl-4-aza-1-azonia bicyclo \cite{2.2.2}] octane) tetra is othio cyanato cobalt (II) tetra is othio cobalt (I$

Crystal data	
$\begin{bmatrix} \text{Co}(\text{C}_{18}\text{H}_{37}\text{N}_{2})_{2}(\text{NCS})_{4} \end{bmatrix}$ $M_{r} = 854.24$ Triclinic, $P\overline{1}$ a = 7.484 (1) Å b = 8.587 (1) Å c = 18.523 (2) Å $a = 83.782 (4)^{\circ}$ $\beta = 81.868 (4)^{\circ}$ $\gamma = 71.189 (4)^{\circ}$ $V = 1112.9 (2) \text{ Å}^{3}$ Z = 1	F(000) = 461 $D_x = 1.275 \text{ Mg m}^{-3}$ Melting point: 331 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4916 reflections $\theta = 2.5-23.6^{\circ}$ $\mu = 0.61 \text{ mm}^{-1}$ T = 123 K Leaf, blue $0.17 \times 0.10 \times 0.05 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2017) 35032 measured reflections	6802 independent reflections 4509 reflections with $I > 2\sigma(I)$ $R_{int} = 0.084$ $\theta_{max} = 30.5^\circ, \ \theta_{min} = 2.7^\circ$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -26 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.106$ S = 1.04 6802 reflections 241 parameters 0 restraints Primary atom site location: structure-invariant	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0377P)^2 + 0.289P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.53$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

λ p λ C_{w} T_{cos} Col 0.0000 0.0000 0.01303 (10) C1 0.3937 (3) 0.7311 (2) -0.0519 (1) 0.0148 (4) N1 0.2432 (2) 0.8063 (2) -0.02573 (3) 0.0220 (1) C2 0.1513 (3) 1.0644 (3) 0.1446 (1) 0.0175 (4) N2 0.1189 (2) 1.0506 (2) 0.0868 (1) 0.0191 (4) S2 0.19619 (9) 1.07863 (8) 0.22694 (3) 0.0323 (2) N3 -0.1489 (2) 0.3338 (2) 0.07881 (9) 0.0134 (3) C3 -0.1506 (3) 0.8560 (3) 0.1567 (1) 0.0216 (5) H3A -0.2029 0.9748 0.1698 0.028* H3B -0.018 0.8157 0.1698 0.028* H4 -0.2944 (2) 0.6345 (2) 0.1624 (9) 0.0146 (3) C5 -0.0444 (3) 0.6600 (3) 0.6655 (1) 0.0224 (5) H4H -0.3964 0.392 0.229* C6				-	IT */IT	
Col 0.0000 1.0000 0.0000 $0.01303 (10)$ CI $0.3937 (3)$ $0.731 (2)$ $-0.0519 (1)$ $0.0148 (4)$ N1 $0.2432 (2)$ $0.8063 (2)$ $-0.0267 (1)$ $0.0184 (4)$ S1 $0.06623 (7)$ $0.63024 (7)$ $-0.08753 (3)$ $0.0220 (1)$ C2 $0.1513 (3)$ $1.0644 (3)$ $0.1446 (1)$ $0.0175 (4)$ N2 $0.1189 (2)$ $1.0506 (2)$ $0.0868 (1)$ $0.0191 (4)$ S2 $0.1919 (9)$ $1.07863 (8)$ $0.22694 (3)$ $0.0323 (2)$ N3 $-0.1489 (2)$ $0.833 (2)$ $0.0788 (9)$ $0.0134 (3)$ C3 $-0.1506 (3)$ $0.8560 (3)$ $0.1567 (1)$ $0.0236 (5)$ H3A -0.0209 0.9748 0.1654 $0.0228*$ C4 $-0.2714 (3)$ $0.7015 (3)$ $0.2057 (1)$ $0.0216 (5)$ H4A -0.2066 0.7072 0.2491 $0.0226*$ H4B -0.3964 0.8392 0.2229 $0.026*$ H4B $-0.09284 (2)$ $0.6345 (2)$ $0.1654 (9)$ $0.0146 (3)$ C5 $-0.0444 (3)$ $0.6600 (3)$ $0.0655 (1)$ $0.0224 (5)$ H5B -0.0650 0.6366 0.0167 $0.029*$ C6 $-0.1092 (3)$ 0.4474 0.1006 $0.027*$ H6A -0.1203 0.4474 0.1006 $0.027*$ H6A -0.1203 0.4474 0.1066 $0.027*$ H7B $-0.4248 (3)$ 0.2464 $0.0661 (1)$ $0.0167 (4)$ H7A -0.3577 0.8665 </th <th>~ .</th> <th><i>X</i></th> <th><i>y</i></th> <th>Z</th> <th>$U_{\rm iso} V_{\rm eq}$</th> <th></th>	~ .	<i>X</i>	<i>y</i>	Z	$U_{\rm iso} V_{\rm eq}$	
C1 $0.3937(3)$ $0.7311(2)$ $-0.019(1)$ $0.0148(4)$ NI $0.2432(2)$ $0.803(2)$ $-0.0267(1)$ $0.0184(4)$ S1 $0.60623(7)$ $0.63024(7)$ $-0.08753(3)$ $0.0220(1)$ C2 $0.1151(3)$ $1.0644(3)$ $0.1446(1)$ $0.0175(4)$ N2 $0.1189(2)$ $1.0506(2)$ $0.0868(1)$ $0.0191(4)$ S2 $0.1189(2)$ $0.0506(2)$ $0.0868(1)$ $0.0132(2)$ N3 $-0.1489(2)$ $0.8338(2)$ $0.07881(9)$ $0.0134(3)$ C3 $-0.1506(3)$ $0.8506(3)$ $0.1567(1)$ $0.0226(5)$ H3A -0.2029 0.9748 0.1654 $0.028*$ C4 $-0.2714(3)$ $0.7615(3)$ $0.2057(1)$ $0.0216(5)$ H4B -0.3964 0.892 0.2229 $0.026*$ H4B $-0.2984(2)$ $0.6345(2)$ $0.16244(9)$ $0.0146(3)$ C5 $-0.0444(3)$ $0.6600(3)$ $0.0655(1)$ $0.0242(5)$ H5B -0.0650 0.6366 0.0167 $0.029*$ C6 -0.1023 0.4474 0.1006 $0.027*$ H6B -0.0147 0.4986 0.1594 $0.027*$ H6B -0.0147 0.4986 0.1594 $0.022*$ H7B -0.4288 0.9693 0.8433 $0.020*$ H7B -0.4286 0.7725 $0.022*$ H7B $-0.4249(3)$ $0.7243(3)$ $0.1047(1)$ $0.0182(4)$ H8A -0.5566 0.7725 $0.022*$ H7B -0.4286 0.7795 <td>Col</td> <td>0.0000</td> <td>1.0000</td> <td>0.0000</td> <td>0.01303 (10)</td> <td></td>	Col	0.0000	1.0000	0.0000	0.01303 (10)	
N1 0.2432 (2) 0.8063 (2) -0.0267 (1) 0.0184 (4)S1 0.60623 (7) 0.63024 (7) -0.08753 (3) 0.0220 (1)C2 0.1513 (3) 1.0644 (3) 0.1446 (1) 0.0175 (4)N2 0.1189 (2) 1.0506 (2) 0.0868 (1) 0.0191 (4)S2 0.19619 (9) 1.07863 (8) 0.2264 (3) 0.0323 (2)N3 -0.1489 (2) 0.8338 (2) 0.07881 (9) 0.0134 (3)C3 -0.1506 (3) 0.8560 (3) 0.1567 (1) 0.0236 (5)H3A -0.2029 0.9748 0.1654 $0.028*$ H3B -0.0188 0.8157 0.1698 $0.028*$ C4 -0.2714 (3) 0.7615 (3) 0.2057 (1) 0.0216^* H4A -0.2984 (2) 0.6345 (2) 0.16244 (9) 0.0146 (3)C5 -0.0444 (3) 0.6600 (3) 0.6556 $0.022*$ H5B -0.0650 0.6366 0.1627 $0.292*$ C6 -0.1023 0.4474 0.1006 $0.027*$ H6B -0.0147 0.4986 0.1594 $0.027*$ H6B -0.0147 0.4986 0.1594 $0.020*$ C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4)H7A -0.3557 0.8665 0.0129 $0.022*$ C8 -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.0182 (4)H8B -0.4289 (3) 0.5126 (3) 0.1047 (1) 0.0182 (4)H8B -0.5568 0.7725 <	C1	0.3937 (3)	0.7311 (2)	-0.0519(1)	0.0148 (4)	
S1 0.6023 (7) 0.63024 (7) -0.08753 (3) 0.0220 (1) C2 0.1513 (3) 1.0644 (3) 0.1446 (1) 0.0191 (4) N2 0.1189 (2) 1.0506 (2) 0.0886 (1) 0.0134 (3) N3 -0.1489 (2) 0.8338 (2) 0.07881 (9) 0.0134 (3) C3 -0.1506 (3) 0.8560 (3) 0.1557 (1) 0.0226 (5) H3A -0.2029 0.9748 0.1654 $0.028*$ C4 -0.2714 (3) 0.7615 (3) 0.2057 (1) 0.0216 (5) H4B -0.3964 0.8392 0.2229 $0.026*$ H4B -0.3964 0.8392 0.2229 0.024ϵ (3) U5A 0.0933 0.6407 0.0655 (1) 0.0242 (5) H5A 0.0933 0.6407 0.0656 $0.029*$ C6 -0.1092 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5) H6B -0.0147 0.4986 0.1594 $0.027*$ C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4)	N1	0.2432 (2)	0.8063 (2)	-0.0267 (1)	0.0184 (4)	
C20.1513 (3)1.0644 (3)0.1446 (1)0.0175 (4)N20.1189 (2)1.0766 (2)0.0868 (1)0.0191 (4)S20.19619 (9)1.07863 (8)0.22694 (3)0.0323 (2)N3-0.1489 (2)0.8338 (2)0.07881 (9)0.0134 (3)C3-0.1506 (3)0.8560 (3)0.1567 (1)0.0236 (5)H3A-0.20290.97480.16540.028*H3B-0.01880.81570.16980.028*C4-0.2714 (3)0.7615 (3)0.2057 (1)0.0216 (5)H4A-0.39640.83920.2290.026*H4B-0.39640.83920.2290.026*H4B-0.39640.6600 (3)0.0655 (1)0.0242 (5)C5-0.0444 (3)0.6600 (3)0.0656 (1)0.0242 (5)H5A0.99330.64070.06560.029*C6-0.1092 (3)0.5418 (3)0.1239 (1)0.0226 (5)H6A-0.12030.44740.10060.027*C7-0.3483 (3)0.8618 (2)0.0661 (1)0.167 (4)H7A-0.35570.86650.11290.020*C8-0.4249 (3)0.7243 (3)0.1047 (1)0.0182 (4)H8A-0.35680.77250.12750.022*C9-0.3746 (3)0.5126 (3)0.2108 (1)0.0133 (4)H9A-0.28600.46090.24780.023*C10-0.5729 (3)0.5808 (3)0.2504 (1)0.022 (5)H14B-0.37460.424	S1	0.60623 (7)	0.63024 (7)	-0.08753(3)	0.0220 (1)	
N20.1189 (2)1.0506 (2)0.0868 (1)0.0114 (3)S20.19619 (9)1.07863 (8)0.22694 (3)0.0323 (2)N3 -0.1489 (2)0.8338 (2)0.07881 (9)0.0134 (3)C3 -0.1506 (3)0.8560 (3)0.1567 (1)0.0236 (5)H3A -0.2029 0.97480.16540.028*H3B -0.0188 0.81570.16980.022*C4 -0.2714 (3)0.7615 (3)0.2057 (1)0.0216 (5)H4A -0.2066 0.70720.24910.026*H4B -0.3964 0.83920.22290.026*N4 -0.2984 (2)0.6345 (2)0.16244 (9)0.0146 (3)C5 -0.0444 (3)0.6600 (3)0.0655 (1)0.029*H5B -0.0650 0.63660.01670.029*H5B -0.0650 0.63660.11670.029*C6 -0.1092 (3)0.5418 (3)0.1239 (1)0.0226 (5)H6B -0.0147 0.49860.15940.027*H6B -0.0147 0.49860.15940.027*H7A -0.3557 0.86550.10290.020*K7 -0.4248 (3)0.7243 (3)0.1047 (1)0.182 (4)H8A -0.5568 0.77250.12750.022*H8B -0.4251 0.64680.06890.022*C9 -0.3746 (0.42240.27480.023*H9A -0.2860 0.46090.21780.023*H9B -0.3746 0.42440.1805	C2	0.1513 (3)	1.0644 (3)	0.1446 (1)	0.0175 (4)	
S20.19619 (9)1.07863 (8)0.22694 (3)0.0134 (3)C3-0.1506 (3)0.8338 (2)0.07881 (9)0.0134 (3)H3A-0.20290.97480.1657 (1)0.0236 (5)H3A-0.01880.81570.16980.028*C4-0.2714 (3)0.7615 (3)0.2057 (1)0.0216 (5)H4A-0.20660.70720.24910.026*H4B-0.39640.83920.22290.026*N4-0.2984 (2)0.6345 (2)0.1652 (0)0.0242 (5)S5-0.0444 (3)0.6600 (3)0.0655 (1)0.0226 (5)H5B-0.06500.63660.01670.029*C6-0.1092 (3)0.5418 (3)0.1239 (1)0.0226 (5)H6A-0.12030.44740.10060.027*H6B-0.01470.49860.15940.027*C7-0.3483 (3)0.8618 (2)0.0661 (1)0.0167 (4)H7A-0.35570.86650.01290.020*H7B-0.42880.96930.08430.02*C8-0.4249 (3)0.7243 (3)0.1047 (1)0.0182 (4)H8A-0.55680.7250.12750.022*C9-0.3746 (3)0.5126 (3)0.2108 (1)0.023*C10-0.5729 (3)0.5808 (3)0.2504 (1)0.023*C11-0.6218 (3)0.51350.29590.023*C11-0.6218 (3)0.4452 (3)0.3016 (1)0.0222 (5)H108-0.57860.67390.2788 <td>N2</td> <td>0.1189 (2)</td> <td>1.0506 (2)</td> <td>0.0868 (1)</td> <td>0.0191 (4)</td> <td></td>	N2	0.1189 (2)	1.0506 (2)	0.0868 (1)	0.0191 (4)	
N3 -0.1489 (2) 0.8338 (2) 0.07881 (9) 0.0134 (3)C3 -0.1506 (3) 0.8560 (3) 0.1567 (1) 0.0236 (5)H3A -0.0188 0.8157 0.1698 $0.028*$ C4 -0.2714 (3) 0.7615 (3) 0.2057 (1) 0.0216 (5)H4A -0.2066 0.7072 0.2491 $0.026*$ H4B -0.3964 0.8392 0.2229 $0.026*$ N4 -0.2984 (2) 0.6345 (2) 0.16244 (9) 0.0146 (3)C5 -0.0444 (3) 0.6600 (3) 0.0655 (1) 0.0242 (5)H5A 0.0933 0.6407 0.0656 $0.029*$ C6 -0.1092 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5)H6A -0.1023 0.4474 0.1006 $0.027*$ C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4)H7A -0.3557 0.8665 0.1129 $0.020*$ C8 -0.4249 (3) 0.7243 (3) 0.0843 $0.020*$ C8 -0.4249 (3) 0.7243 (3) 0.0843 $0.020*$ C8 -0.4249 (3) 0.5126 (3) 0.1208 (1) 0.0193 (4)H9A -0.2560 0.4609 0.2478 $0.023*$ H9B -0.3746 0.4244 0.1805 $0.023*$ H9B -0.3746 0.4244 0.1805 $0.023*$ H9B -0.3746 0.4244 0.8056 $0.027*$ H10A -0.5786 0.6739 0.2788 $0.027*$ H11	S2	0.19619 (9)	1.07863 (8)	0.22694 (3)	0.0323 (2)	
C3 -0.1506 (3) 0.8560 (3) 0.1577 (1) 0.0236 (5)H3A -0.2029 0.9748 0.1654 0.028^* H3B -0.0188 0.8157 0.1698 0.028^* C4 -0.2714 (3) 0.7615 (3) 0.2057 (1) 0.0216 (5)H4A -0.2066 0.7072 0.2491 0.026^* N4 -0.2984 (2) 0.6345 (2) 0.16244 (9) 0.0146 (3)C5 -0.0444 (3) 0.6600 (3) 0.0655 (1) 0.0242 (5)H5B -0.0550 0.6366 0.0167 0.029^* C6 -0.1092 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5)H6A -0.1203 0.4474 0.1006 0.027^* C7 -0.3483 (3) 0.8618 (2) 0.06611 1) 0.0167 (4)H7B -0.4288 0.9693 0.0843 0.020^* C8 -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.0182 (4)H8A -0.5568 0.7725 0.1275 0.022^* C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 0.023^* H9B -0.3746 0.4244 0.1805 0.023^* H9B -0.3746 0.4244 0.1805 0.223^* H9B -0.3746 0.4244 0.1805 0.223^* H9B -0.3746 0.4244 0.207^* H10A -0.6664 0.6223 0.2144 0.027^* H10B -0.5786	N3	-0.1489 (2)	0.8338 (2)	0.07881 (9)	0.0134 (3)	
H3A -0.2029 0.9748 0.1654 $0.028*$ H3B -0.0188 0.8157 0.1698 0.0216 H4A -0.2066 0.7072 0.2491 0.026^{+} H4B -0.3964 0.8392 0.2229 0.026^{+} N4 -0.2984 (2) 0.6345 (2) 0.16244 (9) 0.0146 (3)C5 -0.0444 (3) 0.6600 (3) 0.0555 (1) 0.0224^{2} (5)H5B -0.0650 0.6306 0.0167 0.029^{+} C6 -0.1092 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5)H6A -0.1203 0.4474 0.1006 0.027^{*} C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4)H7A -0.3557 0.8665 0.129 0.20^{*} H7B -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.182 (4)H8A -0.5568 0.7725 0.1275 0.022^{*} H8B -0.4249 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 0.023^{*} C10 -0.5729 (3) 0.5808 (3) 0.2504 (1) 0.0228 (5)H10A -0.6664 0.6223 0.2144 0.027^{*} H10B -0.5786 0.739 0.2788 0.027^{*} H11A -0.5814 0.4455 (3) 0.3016 (1) 0.0228 (5)H11A -0.5861 0.4455 (3) 0.3016 (1) 0.0228 (5)H11B -0.5786 0.739 0.2781	C3	-0.1506 (3)	0.8560 (3)	0.1567 (1)	0.0236 (5)	
H3B -0.0188 0.8157 0.1698 $0.028*$ C4 -0.2714 (3) 0.7615 (3) 0.2057 (1) 0.0216 (5)H4A -0.2066 0.7072 0.2491 $0.026*$ H4B -0.3964 0.8392 0.2229 $0.026*$ N4 -0.2984 (2) 0.6345 (2) 0.16244 (9) 0.0146 (3)C5 -0.0444 (3) 0.6600 (3) 0.0655 (1) 0.0242 (5)H5A 0.0933 0.6407 0.0566 $0.029*$ C6 -0.1992 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5)H6B -0.123 0.4474 0.1006 $0.27*$ H6B -0.0147 0.4986 0.1594 $0.020*$ C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4)H7A -0.3557 0.8665 0.0129 $0.020*$ C8 -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.0182 (4)H8B -0.4248 0.9693 0.0843 $0.022*$ C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 $0.023*$ C10 -0.5786 0.6739 0.2784 $0.023*$ C11 -0.6218 (3) 0.5136 0.3016 (1) $0.0222*$ H1B -0.5386 0.6739 0.2784 $0.027*$ H1B -0.5786 0.6739 0.2741 $0.027*$ H11A -0.5811 0.5978 0.3594 $0.0229*$ H12A -0.5861 <td>H3A</td> <td>-0.2029</td> <td>0.9748</td> <td>0.1654</td> <td>0.028*</td> <td></td>	H3A	-0.2029	0.9748	0.1654	0.028*	
C4 -0.2714 (3) 0.7615 (3) 0.2057 (1) 0.0216 (5)H4A -0.2066 0.7072 0.2491 $0.026*$ H4B -0.3964 0.8392 0.2229 $0.026*$ N4 -0.2984 (2) 0.6345 (2) 0.16244 (9) 0.0146 (3)C5 -0.0444 (3) 0.6600 (3) 0.0655 (1) 0.0242 (5)H5A 0.0933 0.6407 0.0656 $0.029*$ C6 -0.1092 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5)H6A -0.1203 0.4474 0.1006 $0.027*$ C7 -0.3483 (3) 0.3618 (2) 0.0661 (1) 0.0167 (4)H7A -0.3557 0.8665 0.0129 $0.20*$ H7B -0.4248 0.9693 0.843 $0.202*$ C8 -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.182 (4)H8A -0.5568 0.7725 0.1275 $0.022*$ H8B -0.4251 0.6468 0.0689 $0.023*$ C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 $0.023*$ C10 -0.5729 (3) 0.5808 (3) 0.2504 (1) 0.0222 (5)H10A -0.6664 0.6223 0.2144 $0.027*$ H10B -0.5786 0.6739 0.2788 $0.027*$ C11 -0.5218 (3) 0.3452 0.2741 0.0225 (5)H11A -0.5944 0.3462 0.2741 0.0225 (5)H11B </td <td>H3B</td> <td>-0.0188</td> <td>0.8157</td> <td>0.1698</td> <td>0.028*</td> <td></td>	H3B	-0.0188	0.8157	0.1698	0.028*	
H4A -0.2066 0.7072 0.2491 0.026* H4B -0.3964 0.8392 0.2229 0.026* N4 -0.2984 (2) 0.6345 (2) 0.16244 (9) 0.0146 (3) C5 -0.0444 (3) 0.6600 (3) 0.0655 (1) 0.029* H5B -0.0650 0.6366 0.0167 0.029* C6 -0.1092 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5) H6B -0.0147 0.4986 0.1594 0.027* H6B -0.0147 0.4986 0.1594 0.020* C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4) H7A -0.3557 0.8665 0.0129 0.020* C8 -0.4248 0.9693 0.0843 0.020* C8 -0.4248 0.7725 0.1275 0.022* H8A -0.5568 0.7725 0.1275 0.022* H9B -0.4251 0.6468 0.6699 0.22* C9 -0.3746 (3) 0.	C4	-0.2714 (3)	0.7615 (3)	0.2057 (1)	0.0216 (5)	
H4B-0.39640.83920.22290.026*N4-0.2984 (2)0.6345 (2)0.16244 (9)0.0146 (3)C5-0.0444 (3)0.6600 (3)0.0655 (1)0.0224 (5)H5A0.09330.64070.06560.029*H5B-0.06500.63660.01670.029*C6-0.1092 (3)0.5418 (3)0.1239 (1)0.0226 (5)H6A-0.12030.44740.10060.027*H6B-0.01470.49860.15940.027*C7-0.3483 (3)0.8618 (2)0.0661 (1)0.0167 (4)H7A-0.35570.86650.01290.020*H7B-0.42880.96930.08430.020*C8-0.4249 (3)0.7243 (3)0.1047 (1)0.0182 (4)H8A-0.55680.77250.12750.022*C9-0.3746 (3)0.5126 (3)0.2108 (1)0.0193 (4)H9A-0.28600.46090.24780.023*H9B-0.37460.42440.18050.023*H10A-0.66640.62230.21440.027*H10B-0.57860.67390.27840.027*C11-0.618 (3)0.4455 (3)0.3016 (1)0.0225 (5)H11A-0.59440.34620.27410.027*C12-0.8274 (3)0.4535 (3)0.3016 (1)0.0229 (5)H11A-0.59860.41620.34130.027*H11B-0.58810.59780.35540.029*C13-0.869	H4A	-0.2066	0.7072	0.2491	0.026*	
N4 -0.2984 (2) 0.6345 (2) 0.16244 (9) 0.0146 (3)C5 -0.0444 (3) 0.6600 (3) 0.0655 (1) 0.0242 (5)H5A 0.0933 0.6407 0.0655 $0.029*$ C6 -0.1092 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5)H6A -0.1203 0.4474 0.1006 $0.027*$ C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4)H7A -0.3557 0.8665 0.1594 $0.020*$ H7B -0.4288 0.9693 0.0843 $0.020*$ C8 -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.0182 (4)H8A -0.5568 0.7725 0.1275 $0.022*$ C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 $0.023*$ C10 -0.5729 (3) 0.5808 (3) 0.2504 (1) $0.022*$ C11 -0.6664 0.6223 0.2144 $0.027*$ H10B -0.5786 0.6739 0.2788 $0.027*$ C11 -0.5386 0.4162 0.3741 $0.027*$ C11 -0.5386 0.4162 0.3413 $0.027*$ C12 -0.8274 (3) 0.4362 0.2741 $0.027*$ C13 -0.8697 (3) 0.3523 (1) 0.0239 (5)H14B -0.9105 0.5135 0.2959 $0.029*$ C12 -0.874 (3) 0.4322 (3) 0.3908 (1) 0.0222 (5)H13A -0.709	H4B	-0.3964	0.8392	0.2229	0.026*	
C5 -0.0444 (3) 0.6600 (3) 0.0655 (1) 0.0242 (5)H5A 0.0933 0.6407 0.0656 $0.029*$ H5B -0.0650 0.6366 0.0167 $0.022*$ C6 -0.1092 (3) 0.5418 (3) 0.1239 (1) 0.0226 (5)H6A -0.1203 0.4474 0.1066 $0.027*$ H6B -0.0147 0.4986 0.1594 $0.027*$ C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4)H7A -0.3557 0.8665 0.0129 $0.020*$ H7B -0.4288 0.9693 0.843 $0.020*$ C8 -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.1182 (4)H8A -0.5568 0.7725 0.1275 $0.022*$ P3B -0.4251 0.6468 0.0689 $0.022*$ C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 $0.023*$ H9B -0.3746 0.4244 0.805 $0.023*$ C10 -0.5729 (3) 0.5808 (3) 0.2504 (1) 0.0225 (5)H10A -0.6664 0.6223 0.2144 $0.027*$ C11 -0.6218 (3) 0.4455 (3) 0.3016 (1) 0.0225 (5)H11A -0.5944 0.4452 0.274 $0.027*$ C12 -0.8274 (3) 0.4935 (3) 0.3552 (1) $0.023*$ C13 -0.8697 (3) 0.3528 0.3594 $0.022*$ H11B -0.5	N4	-0.2984 (2)	0.6345 (2)	0.16244 (9)	0.0146 (3)	
H5A0.09330.64070.06560.029*H5B-0.06500.63660.01670.0226 (5)C6-0.1092 (3)0.5418 (3)0.1239 (1)0.0226 (5)H6A-0.12030.44740.10060.027*H6B-0.01470.49860.15940.027*C7-0.3483 (3)0.8618 (2)0.0661 (1)0.0167 (4)H7A-0.35570.86650.01290.020*H7B-0.42880.96930.84330.020*C8-0.4249 (3)0.7243 (3)0.1047 (1)0.0182 (4)H8A-0.55680.77250.12750.022*H8B-0.42510.64680.06890.022*C9-0.3746 (3)0.5126 (3)0.2108 (1)0.0193 (4)H9A-0.28600.46090.24780.023*C10-0.5729 (3)0.5808 (3)0.2504 (1)0.0222 (5)H10A-0.66640.62230.21440.027*H10B-0.57860.67390.27880.027*C11-0.6218 (3)0.4455 (3)0.3016 (1)0.0225 (5)H11A-0.59440.34620.27410.027*C12-0.8274 (3)0.4935 (3)0.3352 (1)0.0239 (5)H12A-0.91050.51350.29590.029*C13-0.85810.59780.35940.027*C14-0.79090.34780.43120.027*C13-0.85810.59780.35940.0225 (5)H13B-0.8301	C5	-0.0444 (3)	0.6600 (3)	0.0655 (1)	0.0242 (5)	
H5B-0.06500.63660.01670.029*C6-0.1092 (3)0.5418 (3)0.1239 (1)0.0226 (5)H6A-0.12030.44740.10060.027*H6B-0.01470.49860.15940.027*C7-0.3483 (3)0.8618 (2)0.0661 (1)0.0167 (4)H7A-0.35570.86650.01290.020*H7B-0.42880.96930.08430.020*C8-0.4249 (3)0.7243 (3)0.1047 (1)0.0182 (4)H8A-0.55680.77250.12750.022*C9-0.3746 (3)0.5126 (3)0.2108 (1)0.0193 (4)H9A-0.28600.46090.24780.023*C10-0.5729 (3)0.5808 (3)0.2504 (1)0.0222 (5)H10A-0.66640.62230.21440.027*H10B-0.57860.67390.27880.027*C11-0.6218 (3)0.4455 (3)0.3016 (1)0.0225 (5)H11A-0.59440.34620.27410.027*H11B-0.53860.41620.34130.027*C12-0.8274 (3)0.4355 (3)0.3352 (1)0.0239 (5)H12A-0.91050.51350.29590.029*C13-0.8697 (3)0.3628 (3)0.3908 (1)0.0222 (5)H13A-0.79090.34780.43120.027*H13B-0.83010.25700.36720.027*H13B-0.83010.25700.36720.027*H13A <td< td=""><td>H5A</td><td>0.0933</td><td>0.6407</td><td>0.0656</td><td>0.029*</td><td></td></td<>	H5A	0.0933	0.6407	0.0656	0.029*	
C6 $-0.1092 (3)$ $0.5418 (3)$ $0.1239 (1)$ $0.0226 (5)$ H6A -0.1203 0.4474 0.1006 $0.027*$ H6B -0.0147 0.4986 0.1594 $0.027*$ C7 $-0.3483 (3)$ $0.8618 (2)$ $0.0661 (1)$ $0.0167 (4)$ H7A -0.3557 0.8665 0.0129 $0.020*$ H7B -0.4288 0.9693 0.0843 $0.020*$ C8 $-0.4249 (3)$ $0.7243 (3)$ $0.1047 (1)$ $0.0182 (4)$ H8A -0.5568 0.7725 0.1275 $0.022*$ C9 $-0.3746 (3)$ $0.5126 (3)$ $0.2108 (1)$ $0.0193 (4)$ H9A -0.2860 0.4609 0.2478 $0.023*$ H9B -0.3746 0.4244 0.1805 $0.023*$ H10A -0.6664 0.6223 0.2144 $0.0227*$ H10B -0.5786 0.6739 0.2788 $0.027*$ H11A -0.5944 0.3462 0.2741 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ H12B $-0.8697 (3)$ 0.5135 0.2959 $0.029*$ H12B $-0.8697 (3)$ 0.5378 $0.3352 (1)$ $0.0229 (5)$ H13A -0.7909 0.3478 $0.3352 (1)$ $0.0222 (5)$ H13B $-0.8697 (3)$ 0.5270 0.3672 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ H13B -0.8301 0.2570 <	H5B	-0.0650	0.6366	0.0167	0.029*	
H6A -0.1203 0.4474 0.1006 0.027^* H6B -0.0147 0.4986 0.1594 0.027^* C7 -0.3483 (3) 0.8618 (2) 0.0661 (1) 0.0167 (4)H7A -0.3557 0.8665 0.0129 0.020^* H7B -0.4288 0.9693 0.0843 0.020^* C8 -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.0182 (4)H8A -0.5568 0.7725 0.1275 0.022^* C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 0.023^* C10 -0.5729 (3) 0.5808 (3) 0.2504 (1) 0.0222 (5)H10A -0.6664 0.6223 0.2144 0.027^* H10B -0.5786 0.6739 0.2788 0.027^* C11 -0.6218 (3) 0.4455 (3) 0.3016 (1) 0.0225 (5)H11A -0.5944 0.3462 0.2741 0.027^* H11B -0.5386 0.4162 0.3413 0.027^* C12 -0.8274 (3) 0.4935 (3) 0.3352 (1) 0.0239 (5)H12A -0.9105 0.5135 0.2959 0.029^* C13 -0.8697 (3) 0.3628 (3) 0.3908 (1) 0.0224^* C14 -1.0763 (3) $0.394(3)$ 0.4232 (1) 0.027^* H13B -0.8301 0.2570 0.3672 0.027^* H14A -1.1560 0.4109 0.3833 0.028^* <	C6	-0.1092 (3)	0.5418 (3)	0.1239(1)	0.0226 (5)	
H6B -0.0147 0.4986 0.1594 $0.027*$ C7 $-0.3483 (3)$ $0.8618 (2)$ $0.0661 (1)$ $0.0167 (4)$ H7A -0.3557 0.8665 0.0129 $0.020*$ H7B -0.4288 0.9693 0.0843 $0.020*$ C8 $-0.4249 (3)$ $0.7243 (3)$ $0.1047 (1)$ $0.0182 (4)$ H8A -0.5568 0.7725 0.1275 $0.022*$ C9 $-0.3746 (3)$ $0.5126 (3)$ $0.2108 (1)$ $0.0193 (4)$ H9A -0.2860 0.4609 0.2478 $0.023*$ C10 $-0.5729 (3)$ $0.5808 (3)$ $0.2504 (1)$ $0.0222 (5)$ H10A -0.6664 0.6223 0.2144 $0.027*$ H10B -0.5786 0.6739 0.2788 $0.027*$ C11 $-0.6218 (3)$ $0.4455 (3)$ $0.3016 (1)$ $0.0225 (5)$ H11A -0.5944 0.3462 0.2741 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ C12 $-0.8274 (3)$ $0.4935 (3)$ $0.3352 (1)$ $0.0239 (5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ C13 $-0.8697 (3)$ $0.3628 (3)$ $0.3908 (1)$ $0.0222 (5)$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763 (3)$ $0.3994 (3)$ $0.4425 (1)$ $0.028*$ H14A -1.1560 0.4109 0.3833 $0.028*$	H6A	-0.1203	0.4474	0.1006	0.027*	
C7 $-0.3483 (3)$ $0.8618 (2)$ $0.0661 (1)$ $0.0167 (4)$ $H7A$ -0.3557 0.8665 0.0129 $0.020*$ $H7B$ -0.4288 0.9693 0.0843 $0.020*$ $C8$ $-0.4249 (3)$ $0.7243 (3)$ $0.1047 (1)$ $0.0182 (4)$ $H8A$ -0.5568 0.7725 0.1275 $0.022*$ $H8B$ -0.4251 0.6468 0.0689 $0.022*$ $C9$ $-0.3746 (3)$ $0.5126 (3)$ $0.2108 (1)$ $0.0193 (4)$ $H9A$ -0.2860 0.4609 0.2478 $0.023*$ $C10$ $-0.5729 (3)$ $0.5808 (3)$ $0.2504 (1)$ $0.0222 (5)$ $H10A$ -0.6664 0.6223 0.2144 $0.027*$ $H10B$ -0.5786 0.6739 0.2788 $0.027*$ $C11$ $-0.6218 (3)$ $0.4455 (3)$ $0.3016 (1)$ $0.0225 (5)$ $H11A$ -0.5944 0.3462 0.2741 $0.027*$ $H11B$ -0.5386 0.4162 0.3413 $0.027*$ $C12$ $-0.8274 (3)$ $0.4935 (3)$ $0.3352 (1)$ $0.0239 (5)$ $H12A$ -0.9105 0.5135 0.2959 $0.029*$ $C13$ $-0.8697 (3)$ $0.3628 (3)$ $0.3908 (1)$ $0.0222 (5)$ $H13B$ -0.8301 0.2570 0.3672 $0.027*$ $C14$ $-1.0763 (3)$ $0.3994 (3)$ $0.4232 (1)$ $0.028 (5)$ $H14A$ -1.1179 0.5056 0.4465 $0.028*$	H6B	-0.0147	0.4986	0.1594	0.027*	
H7A -0.3557 0.8665 0.0129 0.020^* H7B -0.4288 0.9693 0.0843 0.020^* C8 -0.4249 (3) 0.7243 (3) 0.1047 (1) 0.0182 (4)H8A -0.5568 0.7725 0.1275 0.022^* H8B -0.4251 0.6468 0.0689 0.022^* C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 0.023^* H9B -0.3746 0.4244 0.1805 0.023^* C10 -0.5729 (3) 0.5808 (3) 0.2504 (1) 0.0222 (5)H10A -0.6664 0.6223 0.2144 0.027^* H10B -0.5786 0.6739 0.2788 0.027^* C11 -0.6218 (3) 0.4455 (3) 0.3016 (1) 0.0225 (5)H11A -0.5944 0.3462 0.2741 0.027^* H11B -0.5386 0.4162 0.3413 0.027^* C12 -0.8274 (3) 0.4935 (3) 0.3352 (1) 0.0239 (5)H12A -0.9105 0.5135 0.2959 0.029^* C13 -0.8697 (3) 0.3628 (3) 0.3908 (1) 0.222 (5)H13A -0.7909 0.3478 0.4312 0.027^* H13B -0.8301 0.2570 0.3672 0.027^* H13A -1.0763 (3) 0.3994 (3) 0.4232 (1) 0.0236 (5)H14A -1.1179 0.5056 0.4465 0.028^* <td>C7</td> <td>-0.3483 (3)</td> <td>0.8618 (2)</td> <td>0.0661 (1)</td> <td>0.0167 (4)</td> <td></td>	C7	-0.3483 (3)	0.8618 (2)	0.0661 (1)	0.0167 (4)	
H7B -0.4288 0.9693 0.0843 $0.020*$ C8 $-0.4249(3)$ $0.7243(3)$ $0.1047(1)$ $0.0182(4)$ H8A -0.5568 0.7725 0.1275 $0.022*$ H8B -0.4251 0.6468 0.0689 $0.022*$ C9 $-0.3746(3)$ $0.5126(3)$ $0.2108(1)$ $0.0193(4)$ H9A -0.2860 0.4609 0.2478 $0.023*$ C10 $-0.5729(3)$ $0.5808(3)$ $0.2504(1)$ $0.0222(5)$ H10A -0.6664 0.6223 0.2144 $0.027*$ H10B -0.5786 0.6739 0.2788 $0.027*$ C11 $-0.6218(3)$ $0.4455(3)$ $0.3016(1)$ $0.0225(5)$ H11A -0.5944 0.3462 0.2741 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ C12 $-0.8274(3)$ $0.4935(3)$ $0.3352(1)$ $0.0239(5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ C13 $-0.8697(3)$ $0.3628(3)$ $0.3908(1)$ $0.222(5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763(3)$ $0.3994(3)$ $0.4232(1)$ $0.0236(5)$ H14A -1.1179 0.5056 0.4465 $0.028*$	H7A	-0.3557	0.8665	0.0129	0.020*	
C8 $-0.4249 (3)$ $0.7243 (3)$ $0.1047 (1)$ $0.0182 (4)$ H8A -0.5568 0.7725 0.1275 $0.022*$ H8B -0.4251 0.6468 0.0689 $0.022*$ C9 $-0.3746 (3)$ $0.5126 (3)$ $0.2108 (1)$ $0.0193 (4)$ H9A -0.2860 0.4609 0.2478 $0.023*$ C10 $-0.5729 (3)$ $0.5808 (3)$ $0.2504 (1)$ $0.0222 (5)$ H10A -0.6664 0.6223 0.2144 $0.027*$ H10B -0.5786 0.6739 0.2788 $0.027*$ C11 $-0.6218 (3)$ $0.4455 (3)$ $0.3016 (1)$ $0.0225 (5)$ H11A -0.5944 0.3462 0.2741 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ C12 $-0.8274 (3)$ $0.4935 (3)$ $0.3352 (1)$ $0.0239 (5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ C13 $-0.8697 (3)$ $0.3628 (3)$ $0.3908 (1)$ $0.0222 (5)$ H13B -0.8301 0.2570 0.3672 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763 (3)$ $0.3994 (3)$ $0.4232 (1)$ $0.0236 (5)$ H14A -1.1560 0.4109 0.3833 $0.028*$	H7B	-0.4288	0.9693	0.0843	0.020*	
H8A -0.5568 0.7725 0.1275 0.022^* H8B -0.4251 0.6468 0.0689 0.022^* C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 0.023^* H9B -0.3746 0.4244 0.1805 0.023^* C10 -0.5729 (3) 0.5808 (3) 0.2504 (1) 0.0222 (5)H10A -0.6664 0.6223 0.2144 0.027^* H10B -0.5786 0.6739 0.2788 0.027^* C11 -0.6218 (3) 0.4455 (3) 0.3016 (1) 0.0225 (5)H11A -0.5944 0.3462 0.2741 0.027^* H11B -0.5386 0.4162 0.3413 0.027^* C12 -0.8274 (3) 0.4935 (3) 0.3352 (1) 0.0239 (5)H12A -0.9105 0.5135 0.2959 0.029^* H12B -0.8581 0.5978 0.3594 0.0224 (5)H13A -0.7909 0.3478 0.4312 0.027^* H13B -0.8301 0.2570 0.3672 0.027^* H13B -0.8301 0.2570 0.3672 0.027^* H14A -1.1560 0.4109 0.3333 0.028^*	C8	-0.4249 (3)	0.7243 (3)	0.1047(1)	0.0182 (4)	
H8B-0.42510.64680.06890.022*C9-0.3746 (3)0.5126 (3)0.2108 (1)0.0193 (4)H9A-0.28600.46090.24780.023*H9B-0.37460.42440.18050.023*C10-0.5729 (3)0.5808 (3)0.2504 (1)0.0222 (5)H10A-0.66640.62230.21440.027*H10B-0.57860.67390.27880.027*C11-0.6218 (3)0.4455 (3)0.3016 (1)0.0225 (5)H11A-0.59440.34620.27410.027*H11B-0.53860.41620.34130.027*C12-0.8274 (3)0.4935 (3)0.3352 (1)0.0239 (5)H12A-0.91050.51350.29590.029*H12B-0.85810.59780.35940.029*C13-0.8697 (3)0.3628 (3)0.3908 (1)0.0222 (5)H13A-0.79090.34780.43120.027*H13B-0.83010.25700.36720.027*H14A-1.15600.41090.38330.028*H14A-1.15600.41090.38330.028*	H8A	-0.5568	0.7725	0.1275	0.022*	
C9 -0.3746 (3) 0.5126 (3) 0.2108 (1) 0.0193 (4)H9A -0.2860 0.4609 0.2478 $0.023*$ H9B -0.3746 0.4244 0.1805 $0.023*$ C10 -0.5729 (3) 0.5808 (3) 0.2504 (1) 0.0222 (5)H10A -0.6664 0.6223 0.2144 $0.027*$ C11 -0.6218 (3) 0.4455 (3) 0.3016 (1) 0.0225 (5)H11A -0.5944 0.3462 0.2741 $0.027*$ C12 -0.8274 (3) 0.4935 (3) 0.3352 (1) 0.0239 (5)H12A -0.9105 0.5135 0.2959 $0.029*$ H12B -0.8697 (3) 0.3628 (3) 0.3908 (1) 0.0222 (5)H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 -1.0763 (3) 0.3994 (3) 0.4232 (1) 0.0236 (5)H14A -1.1560 0.4109 0.3833 $0.028*$	H8B	-0.4251	0.6468	0.0689	0.022*	
H9A -0.2860 0.4609 0.2478 0.023^* H9B -0.3746 0.4244 0.1805 0.023^* C10 $-0.5729(3)$ $0.5808(3)$ $0.2504(1)$ $0.0222(5)$ H10A -0.6664 0.6223 0.2144 0.027^* H10B -0.5786 0.6739 0.2788 0.027^* C11 $-0.6218(3)$ $0.4455(3)$ $0.3016(1)$ $0.0225(5)$ H11A -0.5944 0.3462 0.2741 0.027^* H11B -0.5386 0.4162 0.3413 0.027^* C12 $-0.8274(3)$ $0.4935(3)$ $0.3352(1)$ $0.0239(5)$ H12A -0.9105 0.5135 0.2959 0.029^* H12B -0.8581 0.5978 0.3594 0.029^* C13 $-0.8697(3)$ $0.3628(3)$ $0.3908(1)$ $0.0222(5)$ H13A -0.7909 0.3478 0.4312 0.027^* H13B -0.8301 0.2570 0.3672 0.027^* C14 $-1.0763(3)$ $0.3994(3)$ $0.4232(1)$ $0.0236(5)$ H14B -1.1179 0.5056 0.4465 0.028^*	C9	-0.3746 (3)	0.5126 (3)	0.2108 (1)	0.0193 (4)	
H9B-0.37460.42440.18050.023*C10-0.5729 (3)0.5808 (3)0.2504 (1)0.0222 (5)H10A-0.66640.62230.21440.027*H10B-0.57860.67390.27880.027*C11-0.6218 (3)0.4455 (3)0.3016 (1)0.0225 (5)H11A-0.59440.34620.27410.027*H11B-0.53860.41620.34130.027*C12-0.8274 (3)0.4935 (3)0.3352 (1)0.0239 (5)H12A-0.91050.51350.29590.029*H12B-0.85810.59780.35940.029*C13-0.8697 (3)0.3628 (3)0.3908 (1)0.0222 (5)H13A-0.79090.34780.43120.027*H13B-0.83010.25700.36720.027*C14-1.0763 (3)0.3994 (3)0.4232 (1)0.0236 (5)H14A-1.15600.41090.38330.028*	H9A	-0.2860	0.4609	0.2478	0.023*	
C10 $-0.5729 (3)$ $0.5808 (3)$ $0.2504 (1)$ $0.0222 (5)$ H10A -0.6664 0.6223 0.2144 $0.027*$ H10B -0.5786 0.6739 0.2788 $0.027*$ C11 $-0.6218 (3)$ $0.4455 (3)$ $0.3016 (1)$ $0.0225 (5)$ H11A -0.5944 0.3462 0.2741 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ C12 $-0.8274 (3)$ $0.4935 (3)$ $0.3352 (1)$ $0.0239 (5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ H12B -0.8581 0.5978 0.3594 $0.029*$ C13 $-0.8697 (3)$ $0.3628 (3)$ $0.3908 (1)$ $0.0222 (5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763 (3)$ $0.3994 (3)$ $0.4232 (1)$ $0.0236 (5)$ H14B -1.1179 0.5056 0.4465 $0.028*$	H9B	-0.3746	0.4244	0.1805	0.023*	
H10A -0.6664 0.6223 0.2144 0.027^* H10B -0.5786 0.6739 0.2788 0.027^* C11 -0.6218 (3) 0.4455 (3) 0.3016 (1) 0.0225 (5)H11A -0.5944 0.3462 0.2741 0.027^* H11B -0.5386 0.4162 0.3413 0.027^* C12 -0.8274 (3) 0.4935 (3) 0.3352 (1) 0.0239 (5)H12A -0.9105 0.5135 0.2959 0.029^* H12B -0.8581 0.5978 0.3594 0.029^* C13 -0.8697 (3) 0.3628 (3) 0.3908 (1) 0.0222 (5)H13A -0.7909 0.3478 0.4312 0.027^* H13B -0.8301 0.2570 0.3672 0.027^* C14 -1.0763 (3) 0.3994 (3) 0.4232 (1) 0.0236 (5)H14A -1.1560 0.4109 0.3833 0.028^*	C10	-0.5729 (3)	0.5808 (3)	0.2504(1)	0.0222 (5)	
H10B -0.5786 0.6739 0.2788 $0.027*$ C11 $-0.6218 (3)$ $0.4455 (3)$ $0.3016 (1)$ $0.0225 (5)$ H11A -0.5944 0.3462 0.2741 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ C12 $-0.8274 (3)$ $0.4935 (3)$ $0.3352 (1)$ $0.0239 (5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ H12B -0.8581 0.5978 0.3594 $0.0222 (5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763 (3)$ $0.3994 (3)$ $0.4232 (1)$ $0.0236 (5)$ H14A -1.1560 0.4109 0.3833 $0.028*$	H10A	-0.6664	0.6223	0.2144	0.027*	
C11 $-0.6218(3)$ $0.4455(3)$ $0.3016(1)$ $0.0225(5)$ H11A -0.5944 0.3462 0.2741 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ C12 $-0.8274(3)$ $0.4935(3)$ $0.3352(1)$ $0.0239(5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ H12B -0.8581 0.5978 0.3594 $0.0222(5)$ C13 $-0.8697(3)$ $0.3628(3)$ $0.3908(1)$ $0.0222(5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763(3)$ $0.3994(3)$ $0.4232(1)$ $0.0236(5)$ H14A -1.1560 0.4109 0.3833 $0.028*$	H10B	-0.5786	0.6739	0.2788	0.027*	
H11A -0.5944 0.3462 0.2741 $0.027*$ H11B -0.5386 0.4162 0.3413 $0.027*$ C12 $-0.8274(3)$ $0.4935(3)$ $0.3352(1)$ $0.0239(5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ H12B -0.8581 0.5978 0.3594 $0.022*$ C13 $-0.8697(3)$ $0.3628(3)$ $0.3908(1)$ $0.0222(5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763(3)$ $0.3994(3)$ $0.4232(1)$ $0.0236(5)$ H14A -1.1560 0.4109 0.3833 $0.028*$	C11	-0.6218 (3)	0.4455 (3)	0.3016(1)	0.0225 (5)	
H11B -0.5386 0.4162 0.3413 $0.027*$ C12 $-0.8274(3)$ $0.4935(3)$ $0.3352(1)$ $0.0239(5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ H12B -0.8581 0.5978 0.3594 $0.029*$ C13 $-0.8697(3)$ $0.3628(3)$ $0.3908(1)$ $0.0222(5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763(3)$ $0.3994(3)$ $0.4232(1)$ $0.0236(5)$ H14A -1.1560 0.4109 0.3833 $0.028*$	H11A	-0.5944	0.3462	0.2741	0.027*	
C12 $-0.8274(3)$ $0.4935(3)$ $0.3352(1)$ $0.0239(5)$ H12A -0.9105 0.5135 0.2959 $0.029*$ H12B -0.8581 0.5978 0.3594 $0.029*$ C13 $-0.8697(3)$ $0.3628(3)$ $0.3908(1)$ $0.0222(5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763(3)$ $0.3994(3)$ $0.4232(1)$ $0.0236(5)$ H14A -1.1560 0.4109 0.3833 $0.028*$	H11B	-0.5386	0.4162	0.3413	0.027*	
H12A -0.9105 0.5135 0.2959 $0.029*$ H12B -0.8581 0.5978 0.3594 $0.029*$ C13 $-0.8697 (3)$ $0.3628 (3)$ $0.3908 (1)$ $0.0222 (5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763 (3)$ $0.3994 (3)$ $0.4232 (1)$ $0.0236 (5)$ H14A -1.1560 0.4109 0.3833 $0.028*$	C12	-0.8274(3)	0.4935 (3)	0.3352 (1)	0.0239(5)	
H12B -0.8581 0.5978 0.3594 $0.029*$ C13 -0.8697 (3) 0.3628 (3) 0.3908 (1) 0.0222 (5)H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 -1.0763 (3) 0.3994 (3) 0.4232 (1) 0.0236 (5)H14A -1.1560 0.4109 0.3833 $0.028*$ H14B -1.1179 0.5056 0.4465 $0.028*$	H12A	-0.9105	0.5135	0.2959	0.029*	
C13 $-0.8697(3)$ $0.3628(3)$ $0.3908(1)$ $0.0222(5)$ H13A -0.7909 0.3478 0.4312 $0.027*$ H13B -0.8301 0.2570 0.3672 $0.027*$ C14 $-1.0763(3)$ $0.3994(3)$ $0.4232(1)$ $0.0236(5)$ H14A -1.1560 0.4109 0.3833 $0.028*$ H14B -1.1179 0.5056 0.4465 $0.028*$	H12B	-0.8581	0.5978	0.3594	0.029*	
H13A -0.7909 0.3478 0.4312 0.027* H13B -0.8301 0.2570 0.3672 0.027* C14 -1.0763 (3) 0.3994 (3) 0.4232 (1) 0.0236 (5) H14A -1.1560 0.4109 0.3833 0.028* H14B -1.1179 0.5056 0.4465 0.028*	C13	-0.8697(3)	0.3628 (3)	0.3908 (1)	0.0222(5)	
H13B -0.8301 0.2570 0.3672 0.027* C14 -1.0763 (3) 0.3994 (3) 0.4232 (1) 0.0236 (5) H14A -1.1560 0.4109 0.3833 0.028* H14B -1.1179 0.5056 0.4465 0.028*	H13A	-0.7909	0.3478	0.4312	0.027*	
C14 -1.0763 (3) 0.3994 (3) 0.4232 (1) 0.0236 (5) H14A -1.1560 0.4109 0.3833 0.028* H14B -1.1179 0.5056 0.4465 0.028*	H13B	-0.8301	0.2570	0.3672	0.027*	
H14A -1.1560 0.4109 0.3833 0.028^* H14B -1.1179 0.5056 0.4465 0.028^*	C14	-1.0763(3)	0.3994(3)	0.4232(1)	0.0236(5)	
H14B -1.1179 0.5056 0.4465 0.028*	H14A	-1.1560	0.4109	0.3833	0.028*	
	H14B	-1.1179	0.5056	0.4465	0.028*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	-1.1072 (3)	0.2649 (3)	0.4796 (1)	0.0231 (5)
H15A	-1.0546	0.1576	0.4571	0.028*
H15B	-1.0344	0.2598	0.5209	0.028*
C16	-1.3133 (3)	0.2878 (3)	0.5096 (1)	0.0238 (5)
H16A	-1.3616	0.3877	0.5376	0.029*
H16B	-1.3895	0.3062	0.4681	0.029*
C17	-1.3421 (3)	0.1423 (3)	0.5586 (1)	0.0230 (5)
H17A	-1.2724	0.1286	0.6017	0.028*
H17B	-1.2857	0.0412	0.5316	0.028*
C18	-1.5491 (3)	0.1587 (3)	0.5851 (1)	0.0232 (5)
H18A	-1.6022	0.2531	0.6164	0.028*
H18B	-1.6217	0.1832	0.5423	0.028*
C19	-1.5760 (3)	0.0051 (3)	0.6280(1)	0.0250 (5)
H19A	-1.5108	-0.0148	0.6726	0.030*
H19B	-1.5146	-0.0908	0.5980	0.030*
C20	-1.7843 (3)	0.0161 (3)	0.6502 (1)	0.0291 (5)
H20A	-1.7914	-0.0865	0.6776	0.044*
H20B	-1.8494	0.0328	0.6063	0.044*
H20C	-1.8457	0.1089	0.6810	0.044*

Atomic displacement parameters $(Å^2)$

U^{11} U^{22} U^{33} U^{12} U^{13} U^{23} Col0.0092 (2)0.0119 (2)0.0172 (2) $-0.0013 (2)$ $-0.0026 (2)$ $-0.0027 (2)$ C10.020 (1)0.011 (1)0.017 (1) $-0.0075 (8)$ $-0.0064 (8)$ $0.0014 (8)$ N10.0135 (8)0.0145 (9) $0.025 (1)$ $-0.0016 (7)$ $-0.0012 (7)$ $-0.0015 (7)$ S10.0133 (3)0.0218 (3) $0.0299 (3)$ $-0.0033 (2)$ $0.0022 (2)$ $-0.0099 (2)$ C20.018 (1)0.017 (1) $0.020 (1)$ $-0.0100 (8)$ $-0.0006 (8)$ $-0.0008 (8)$ N20.0179 (9) $0.021 (1)$ $0.021 (1)$ $-0.0029 (7)$ $-0.0012 (7)$ $-0.0018 (7)$ S20.0414 (4)0.0447 (4) $0.0188 (3)$ $-0.0227 (3)$ $-0.0023 (3)$ N30.0098 (7) $0.0124 (8)$ $0.0172 (9)$ $-0.0015 (6)$ $-0.0027 (6)$ $-0.0020 (7)$ C3 $0.029 (1)$ $0.031 (1)$ $0.018 (1)$ $-0.020 (1)$ $-0.0030 (9)$ $-0.0015 (9)$ C4 $0.026 (1)$ $0.0126 (1)$ $0.016 (9)$ $-0.0050 (7)$ $-0.0017 (7)$ $0.0007 (7)$ C5 $0.020 (1)$ $0.014 (1)$ $0.031 (1)$ $0.0015 (9)$ $0.0048 (9)$ $0.0006 (9)$ C60.016 (1) $0.017 (1)$ $0.022 (1)$ $-0.0097 (8)$ $0.0025 (9)$ C7 $0.0131 (9)$ $0.016 (1)$ $0.021 (1)$ $-0.0047 (8)$ $-0.0064 (8)$ $0.0031 (8)$ C8 $0.019 (1)$ $0.021 (1)$ $0.024 (1)$ $-0.0098 (9)$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Col	0.0092 (2)	0.0119 (2)	0.0172 (2)	-0.0013 (2)	-0.0026 (2)	-0.0027 (2)
N1 $0.0135 (8)$ $0.0145 (9)$ $0.025 (1)$ $-0.0016 (7)$ $-0.0012 (7)$ $-0.0015 (7)$ S1 $0.0133 (3)$ $0.0218 (3)$ $0.0299 (3)$ $-0.0033 (2)$ $0.0022 (2)$ $-0.0099 (2)$ C2 $0.018 (1)$ $0.017 (1)$ $0.020 (1)$ $-0.0100 (8)$ $-0.0006 (8)$ $-0.0008 (8)$ N2 $0.0179 (9)$ $0.021 (1)$ $0.021 (1)$ $-0.0100 (8)$ $-0.0026 (7)$ $-0.0018 (7)$ S2 $0.0414 (4)$ $0.0447 (4)$ $0.0188 (3)$ $-0.0227 (3)$ $-0.0072 (3)$ $-0.0023 (3)$ N3 $0.0098 (7)$ $0.0124 (8)$ $0.0172 (9)$ $-0.0015 (6)$ $-0.0027 (6)$ $-0.0020 (7)$ C3 $0.029 (1)$ $0.031 (1)$ $0.018 (1)$ $-0.020 (1)$ $-0.0030 (9)$ $-0.0015 (9)$ C4 $0.026 (1)$ $0.012 (1)$ $0.016 (9)$ $-0.0048 (9)$ $-0.0007 (7)$ C5 $0.020 (1)$ $0.014 (1)$ $0.031 (1)$ $0.0015 (9)$ $0.0048 (9)$ $0.0006 (9)$ C6 $0.016 (1)$ $0.017 (1)$ $0.028 (1)$ $0.0099 (8)$ $0.0028 (9)$ $0.0025 (9)$ C7 $0.013 1 (9)$ $0.016 (1)$ $0.021 (1)$ $-0.0089 (9)$ $-0.003 (8)$ $0.0031 (8)$ C8 $0.019 (1)$ $0.020 (1)$ $0.018 (1)$ $-0.0096 (9)$ $-0.003 (9)$ $0.0025 (9)$ C7 $0.013 1 (9)$ $0.021 (1)$ $0.022 (1)$ $-0.003 (9)$ $0.0025 (9)$ C10 $0.022 (1)$ $0.020 (1)$ $0.018 (1)$ $-0.0096 (9)$ $-0.003 (9)$ $0.0003 (8)$ C8 $0.019 (1)$ <	C1	0.020(1)	0.011 (1)	0.017(1)	-0.0075 (8)	-0.0064 (8)	0.0014 (8)
S1 0.0133 (3) 0.0218 (3) 0.0299 (3) -0.0033 (2) 0.0022 (2) -0.0099 (2)C2 0.018 (1) 0.017 (1) 0.020 (1) -0.0100 (8) -0.0006 (8) -0.0008 (8)N2 0.0179 (9) 0.021 (1) 0.021 (1) -0.0089 (7) -0.0026 (7) -0.0018 (7)S2 0.0414 (4) 0.0447 (4) 0.0188 (3) -0.0227 (3) -0.0072 (3) -0.0023 (3)N3 0.0098 (7) 0.0124 (8) 0.0172 (9) -0.0015 (6) -0.0027 (6) -0.0020 (7)C3 0.029 (1) 0.031 (1) 0.018 (1) -0.020 (1) -0.0030 (9) -0.0015 (9)C4 0.026 (1) 0.026 (1) 0.019 (1) -0.014 (1) -0.0029 (9) -0.0047 (9)N4 0.0134 (8) 0.0138 (9) 0.0166 (9) -0.0050 (7) -0.0017 (7) 0.0007 (7)C5 0.020 (1) 0.014 (1) 0.031 (1) 0.0015 (9) 0.0048 (9) 0.0006 (9)C6 0.016 (1) 0.017 (1) 0.028 (1) -0.0047 (8) -0.0047 (8) 0.0025 (9)C7 0.0131 (9) 0.016 (1) 0.021 (1) -0.0047 (8) -0.0064 (8) 0.0031 (8)C8 0.019 (1) 0.020 (1) 0.018 (1) -0.0089 (9) -0.0036 (8) 0.0038 (8)C10 0.022 (1) 0.021 (1) 0.024 (1) -0.0095 (9) -0.0036 (8) 0.0038 (8)C10 0.022 (1) 0.023 (1) 0.022 (1) -0.0073 (9) -0.0015 (9) 0.0004 (9	N1	0.0135 (8)	0.0145 (9)	0.025 (1)	-0.0016 (7)	-0.0012 (7)	-0.0015 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S 1	0.0133 (3)	0.0218 (3)	0.0299 (3)	-0.0033 (2)	0.0022 (2)	-0.0099 (2)
N2 $0.0179(9)$ $0.021(1)$ $0.021(1)$ $-0.0089(7)$ $-0.0026(7)$ $-0.0018(7)$ S2 $0.0414(4)$ $0.0447(4)$ $0.0188(3)$ $-0.0227(3)$ $-0.0072(3)$ $-0.0023(3)$ N3 $0.0098(7)$ $0.0124(8)$ $0.0172(9)$ $-0.0015(6)$ $-0.0027(6)$ $-0.0020(7)$ C3 $0.029(1)$ $0.031(1)$ $0.018(1)$ $-0.020(1)$ $-0.0030(9)$ $-0.0015(9)$ C4 $0.026(1)$ $0.026(1)$ $0.019(1)$ $-0.014(1)$ $-0.0029(9)$ $-0.0047(9)$ N4 $0.0134(8)$ $0.0138(9)$ $0.0166(9)$ $-0.0050(7)$ $-0.0017(7)$ $0.0007(7)$ C5 $0.202(1)$ $0.014(1)$ $0.028(1)$ $0.0009(8)$ $0.0028(9)$ $0.0025(9)$ C6 $0.016(1)$ $0.017(1)$ $0.028(1)$ $0.0009(8)$ $0.0028(9)$ $0.0025(9)$ C7 $0.0131(9)$ $0.016(1)$ $0.021(1)$ $-0.0047(8)$ $-0.0064(8)$ $0.0031(8)$ C8 $0.019(1)$ $0.020(1)$ $0.018(1)$ $-0.0089(9)$ $-0.0036(8)$ $0.0038(8)$ C9 $0.022(1)$ $0.020(1)$ $0.018(1)$ $-0.0095(9)$ $-0.0036(8)$ $0.0038(8)$ C10 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0073(9)$ $-0.0005(9)$ $0.0025(9)$ C11 $0.024(1)$ $0.023(1)$ $0.025(1)$ $-0.0073(9)$ $-0.0005(9)$ $0.0044(9)$ C12 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0075(9)$ $-0.0005(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$	C2	0.018(1)	0.017(1)	0.020(1)	-0.0100 (8)	-0.0006 (8)	-0.0008 (8)
S2 $0.0414(4)$ $0.0447(4)$ $0.0188(3)$ $-0.0227(3)$ $-0.0072(3)$ $-0.0023(3)$ N3 $0.0098(7)$ $0.0124(8)$ $0.0172(9)$ $-0.0015(6)$ $-0.0027(6)$ $-0.0020(7)$ C3 $0.029(1)$ $0.031(1)$ $0.018(1)$ $-0.020(1)$ $-0.0030(9)$ $-0.0015(9)$ C4 $0.026(1)$ $0.026(1)$ $0.019(1)$ $-0.014(1)$ $-0.0029(9)$ $-0.0047(9)$ N4 $0.0134(8)$ $0.0138(9)$ $0.0166(9)$ $-0.0050(7)$ $-0.0017(7)$ $0.0007(7)$ C5 $0.020(1)$ $0.014(1)$ $0.031(1)$ $0.0015(9)$ $0.0048(9)$ $0.0025(9)$ C6 $0.016(1)$ $0.017(1)$ $0.028(1)$ $0.0009(8)$ $0.0028(9)$ $0.0025(9)$ C7 $0.0131(9)$ $0.016(1)$ $0.021(1)$ $-0.0047(8)$ $-0.0064(8)$ $0.0031(8)$ C8 $0.019(1)$ $0.020(1)$ $0.018(1)$ $-0.0089(9)$ $-0.0081(8)$ $0.0038(8)$ C10 $0.022(1)$ $0.021(1)$ $0.018(1)$ $-0.0095(9)$ $-0.0020(9)$ $0.0025(9)$ C11 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C12 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0025(9)$ $0.0025(9)$ C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0021(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0001(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$	N2	0.0179 (9)	0.021(1)	0.021(1)	-0.0089(7)	-0.0026 (7)	-0.0018 (7)
N3 $0.0098 (7)$ $0.0124 (8)$ $0.0172 (9)$ $-0.0015 (6)$ $-0.0027 (6)$ $-0.0020 (7)$ C3 $0.029 (1)$ $0.031 (1)$ $0.018 (1)$ $-0.020 (1)$ $-0.0030 (9)$ $-0.0015 (9)$ C4 $0.026 (1)$ $0.026 (1)$ $0.019 (1)$ $-0.014 (1)$ $-0.0029 (9)$ $-0.0047 (9)$ N4 $0.0134 (8)$ $0.0138 (9)$ $0.0166 (9)$ $-0.0050 (7)$ $-0.0017 (7)$ $0.0007 (7)$ C5 $0.020 (1)$ $0.014 (1)$ $0.031 (1)$ $0.0015 (9)$ $0.0048 (9)$ $0.0006 (9)$ C6 $0.016 (1)$ $0.017 (1)$ $0.028 (1)$ $0.009 (8)$ $0.0028 (9)$ $0.0025 (9)$ C7 $0.0131 (9)$ $0.016 (1)$ $0.021 (1)$ $-0.0047 (8)$ $-0.0064 (8)$ $0.0031 (8)$ C8 $0.019 (1)$ $0.020 (1)$ $0.018 (1)$ $-0.0096 (9)$ $-0.0036 (8)$ $0.0038 (8)$ C9 $0.022 (1)$ $0.020 (1)$ $0.018 (1)$ $-0.0096 (9)$ $-0.0036 (8)$ $0.0038 (8)$ C10 $0.022 (1)$ $0.021 (1)$ $0.024 (1)$ $-0.0095 (9)$ $-0.0003 (9)$ $0.0009 (9)$ C11 $0.024 (1)$ $0.023 (1)$ $0.025 (1)$ $-0.0073 (9)$ $-0.0005 (9)$ $0.0004 (9)$ C12 $0.022 (1)$ $0.023 (1)$ $0.027 (1)$ $-0.0075 (9)$ $-0.0005 (9)$ $0.0004 (9)$ C13 $0.022 (1)$ $0.024 (1)$ $0.027 (1)$ $-0.0075 (9)$ $-0.0002 (9)$ $0.0004 (9)$ C14 $0.020 (1)$ $0.022 (1)$ $0.028 (1)$ $-0.0050 (9)$ $-0.0009 (9)$ $0.0001 (9)$ <td>S2</td> <td>0.0414 (4)</td> <td>0.0447 (4)</td> <td>0.0188 (3)</td> <td>-0.0227 (3)</td> <td>-0.0072 (3)</td> <td>-0.0023 (3)</td>	S2	0.0414 (4)	0.0447 (4)	0.0188 (3)	-0.0227 (3)	-0.0072 (3)	-0.0023 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3	0.0098 (7)	0.0124 (8)	0.0172 (9)	-0.0015 (6)	-0.0027 (6)	-0.0020(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.029(1)	0.031(1)	0.018(1)	-0.020(1)	-0.0030 (9)	-0.0015 (9)
N4 $0.0134(8)$ $0.0138(9)$ $0.0166(9)$ $-0.0050(7)$ $-0.0017(7)$ $0.0007(7)$ C5 $0.020(1)$ $0.014(1)$ $0.031(1)$ $0.0015(9)$ $0.0048(9)$ $0.0006(9)$ C6 $0.016(1)$ $0.017(1)$ $0.028(1)$ $0.0009(8)$ $0.0028(9)$ $0.0025(9)$ C7 $0.0131(9)$ $0.016(1)$ $0.021(1)$ $-0.0047(8)$ $-0.0064(8)$ $0.0031(8)$ C8 $0.019(1)$ $0.020(1)$ $0.018(1)$ $-0.0089(9)$ $-0.0081(8)$ $0.0038(8)$ C9 $0.022(1)$ $0.020(1)$ $0.018(1)$ $-0.0096(9)$ $-0.0036(8)$ $0.0038(8)$ C10 $0.022(1)$ $0.021(1)$ $0.024(1)$ $-0.0095(9)$ $-0.0020(9)$ $0.0025(9)$ C11 $0.024(1)$ $0.023(1)$ $0.022(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C12 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0004(9)$ C13 $0.022(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0001(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C16 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C17 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C18 $0.019(1)$ $0.021(1)$ $0.028(1)$ -0.0049	C4	0.026 (1)	0.026(1)	0.019(1)	-0.014 (1)	-0.0029 (9)	-0.0047 (9)
C5 $0.020(1)$ $0.014(1)$ $0.031(1)$ $0.0015(9)$ $0.0048(9)$ $0.0006(9)$ C6 $0.016(1)$ $0.017(1)$ $0.028(1)$ $0.0009(8)$ $0.0028(9)$ $0.0025(9)$ C7 $0.0131(9)$ $0.016(1)$ $0.021(1)$ $-0.0047(8)$ $-0.0064(8)$ $0.0031(8)$ C8 $0.019(1)$ $0.020(1)$ $0.018(1)$ $-0.0089(9)$ $-0.0081(8)$ $0.0038(8)$ C9 $0.022(1)$ $0.020(1)$ $0.018(1)$ $-0.0096(9)$ $-0.0036(8)$ $0.0038(8)$ C10 $0.022(1)$ $0.021(1)$ $0.018(1)$ $-0.0095(9)$ $-0.0003(9)$ $0.0009(9)$ C11 $0.024(1)$ $0.023(1)$ $0.022(1)$ $-0.0073(9)$ $-0.0020(9)$ $0.0025(9)$ C12 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0004(9)$ C13 $0.022(1)$ $0.023(1)$ $0.027(1)$ $-0.0078(9)$ $-0.0021(9)$ $0.0009(9)$ C14 $0.020(1)$ $0.024(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0005(9)$ $0.0004(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.00018(9)$ $0.0017(9)$ C16 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C17 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C18 $0.019(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	N4	0.0134 (8)	0.0138 (9)	0.0166 (9)	-0.0050 (7)	-0.0017 (7)	0.0007 (7)
C6 $0.016(1)$ $0.017(1)$ $0.028(1)$ $0.0009(8)$ $0.0028(9)$ $0.0025(9)$ C7 $0.0131(9)$ $0.016(1)$ $0.021(1)$ $-0.0047(8)$ $-0.0064(8)$ $0.0031(8)$ C8 $0.019(1)$ $0.020(1)$ $0.018(1)$ $-0.0089(9)$ $-0.0081(8)$ $0.0051(8)$ C9 $0.022(1)$ $0.020(1)$ $0.018(1)$ $-0.0096(9)$ $-0.0036(8)$ $0.0038(8)$ C10 $0.022(1)$ $0.021(1)$ $0.018(1)$ $-0.0096(9)$ $-0.0036(8)$ $0.0009(9)$ C11 $0.022(1)$ $0.021(1)$ $0.024(1)$ $-0.0095(9)$ $-0.0020(9)$ $0.0025(9)$ C12 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0009(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C16 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C17 $0.020(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C5	0.020(1)	0.014(1)	0.031 (1)	0.0015 (9)	0.0048 (9)	0.0006 (9)
C7 $0.0131(9)$ $0.016(1)$ $0.021(1)$ $-0.0047(8)$ $-0.0064(8)$ $0.0031(8)$ C8 $0.019(1)$ $0.020(1)$ $0.018(1)$ $-0.0089(9)$ $-0.0081(8)$ $0.0051(8)$ C9 $0.022(1)$ $0.020(1)$ $0.018(1)$ $-0.0096(9)$ $-0.0036(8)$ $0.0038(8)$ C10 $0.022(1)$ $0.021(1)$ $0.024(1)$ $-0.0084(9)$ $-0.0003(9)$ $0.0009(9)$ C11 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0095(9)$ $-0.0020(9)$ $0.0025(9)$ C12 $0.022(1)$ $0.023(1)$ $0.025(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C16 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C17 $0.020(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C6	0.016(1)	0.017(1)	0.028(1)	0.0009 (8)	0.0028 (9)	0.0025 (9)
C8 $0.019(1)$ $0.020(1)$ $0.018(1)$ $-0.0089(9)$ $-0.0081(8)$ $0.0051(8)$ C9 $0.022(1)$ $0.020(1)$ $0.018(1)$ $-0.0096(9)$ $-0.0036(8)$ $0.0038(8)$ C10 $0.022(1)$ $0.021(1)$ $0.024(1)$ $-0.0084(9)$ $-0.0003(9)$ $0.0009(9)$ C11 $0.024(1)$ $0.023(1)$ $0.022(1)$ $-0.0095(9)$ $-0.0020(9)$ $0.0025(9)$ C12 $0.022(1)$ $0.023(1)$ $0.025(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0002(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C16 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C17 $0.020(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C7	0.0131 (9)	0.016(1)	0.021 (1)	-0.0047 (8)	-0.0064 (8)	0.0031 (8)
C9 $0.022(1)$ $0.020(1)$ $0.018(1)$ $-0.0096(9)$ $-0.0036(8)$ $0.0038(8)$ C10 $0.022(1)$ $0.021(1)$ $0.024(1)$ $-0.0084(9)$ $-0.0003(9)$ $0.0009(9)$ C11 $0.024(1)$ $0.023(1)$ $0.022(1)$ $-0.0095(9)$ $-0.0020(9)$ $0.0025(9)$ C12 $0.022(1)$ $0.023(1)$ $0.025(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0009(9)$ $0.0001(9)$ C16 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C17 $0.020(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C8	0.019(1)	0.020(1)	0.018(1)	-0.0089(9)	-0.0081 (8)	0.0051 (8)
C10 $0.022(1)$ $0.021(1)$ $0.024(1)$ $-0.0084(9)$ $-0.0003(9)$ $0.0009(9)$ C11 $0.024(1)$ $0.023(1)$ $0.022(1)$ $-0.0095(9)$ $-0.0020(9)$ $0.0025(9)$ C12 $0.022(1)$ $0.023(1)$ $0.025(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0009(9)$ $0.0001(9)$ C16 $0.020(1)$ $0.021(1)$ $0.029(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C17 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C18 $0.019(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C9	0.022 (1)	0.020(1)	0.018(1)	-0.0096 (9)	-0.0036 (8)	0.0038 (8)
C11 $0.024(1)$ $0.023(1)$ $0.022(1)$ $-0.0095(9)$ $-0.0020(9)$ $0.0025(9)$ C12 $0.022(1)$ $0.023(1)$ $0.025(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0009(9)$ $0.0001(9)$ C16 $0.020(1)$ $0.020(1)$ $0.029(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C17 $0.020(1)$ $0.021(1)$ $0.028(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C18 $0.019(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C10	0.022 (1)	0.021(1)	0.024(1)	-0.0084 (9)	-0.0003 (9)	0.0009 (9)
C12 $0.022(1)$ $0.023(1)$ $0.025(1)$ $-0.0073(9)$ $-0.0015(9)$ $0.0034(9)$ C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0009(9)$ $0.0001(9)$ C16 $0.020(1)$ $0.020(1)$ $0.029(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C17 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C18 $0.019(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C11	0.024 (1)	0.023 (1)	0.022(1)	-0.0095 (9)	-0.0020 (9)	0.0025 (9)
C13 $0.022(1)$ $0.023(1)$ $0.022(1)$ $-0.0078(9)$ $-0.0005(9)$ $0.0004(9)$ C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0009(9)$ $0.0001(9)$ C16 $0.020(1)$ $0.020(1)$ $0.029(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C17 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C18 $0.019(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C12	0.022 (1)	0.023 (1)	0.025(1)	-0.0073 (9)	-0.0015 (9)	0.0034 (9)
C14 $0.020(1)$ $0.024(1)$ $0.027(1)$ $-0.0075(9)$ $-0.0021(9)$ $0.0009(9)$ C15 $0.018(1)$ $0.022(1)$ $0.028(1)$ $-0.0050(9)$ $-0.0009(9)$ $0.0001(9)$ C16 $0.020(1)$ $0.020(1)$ $0.029(1)$ $-0.0050(9)$ $-0.0018(9)$ $0.0017(9)$ C17 $0.020(1)$ $0.021(1)$ $0.025(1)$ $-0.0044(9)$ $0.0004(9)$ $0.0026(9)$ C18 $0.019(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C13	0.022 (1)	0.023 (1)	0.022(1)	-0.0078 (9)	-0.0005 (9)	0.0004 (9)
C15 0.018 (1) 0.022 (1) 0.028 (1) -0.0050 (9) -0.0009 (9) 0.0001 (9) C16 0.020 (1) 0.020 (1) 0.029 (1) -0.0050 (9) -0.0018 (9) 0.0017 (9) C17 0.020 (1) 0.021 (1) 0.025 (1) -0.0044 (9) 0.0004 (9) 0.0026 (9) C18 0.019 (1) 0.021 (1) 0.028 (1) -0.0049 (9) -0.0007 (9) -0.0013 (9)	C14	0.020(1)	0.024 (1)	0.027(1)	-0.0075 (9)	-0.0021 (9)	0.0009 (9)
C16 0.020 (1) 0.020 (1) 0.029 (1) -0.0050 (9) -0.0018 (9) 0.0017 (9) C17 0.020 (1) 0.021 (1) 0.025 (1) -0.0044 (9) 0.0004 (9) 0.0026 (9) C18 0.019 (1) 0.021 (1) 0.028 (1) -0.0049 (9) -0.0007 (9) -0.0013 (9)	C15	0.018 (1)	0.022 (1)	0.028 (1)	-0.0050 (9)	-0.0009 (9)	0.0001 (9)
C17 0.020 (1) 0.021 (1) 0.025 (1) -0.0044 (9) 0.0004 (9) 0.0026 (9) C18 0.019 (1) 0.021 (1) 0.028 (1) -0.0049 (9) -0.0007 (9) -0.0013 (9)	C16	0.020(1)	0.020(1)	0.029(1)	-0.0050 (9)	-0.0018 (9)	0.0017 (9)
C18 $0.019(1)$ $0.021(1)$ $0.028(1)$ $-0.0049(9)$ $-0.0007(9)$ $-0.0013(9)$	C17	0.020(1)	0.021 (1)	0.025 (1)	-0.0044 (9)	0.0004 (9)	0.0026 (9)
	C18	0.019(1)	0.021 (1)	0.028 (1)	-0.0049 (9)	-0.0007 (9)	-0.0013 (9)

data reports

C19	0.025 (1)	0.026 (1)	0.024 (1)	-0.010(1)	-0.0016 (9)	-0.001 (1)
C20	0.028 (1)	0.034 (1)	0.029(1)	-0.015 (1)	0.000 (1)	-0.003 (1)

Geometric parameters (Å, °)

Co1—N1 ⁱ	2.072 (2)	С9—Н9В	0.9900	
Co1—N1	2.073 (2)	C10—C11	1.523 (3)	
Co1—N2	2.090 (2)	C10—H10A	0.9900	
Co1—N2 ⁱ	2.090 (2)	C10—H10B	0.9900	
Co1—N3	2.350 (2)	C11—C12	1.517 (3)	
Co1—N3 ⁱ	2.350 (2)	C11—H11A	0.9900	
C1—N1	1.162 (3)	C11—H11B	0.9900	
C1—S1	1.629 (2)	C12—C13	1.518 (3)	
C2—N2	1.158 (3)	C12—H12A	0.9900	
C2—S2	1.633 (2)	C12—H12B	0.9900	
N3—C3	1.474 (3)	C13—C14	1.521 (3)	
N3—C5	1.475 (2)	C13—H13A	0.9900	
N3—C7	1.482 (2)	C13—H13B	0.9900	
C3—C4	1.543 (3)	C14—C15	1.524 (3)	
С3—НЗА	0.9900	C14—H14A	0.9900	
С3—Н3В	0.9900	C14—H14B	0.9900	
C4—N4	1.500 (3)	C15—C16	1.521 (3)	
C4—H4A	0.9900	C15—H15A	0.9900	
C4—H4B	0.9900	C15—H15B	0.9900	
N4—C6	1.503 (2)	C16—C17	1.518 (3)	
N4—C9	1.504 (2)	C16—H16A	0.9900	
N4—C8	1.507 (2)	C16—H16B	0.9900	
C5—C6	1.538 (3)	C17—C18	1.523 (3)	
С5—Н5А	0.9900	C17—H17A	0.9900	
С5—Н5В	0.9900	C17—H17B	0.9900	
С6—Н6А	0.9900	C18—C19	1.520 (3)	
С6—Н6В	0.9900	C18—H18A	0.9900	
С7—С8	1.540 (3)	C18—H18B	0.9900	
С7—Н7А	0.9900	C19—C20	1.530 (3)	
С7—Н7В	0.9900	C19—H19A	0.9900	
C8—H8A	0.9900	C19—H19B	0.9900	
C8—H8B	0.9900	C20—H20A	0.9800	
C9—C10	1.519 (3)	C20—H20B	0.9800	
С9—Н9А	0.9900	C20—H20C	0.9800	
N1 ⁱ —Co1—N1	180.0	N4—C9—H9B	108.2	
N1 ⁱ —Co1—N2	88.95 (7)	С10—С9—Н9В	108.2	
N1—Co1—N2	91.05 (7)	H9A—C9—H9B	107.4	
N1 ⁱ —Co1—N2 ⁱ	91.05 (7)	C9—C10—C11	109.6 (2)	
N1—Co1—N2 ⁱ	88.95 (7)	C9—C10—H10A	109.7	
N2-Co1-N2 ⁱ	180.0	C11—C10—H10A	109.7	
N1 ⁱ —Co1—N3	85.89 (6)	C9—C10—H10B	109.7	
N1—Co1—N3	94.11 (6)	C11-C10-H10B	109.7	

N2—Co1—N3	90.94 (6)	H10A—C10—H10B	108.2
N2 ⁱ —Co1—N3	89.06 (6)	C12-C11-C10	113.7 (2)
N1 ⁱ —Co1—N3 ⁱ	94.11 (6)	C12—C11—H11A	108.8
N1—Co1—N3 ⁱ	85.89 (6)	C10-C11-H11A	108.8
N2—Co1—N3 ⁱ	89.06 (6)	C12—C11—H11B	108.8
N2 ⁱ —Co1—N3 ⁱ	90.94 (6)	C10-C11-H11B	108.8
N3—Co1—N3 ⁱ	180.0	H11A—C11—H11B	107.7
N1—C1—S1	178.5 (2)	C11—C12—C13	113.0 (2)
C1—N1—Co1	162.0 (2)	C11—C12—H12A	109.0
N2—C2—S2	178.3 (2)	C13—C12—H12A	109.0
C2—N2—Co1	163.3 (2)	C11—C12—H12B	109.0
C3—N3—C5	108.1 (2)	C13—C12—H12B	109.0
C3—N3—C7	107.1 (2)	H12A—C12—H12B	107.8
C5—N3—C7	106.8 (2)	C12—C13—C14	115.4 (2)
C3—N3—Co1	113.2 (1)	C12—C13—H13A	108.4
C5—N3—Co1	108.1 (1)	C14—C13—H13A	108.4
C7—N3—Co1	113.3 (1)	C12—C13—H13B	108.4
N3—C3—C4	111.1 (2)	C14—C13—H13B	108.4
N3—C3—H3A	109.4	H13A—C13—H13B	107.5
С4—С3—НЗА	109.4	C13—C14—C15	112.5 (2)
N3—C3—H3B	109.4	C13—C14—H14A	109.1
C4—C3—H3B	109.4	C15—C14—H14A	109.1
НЗА—СЗ—НЗВ	108.0	C13—C14—H14B	109.1
N4—C4—C3	108.9 (2)	C15—C14—H14B	109.1
N4—C4—H4A	109.9	H14A—C14—H14B	107.8
C3—C4—H4A	109.9	C16—C15—C14	114.9 (2)
N4—C4—H4B	109.9	С16—С15—Н15А	108.5
C3—C4—H4B	109.9	C14—C15—H15A	108.5
H4A—C4—H4B	108.3	C16—C15—H15B	108.5
C4—N4—C6	108.7 (2)	C14—C15—H15B	108.5
C4—N4—C9	111.6 (2)	H15A—C15—H15B	107.5
C6—N4—C9	108.2 (2)	C17—C16—C15	113.7 (2)
C4—N4—C8	107.7 (2)	C17—C16—H16A	108.8
C6—N4—C8	107.5 (2)	C15—C16—H16A	108.8
C9—N4—C8	113.0 (2)	C17—C16—H16B	108.8
N3—C5—C6	111.6 (2)	C15—C16—H16B	108.8
N3—C5—H5A	109.3	H16A—C16—H16B	107.7
С6—С5—Н5А	109.3	C16—C17—C18	114.3 (2)
N3—C5—H5B	109.3	С16—С17—Н17А	108.7
С6—С5—Н5В	109.3	С18—С17—Н17А	108.7
H5A—C5—H5B	108.0	С16—С17—Н17В	108.7
N4—C6—C5	108.7 (2)	С18—С17—Н17В	108.7
N4—C6—H6A	110.0	H17A—C17—H17B	107.6
С5—С6—Н6А	110.0	C19—C18—C17	113.4 (2)
N4—C6—H6B	110.0	C19—C18—H18A	108.9
С5—С6—Н6В	110.0	C17—C18—H18A	108.9
Н6А—С6—Н6В	108.3	C19—C18—H18B	108.9
N3-C7-C8	111.7 (2)	C17—C18—H18B	108.9
	(-)		

N3—C7—H7A	109.3	H18A—C18—H18B	107.7
С8—С7—Н7А	109.3	C18—C19—C20	113.7 (2)
N3—C7—H7B	109.3	C18—C19—H19A	108.8
С8—С7—Н7В	109.3	С20—С19—Н19А	108.8
H7A—C7—H7B	107.9	C18—C19—H19B	108.8
N4—C8—C7	108.3 (2)	С20—С19—Н19В	108.8
N4—C8—H8A	110.0	H19A—C19—H19B	107.7
С7—С8—Н8А	110.0	C19—C20—H20A	109.5
N4—C8—H8B	110.0	С19—С20—Н20В	109.5
C7—C8—H8B	110.0	H20A—C20—H20B	109.5
H8A—C8—H8B	108.4	С19—С20—Н20С	109.5
N4—C9—C10	116.2 (2)	H20A-C20-H20C	109.5
N4—C9—H9A	108.2	H20B—C20—H20C	109.5
С10—С9—Н9А	108.2		
C5—N3—C3—C4	-67.5 (2)	C4—N4—C8—C7	48.3 (2)
C7—N3—C3—C4	47.2 (2)	C6—N4—C8—C7	-68.7 (2)
Co1—N3—C3—C4	172.8 (1)	C9—N4—C8—C7	172.1 (2)
N3—C3—C4—N4	18.0 (2)	N3-C7-C8-N4	18.0 (2)
C3—C4—N4—C6	47.5 (2)	C4—N4—C9—C10	64.9 (2)
C3—C4—N4—C9	166.7 (2)	C6—N4—C9—C10	-175.6 (2)
C3—C4—N4—C8	-68.7 (2)	C8—N4—C9—C10	-56.7 (2)
C3—N3—C5—C6	46.8 (2)	N4-C9-C10-C11	-175.2 (2)
C7—N3—C5—C6	-68.0 (2)	C9-C10-C11-C12	-171.3 (2)
Co1—N3—C5—C6	169.7 (1)	C10-C11-C12-C13	-175.3 (2)
C4—N4—C6—C5	-67.5 (2)	C11—C12—C13—C14	-176.5 (2)
C9—N4—C6—C5	171.1 (2)	C12-C13-C14-C15	-178.7 (2)
C8—N4—C6—C5	48.9 (2)	C13-C14-C15-C16	-175.4 (2)
N3—C5—C6—N4	17.8 (3)	C14—C15—C16—C17	173.1 (2)
C3—N3—C7—C8	-68.4 (2)	C15—C16—C17—C18	-176.3 (2)
C5—N3—C7—C8	47.2 (2)	C16—C17—C18—C19	174.4 (2)
Co1—N3—C7—C8	166.1 (1)	C17—C18—C19—C20	-176.0 (2)

Symmetry code: (i) -x, -y+2, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5A…N1	0.99	2.48	3.060 (3)	117
C5—H5A···S1 ⁱⁱ	0.99	2.70	3.467 (2)	134
C7—H7A····S1 ⁱⁱⁱ	0.99	3.00	3.755 (2)	134
C7— $H7A$ ···N2 ⁱ	0.99	2.58	3.244 (3)	124
C8— $H8B$ ···· $S1$ ⁱⁱⁱ	0.99	2.89	3.695 (2)	139
C9—H9 <i>B</i> ···S1 ^{iv}	0.99	2.78	3.580 (2)	138

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*; (iv) -*x*, -*y*+1, -*z*.