

IUCrData

ISSN 2414-3146

Received 30 March 2020 Accepted 21 May 2020

Edited by R. J. Butcher, Howard University, USA

Keywords: crystal structure; tosylate; imidazolium; ionic crystal.

CCDC reference: 2005097

Structural data: full structural data are available from iucrdata.iucr.org

2,3-Dimethyl-1*H*-imidazol-3-ium benzenesulfonate-1,2-dimethyl-1*H*-imidazole co-crystal

Noah Cyr,^a Matthias Zeller,^b Patrick C. Hillesheim^c and Arsalan Mirjafari^a*

^aDepartment of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. South, Fort Myers, FL, 33965, USA, ^bPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana USA, 47907, USA, and ^cAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria FL, 34142, USA. *Correspondence e-mail: amirjafari@fgcu.edu

In the title co-crystal, $C_5H_9N_2^+$ · $C_6H_5O_3S^-$ · $C_5H_8N_2$, the two 1,2-dimethylimidazole rings exist as partially protonated moieties in the asymmetric unit as a two-part disordered unit wherein the acidic hydrogen atom is bound to each ring. The two imidazolium cations share a strong hydrogen bond *via* the acidic hydrogen atom, which is disordered between two positions, being bonded to the first *versus* second imidazole ring in a 0.33 (2) to 0.67 (2) ratio. A benzene sulfonate anion is present for charge balance and interacts with the aromatic H atoms on both imidazole rings as well as with the methyl groups on the rings.

Structure description

The title compound (Fig. 1) crystallizes with two 1,2-dimethylimidazolium cations in the asymmetric unit. The two imidazole rings are each partially protonated, wherein the acidic hydrogen atom is bound between the two N atoms of the aromatic ring in a 0.33 (2) to 0.67 (2) ratio. Hydrogen bonding appears to the dominant intermolecular interaction with each molecule or ion exhibiting interactions (Fig. 2). For instance, the shortest hydrogen bonds are $N-H\cdots N$ links between the imidazolium rings with $H\cdots N = 1.83$ (8) and 1.90 (8) Å. This bonding arises from the disordered hydrogen atom, which appears to be shared between the two rings. Further, cation–anion $C-H\cdots O$ interactions occur between the aromatic H atoms and the sulfonate O atoms. Finally, there are anion–anion interactions wherein O atoms of the sulfonate group interact with hydrogens on the benzene rings. A summary of the distances for the hydrogen bonds is found in Table 1.

For a related structure with a chloride anion, see Kelley et al. (2013).

Figure 1

The title compound shown with 50% probability ellipsoids. Only the major component is shown.

Figure 2

Packing diagram of the title compound viewed down the (010) plane showing a layered network of ion pairs held together through hydrogen interactions. Both parts of the disorder are shown.

Synthesis and crystallization

The reaction was conducted in a Biotage Initiator+ microwave reactor. To a microwave vial was added a stir bar as well as 7.5 mmol (721 mg) of 1,2 dimethylimidazole and 7.5 mmol (901 μ L) of benzenesulfonyl fluoride. The vial was sealed and placed into the microwave reactor. The reaction was performed at 105°C for 5 minutes and 38 s with very high microwave absorption, stirring at 600 rpm. Once finished and cooled to room temperature, the solution was transferred to an oven-dried amber scintillation vial and sealed with parafilm. After one week, crystals suitable for diffraction were found growing in the vial.

A proposed mechanism leading to the formation of the crystallized product reported herein is shown in Fig. 3.

¹H NMR (400 MHz, chloroform-D) δ 8.01–7.99 (*m*, 1H), 7.89–7.87 (*m*, 1H), 7.77 (*dd*, J = 8.1, 6.7 Hz, 1H), 7.62 (t, J =7.4 Hz, 1H), 7.35 (t, J = 2.6 Hz, 1H), 7.25 (s, 1H), 6.98–6.83 (m, 2H), 3.61 (d, J = 9.1 Hz, 3H), 2.46 (d, J = 14.0 Hz, 3H)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots N3$	0.83	1.90	2.6970 (11)	163
$N3 - H3N \cdot \cdot \cdot N1$	0.89	1.81	2.6970 (11)	170
$C1-H1\cdots O1$	0.95	2.43	3.3741 (13)	170
$C4-H4B\cdots O3^{i}$	0.98	2.33	3.2956 (12)	170
C6−H6···O2	0.95	2.60	3.4288 (14)	146
$C7-H7\cdots O2^{ii}$	0.95	2.41	3.3254 (12)	162
C9−H9A···O3 ⁱⁱⁱ	0.98	2.53	3.4846 (14)	164
$C9-H9B\cdots O3^{ii}$	0.98	2.46	3.4381 (14)	173
$C13-H13\cdots O1^{i}$	0.95	2.67	3.4738 (14)	143
$C14-H14\cdots O1^{iv}$	0.95	2.48	3.3920 (13)	162

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) x, y - 1, z.

350.43

150

4 Μο *Κα*

0.21

Monoclinic, P21/n

18.9678 (11) 95.440 (2)

 $0.55 \times 0.42 \times 0.33$

diffractometer

al., 2015)

74762, 6612, 5787

0.716, 0.747

0.032

0.771

Bruker AXS D8 Quest CMOS

Multi-scan (SADABS; Krause et

1726.61 (16)

10.8820 (6), 8.4029 (4),

 $C_5H_9N_2^+ \cdot C_6H_5O_3S^- \cdot C_5H_8N_2$

Table 2

Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å)

 β (°) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer

Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int}

 $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.095, 1.05
No. of reflections	6612
No. of parameters	225
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.40, -0.44

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

¹³C NMR (101 MHz, chloroform-D) δ 206.7, 144.8, 135.7, 130.0, 129.8, 128.5, 128.3, 126.0, 121.2, 121.0, 77.4, 77.1, 76.8, 76.6, 33.5, 12.0, -1.6.

Figure 3

Proposed mechanism leading to the formation of the crystallized product reported herein.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research. The authors gratefully acknowledge the Communities in Transition Initiative for the generous support.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE 11625543); American Chemical

Society Petroleum Research Fund (grant No. PRF 58975-UR4); Ave Maria University Department of Chemistry and Physics .

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Kelley, S. P., Narita, A., Holbrey, J. D., Green, K. D., Reichert, W. M. & Rogers, R. D. (2013). Cryst. Growth Des. 13, 965–975.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2020). **5**, x200689 [https://doi.org/10.1107/S2414314620006896]

2,3-Dimethyl-1*H*-imidazol-3-ium benzenesulfonate–1,2-dimethyl-1*H*-imidazole co-crystal

Noah Cyr, Matthias Zeller, Patrick C. Hillesheim and Arsalan Mirjafari

2,3-Dimethyl-1H-imidazol-3-ium benzenesulfonate; 1,2-dimethyl-1H-imidazole

Crystal data

 $C_{5}H_{9}N_{2}^{+} \cdot C_{6}H_{5}O_{3}S^{-} \cdot C_{5}H_{8}N_{2}$ $M_{r} = 350.43$ Monoclinic, $P2_{1}/n$ a = 10.8820 (6) Å b = 8.4029 (4) Å c = 18.9678 (11) Å $\beta = 95.440$ (2)° V = 1726.61 (16) Å³ Z = 4

Data collection

Bruker AXS D8 Quest CMOS diffractometer
Radiation source: fine focus sealed tube X-ray source
Triumph curved graphite crystal monochromator
Detector resolution: 10.4167 pixels mm⁻¹
ω and phi scans
Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.095$ S = 1.056612 reflections 225 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 744 $D_x = 1.348 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9689 reflections $\theta = 2.7-33.2^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.55 \times 0.42 \times 0.33 \text{ mm}$

 $T_{\min} = 0.716, T_{\max} = 0.747$ 74762 measured reflections
6612 independent reflections
5787 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 33.2^{\circ}, \theta_{\text{min}} = 2.3^{\circ}$ $h = -16 \rightarrow 16$ $k = -12 \rightarrow 12$ $l = -29 \rightarrow 28$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0417P)^2 + 0.6618P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.44$ e Å⁻³ Extinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0085 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.95 Å for aromatic and alkene C—H moieties, and to 0.98 Å for CH₃ moieties, respectively. The N—H proton hydrogen bonding between atoms N1 and N3 was found to be disordered and was refined as split between two positions. The H atoms were assigned as bonded to a planar (sp^2 hybridized) N atom, respectively with fixed bond angles and torsion angles, but the N—H bond distances were allowed to refine to account for asymmetry induced by charge and hydrogen bonding (AFIX 44 command). N—H distances refined to 0.83 (5) for N1—H1 and to 0.89 (2) for N3—H3, occupancies refined to 0.33 (2) for H1 and 0.67 (2) for H3. Methyl CH₃ were allowed to rotate but not to tip to best fit the experimental electron density. U_{iso} (H) values were set to a multiple of U_{eq} (C/N) with 1.5 for CH₃ and 1.2 for C—H and NH⁺, respectively.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.07995 (8)	0.11974 (12)	0.12505 (5)	0.02370 (17)	
H1	0.162507	0.154570	0.136425	0.028*	
C2	0.01650 (8)	0.02111 (12)	0.16550 (5)	0.02268 (16)	
H2	0.045537	-0.025178	0.209661	0.027*	
C3	-0.10216 (8)	0.08832 (10)	0.06876 (4)	0.01832 (14)	
C4	-0.20228 (9)	-0.08561 (12)	0.15402 (5)	0.02410 (17)	
H4A	-0.264761	-0.010298	0.167446	0.036*	
H4B	-0.172925	-0.150361	0.195187	0.036*	
H4C	-0.238614	-0.154975	0.116071	0.036*	
C5	-0.21283 (8)	0.09673 (13)	0.01670 (5)	0.02515 (18)	
H5A	-0.194381	0.162346	-0.023687	0.038*	
H5B	-0.281506	0.144135	0.039231	0.038*	
H5C	-0.235631	-0.010751	0.000206	0.038*	
C6	0.23459 (9)	0.40162 (12)	-0.00734 (5)	0.02566 (18)	
H6	0.285770	0.372447	0.034004	0.031*	
C7	0.26716 (8)	0.49589 (12)	-0.06067 (6)	0.02502 (18)	
H7	0.345007	0.545291	-0.063695	0.030*	
C8	0.07312 (8)	0.42021 (10)	-0.08640 (4)	0.01863 (14)	
C9	0.15832 (10)	0.59191 (13)	-0.17707 (5)	0.02847 (19)	
H9A	0.142896	0.516294	-0.216246	0.043*	
H9B	0.236534	0.647282	-0.181302	0.043*	
H9C	0.090972	0.669653	-0.178780	0.043*	
C10	-0.05084 (9)	0.40053 (13)	-0.12482 (5)	0.02596 (18)	
H10A	-0.090249	0.504931	-0.131824	0.039*	
H10B	-0.101453	0.332570	-0.097120	0.039*	
H10C	-0.042876	0.351054	-0.170954	0.039*	
C11	0.43346 (7)	0.00325 (9)	0.14618 (4)	0.01514 (13)	
C12	0.36079 (8)	-0.06738 (10)	0.19405 (4)	0.01852 (14)	
H12	0.326061	-0.004339	0.228696	0.022*	
C13	0.33919 (9)	-0.23035 (11)	0.19101 (5)	0.02475 (18)	
H13	0.289972	-0.278763	0.223810	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	0.38933 (10)	-0.32262 (12)	0.14020 (6)	0.0293 (2)	
H14	0.375570	-0.434269	0.138722	0.035*	
C15	0.45951 (9)	-0.25157 (13)	0.09161 (6)	0.02817 (19)	
H15	0.492304	-0.314441	0.056220	0.034*	
C16	0.48217 (8)	-0.08834 (11)	0.09445 (5)	0.02151 (16)	
H16	0.530578	-0.039928	0.061247	0.026*	
N1	0.00522 (7)	0.16129 (10)	0.06471 (4)	0.02100 (14)	
H1N	0.0238 (11)	0.220 (3)	0.0325 (19)	0.025*	0.33 (2)
N2	-0.09869 (7)	0.00209 (9)	0.12923 (4)	0.01850 (13)	
N3	0.11314 (7)	0.35581 (10)	-0.02425 (4)	0.02125 (14)	
H3N	0.0690 (11)	0.2936 (16)	0.0021 (7)	0.026*	0.67 (2)
N4	0.16511 (7)	0.50600 (9)	-0.10967 (4)	0.02018 (14)	
01	0.35734 (8)	0.28443 (9)	0.17511 (6)	0.0439 (2)	
O2	0.49875 (9)	0.26229 (11)	0.08516 (4)	0.0383 (2)	
03	0.57130 (9)	0.21999 (10)	0.20780 (5)	0.0400 (2)	
S1	0.46799 (2)	0.20953 (2)	0.15392 (2)	0.01791 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0187 (4)	0.0277 (4)	0.0242 (4)	-0.0014 (3)	-0.0009 (3)	0.0018 (3)
C2	0.0207 (4)	0.0263 (4)	0.0202 (4)	0.0008 (3)	-0.0024 (3)	0.0030 (3)
C3	0.0179 (3)	0.0208 (4)	0.0163 (3)	0.0012 (3)	0.0019 (3)	0.0019 (3)
C4	0.0218 (4)	0.0268 (4)	0.0244 (4)	-0.0017 (3)	0.0057 (3)	0.0059 (3)
C5	0.0206 (4)	0.0326 (5)	0.0214 (4)	-0.0007 (3)	-0.0025 (3)	0.0057 (3)
C6	0.0217 (4)	0.0257 (4)	0.0285 (4)	-0.0007 (3)	-0.0032 (3)	-0.0017 (3)
C7	0.0176 (4)	0.0236 (4)	0.0338 (5)	-0.0029 (3)	0.0020 (3)	-0.0033 (3)
C8	0.0182 (3)	0.0197 (3)	0.0183 (3)	-0.0019 (3)	0.0032 (3)	-0.0005 (3)
C9	0.0367 (5)	0.0263 (4)	0.0240 (4)	-0.0061 (4)	0.0108 (4)	0.0020 (3)
C10	0.0209 (4)	0.0326 (5)	0.0237 (4)	-0.0051 (3)	-0.0017 (3)	0.0037 (3)
C11	0.0138 (3)	0.0151 (3)	0.0160 (3)	-0.0013 (2)	-0.0009(2)	0.0004 (2)
C12	0.0195 (3)	0.0185 (3)	0.0174 (3)	-0.0033 (3)	0.0012 (3)	0.0012 (3)
C13	0.0264 (4)	0.0195 (4)	0.0271 (4)	-0.0066 (3)	-0.0035 (3)	0.0064 (3)
C14	0.0310 (5)	0.0154 (4)	0.0388 (5)	0.0007 (3)	-0.0104 (4)	-0.0017 (3)
C15	0.0254 (4)	0.0259 (4)	0.0320 (5)	0.0068 (3)	-0.0036 (3)	-0.0108 (4)
C16	0.0171 (3)	0.0271 (4)	0.0203 (4)	0.0017 (3)	0.0017 (3)	-0.0031 (3)
N1	0.0185 (3)	0.0238 (3)	0.0208 (3)	-0.0010 (3)	0.0027 (2)	0.0026 (3)
N2	0.0179 (3)	0.0203 (3)	0.0174 (3)	0.0002 (2)	0.0017 (2)	0.0026 (2)
N3	0.0206 (3)	0.0230 (3)	0.0199 (3)	-0.0013 (3)	0.0008 (2)	0.0010 (3)
N4	0.0199 (3)	0.0193 (3)	0.0219 (3)	-0.0027 (2)	0.0051 (2)	-0.0011 (3)
01	0.0321 (4)	0.0167 (3)	0.0868 (7)	-0.0008 (3)	0.0267 (5)	-0.0041 (4)
O2	0.0559 (5)	0.0311 (4)	0.0288 (4)	-0.0159 (4)	0.0089 (4)	0.0088 (3)
O3	0.0445 (5)	0.0265 (4)	0.0438 (5)	-0.0125 (3)	-0.0235 (4)	0.0020 (3)
S 1	0.01652 (9)	0.01532 (9)	0.02171 (10)	-0.00380 (6)	0.00082 (7)	0.00194 (6)
51	0.01002())	0.01002())	0.021/1 (10)	0.00200 (0)	0.00002(7)	0.001) (0)

Geometric parameters (Å, °)

<u></u> <u>C1C2</u>	1.3612 (13)	С9—Н9А	0.9800
C1—N1	1.3845 (12)	С9—Н9В	0.9800
C1—H1	0.9500	С9—Н9С	0.9800
C2—N2	1.3809 (11)	C10—H10A	0.9800
С2—Н2	0.9500	C10—H10B	0.9800
C3—N1	1.3283 (11)	C10—H10C	0.9800
C3—N2	1.3541 (11)	C11—C16	1.3910(12)
C3—C5	1.4848 (12)	C11—C12	1.3921 (11)
C4—N2	1.4613 (11)	C11—S1	1.7767 (8)
C4—H4A	0.9800	C12—C13	1.3897 (12)
C4—H4B	0.9800	C12—H12	0.9500
C4—H4C	0.9800	C13—C14	1.3883 (15)
C5—H5A	0.9800	C13—H13	0.9500
C5—H5B	0.9800	C14—C15	1.3866 (16)
C5—H5C	0.9800	C14—H14	0.9500
C6—C7	1.3580 (14)	C15—C16	1.3937 (14)
C6—N3	1.3847 (12)	C15—H15	0.9500
С6—Н6	0.9500	C16—H16	0.9500
C7—N4	1.3815 (12)	N1—H1N	0.83 (5)
С7—Н7	0.9500	N3—H3N	0.89 (2)
C8—N3	1.3322 (11)	O1—S1	1.4489 (8)
C8—N4	1.3418 (11)	O2—S1	1.4465 (8)
C8—C10	1.4805 (12)	O3—S1	1.4484 (8)
C9—N4	1.4639 (12)		
C2C1N1	109 27 (8)	C8-C10-H10C	109.5
$C_2 - C_1 - H_1$	105.27 (0)	H10A - C10 - H10C	109.5
N1-C1-H1	125.4	H10B-C10-H10C	109.5
C1-C2-N2	105.94 (8)	C_{16} $-C_{11}$ $-C_{12}$	120.15 (8)
C1-C2-H2	127.0	C_{16} $-C_{11}$ $-S_{1}$	120.42 (6)
N2—C2—H2	127.0	C12-C11-S1	119.39 (6)
N1—C3—N2	110.00 (7)	C13—C12—C11	119.83 (8)
N1—C3—C5	127.01 (8)	C13—C12—H12	120.1
N2—C3—C5	122.99 (8)	C11—C12—H12	120.1
N2—C4—H4A	109.5	C14—C13—C12	120.20 (9)
N2—C4—H4B	109.5	C14—C13—H13	119.9
H4A—C4—H4B	109.5	C12—C13—H13	119.9
N2—C4—H4C	109.5	C15—C14—C13	119.89 (9)
H4A—C4—H4C	109.5	C15—C14—H14	120.1
H4B—C4—H4C	109.5	C13—C14—H14	120.1
С3—С5—Н5А	109.5	C14—C15—C16	120.31 (9)
С3—С5—Н5В	109.5	C14—C15—H15	119.8
H5A—C5—H5B	109.5	C16—C15—H15	119.8
С3—С5—Н5С	109.5	C11—C16—C15	119.60 (9)
H5A—C5—H5C	109.5	C11—C16—H16	120.2
H5B—C5—H5C	109.5	C15—C16—H16	120.2

C7—C6—N3	107.48 (8)	C3—N1—C1	106.66 (8)
С7—С6—Н6	126.3	C3—N1—H1N	126.7
N3—C6—H6	126.3	C1—N1—H1N	126.7
C6—C7—N4	106.69 (8)	C3—N2—C2	108.13 (7)
С6—С7—Н7	126.7	C3—N2—C4	125.59 (7)
N4—C7—H7	126.7	C2—N2—C4	126.12 (7)
N3—C8—N4	108.53 (8)	C8—N3—C6	108.47 (8)
N3—C8—C10	126.61 (8)	C8—N3—H3N	125.8
N4—C8—C10	124.85 (8)	C6—N3—H3N	125.8
N4—C9—H9A	109.5	C8—N4—C7	108.83 (8)
N4—C9—H9B	109.5	C8—N4—C9	125.08 (8)
Н9А—С9—Н9В	109.5	C7—N4—C9	126.06 (8)
N4—C9—H9C	109.5	O2—S1—O3	112.77 (6)
Н9А—С9—Н9С	109.5	O2—S1—O1	112.73 (6)
Н9В—С9—Н9С	109.5	O3—S1—O1	112.82 (7)
C8-C10-H10A	109.5	O2—S1—C11	106.84 (4)
C8-C10-H10B	109.5	O3—S1—C11	105.15 (4)
H10A—C10—H10B	109.5	O1—S1—C11	105.78 (4)
N1—C1—C2—N2	0.06 (11)	C1—C2—N2—C3	-0.06 (10)
N3—C6—C7—N4	-0.20 (11)	C1-C2-N2-C4	-175.75 (9)
C16—C11—C12—C13	1.40 (12)	N4—C8—N3—C6	-0.12 (10)
S1—C11—C12—C13	-176.27 (7)	C10—C8—N3—C6	179.13 (9)
C11—C12—C13—C14	-0.33 (13)	C7—C6—N3—C8	0.20 (11)
C12—C13—C14—C15	-1.04 (14)	N3—C8—N4—C7	0.00 (10)
C13—C14—C15—C16	1.35 (15)	C10—C8—N4—C7	-179.28 (9)
C12—C11—C16—C15	-1.09 (12)	N3—C8—N4—C9	178.37 (8)
S1—C11—C16—C15	176.55 (7)	C10—C8—N4—C9	-0.91 (14)
C14—C15—C16—C11	-0.28 (14)	C6—C7—N4—C8	0.13 (10)
N2-C3-N1-C1	0.00 (10)	C6—C7—N4—C9	-178.22 (9)
C5-C3-N1-C1	179.55 (9)	C16—C11—S1—O2	24.77 (8)
C2-C1-N1-C3	-0.04 (11)	C12—C11—S1—O2	-157.57 (7)
N1—C3—N2—C2	0.03 (10)	C16—C11—S1—O3	-95.30 (8)
C5—C3—N2—C2	-179.54 (9)	C12—C11—S1—O3	82.36 (8)
N1—C3—N2—C4	175.76 (8)	C16—C11—S1—O1	145.10 (8)
C5—C3—N2—C4	-3.81 (14)	C12—C11—S1—O1	-37.24 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ···N3	0.83	1.90	2.6970 (11)	163
N3—H3 <i>N</i> ···N1	0.89	1.81	2.6970 (11)	170
С1—Н1…О1	0.95	2.43	3.3741 (13)	170
C4—H4 B ···O3 ⁱ	0.98	2.33	3.2956 (12)	170
С6—Н6…О2	0.95	2.60	3.4288 (14)	146
C7—H7···O2 ⁱⁱ	0.95	2.41	3.3254 (12)	162
С9—Н9А…ОЗ ^{ііі}	0.98	2.53	3.4846 (14)	164
С9—Н9 <i>В</i> …ОЗ ^{іі}	0.98	2.46	3.4381 (14)	173

C13—H13···O1ⁱ 0.95 2.67 3.4738 (14) 143 C14—H14···O1^{iv} 0.95 2.48 3.3920 (13) 162

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1, -y+1, -z; (iii) x-1/2, -y+1/2, z-1/2; (iv) x, y-1, z.