

ISSN 2414-3146

Received 4 June 2020 Accepted 15 June 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; copper; bis-monodentate coordination; dimeric complex; C— H···O hydogen bonding.

CCDC reference: 2009944

Structural data: full structural data are available from iucrdata.iucr.org

Tetrakis[μ_2 -5-nitro-2-(phenylsulfanyl)benzoato- $\kappa^2 O:O'$]bis[(acetonitrile- κN)copper(II)]

Danrui Xu, Jun Gao and Sihui Long*

School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China. *Correspondence e-mail: longsihui@yahoo.com

The title compound, $[Cu_2(\mu_2-O_2CC_{12}H_8NO_2S)_4(CH_3CN)_2]$, consists of a dinuclear and centrosymmetric complex based on two Cu^{II} atoms coordinated by four 5-nitro-2-phenylsulfanyl-benzoate anions and two acetonitrile ligands. Each benzoate anion acts as a bis-monodentate ligand while each acetonitrile acts as a monodentate ligand, leading to a square-pyramidal NO₄ coordination environment for each Cu^{II} atom with the acetonitrile N atom at the apex. The intramolecular Cu···Cu distance in the dimer is 2.6478 (3) Å. The cohesion of the crystal structure is ensured by _(phenyl)C-H···O_(nitro) hydrogen bonds and _(phenyl)C-H··· π interactions.

Structure description

The title compound was obtained serendipitously during efforts to make 5-nitro-2phenylsulfanyl-benzoic acid by reacting 2-bromo-5-nitro-benzoic acid with benzenethiol through a modified Ullmann reaction with Cu/Cu₂O as catalyst, K_2CO_3 as base, and ethoxyethanol as solvent (Liu *et al.*, 2007). The complex likely formed between Cu^{II} generated *in situ* and 5-nitro-2-phenylsulfanyl-benzoate.

The title compound is a centrosymmetric dinuclear Cu^{II} complex with two pairs of bismonodentate 5-nitro-2-phenylsulfanyl-benzoate anions and a pair of acetonitrile molecules as ligands (Fig. 1). The coordination of each copper(II) atom is square-pyramidal, with the acetonitrile N atom at the apex of the NO₄ coordination set. The intramolecular $Cu \cdots Cu$ distance in the dimer is 2.6478 (3) Å (Fig. 1). The aromatic rings of the two independent benzoate moieties (denoted by suffix A and B for the two anions in the asymmetric unit) are nearly perpendicular with a dihedral angle of 86.55 (5)°. The negative charge of the carboxylate group is delocalized over the two O atoms in each of the anions, as indicated by the nearly identical length of the two C–O bonds [1.2574 (17) and 1.2624 (17) Å for molecule A and 1.2574 (17) and 1.2655 (16) Å for molecule B]. A

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

Cg4 is the centroid of the C8B-C13B ring.

-		-		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C9B - H9B \cdots O19B^{i}$ C10 - H10A \cdots Cg4^{ii}	0.95 0.95	2.39 2.63	3.2351 (19) 3.4171 (17)	148 140

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z.

weak intermolecular hydrogen bond is formed between the C9B-H9B group of a phenyl ring and the O19B atom of an inversion-related (-x + 1, -y + 2, -z + 1) NO₂ group (Table 1), leading to the formation of supramolecular pillars along [100] and [010] (Fig. 2). An additional C-H··· π interaction between C10A-H10A and the centroid of a neighbouring phenyl ring (Table 1) consolidates the three-dimensional network structure.

The molecular structure of the title complex is similar to that of tetrakis(μ_2 -benzoato-O, O')-bis(dimethylsulfoxide)-dicopper(II) (Reyes-Ortega *et al.*, 2005) and other related copper complexes (Vives *et al.*, 2003).

Synthesis and crystallization

A mixture of benzenethiol (1.25 g, 11.4 mmol), 2-bromo-5nitro-benzoic acid (2.16 g, 8.8 mmol), K_2CO_3 (1.21 g, 8.8 mmol), Cu powder (51 mg, 0.8 mmol), Cu₂O (38 mg, 0.4 mmol) and 2-ethoxyethanol (3 ml) was heated to 403 K for

Figure 1

The molecular structure of the binuclear title complex, with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms). Non-labelled atoms are generated by inversion symmetry (symmetry code: -x + 1, -y + 2, -z).

Packing of the molecules in the title compound, with intermolecular C– $H \cdots O$ hydrogen bonds indicated by blue dashed lines (H atoms not participating in hydrogen bonding are omitted).

24 h. The reaction was cooled down to room temperature, and the solvent was removed under reduced pressure. The residue was poured into water (30 ml), treated with charcoal, and the resulting suspension was filtered through Celite. Acidification of the filtrate with dilute HCl (pH 5) gave a bluish precipitate

Table 2Experimental details.

Crystal data	
Chemical formula	$[Cu_2(C_{13}H_8NO_4S)_4(C_2H_3N)_2]$
Mr	1306.24
Crystal system, space group	Triclinic, P1
Temperature (K)	90
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.7377 (1), 11.0957 (1), 12.4857 (2)
$lpha,eta,\gamma(^\circ)$	77.9948 (5), 88.1362 (5), 72.3710 (5)
$V(Å^3)$	1385.97 (3)
Z	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.00
Crystal size (mm)	$0.50\times0.40\times0.20$
Data collection	
Diffractometer	Nonius KappaCCD diffractometer
Absorption correction	Multi-scan (SCALEPACK; Otwi-
	nowski & Minor, 1997)
T_{\min}, T_{\max}	0.636, 0.826
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12571, 6335, 5914
R _{int}	0.016
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.061, 1.05
No. of reflections	6335
No. of parameters	380
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.36, -0.39

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), XP in SHELXTL and SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

(crude product). The crude product was dissolved in aqueous Na_2CO_3 solution (5%_{wt}, 100 ml) and the solution was filtered through Celite and subjected to acidification and subsequent

precipitation to give a pure product. Blue rod-shaped crystals were grown from CH₃CN solution by slow evaporation (Fig. 3).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Dr Sean Parkin for assistance in preparing the manuscript.

Funding information

The authors acknowledge the Natural Science Foundation of Hubei Province for financial support (2014CFB787).

References

- Liu, S., Pestano, J. P. C. & Wolf, C. (2007). Synthesis, pp. 3519-3527.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. &
- Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Reyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Ramírez-Rosales, D., Bernès, S., Ramírez-García, J. C., Zamorano-Ulloa, R. & Escudero, R. (2005). J. Am. Chem. Soc. 127, 16312– 16317.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). *Cryst. Growth Des.* **3**, 699–704.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2020). **5**, x200801 [https://doi.org/10.1107/S2414314620008019]

Tetrakis[μ_2 -5-nitro-2-(phenylsulfanyl)benzoato- $\kappa^2 O:O'$]bis[(acetonitrile- κN)copper(II)]

Danrui Xu, Jun Gao and Sihui Long

Tetrakis[μ_2 -5-nitro-2-(phenylsulfanyl)benzoato- $\kappa^2 O:O'$]bis[(acetonitrile- κN)copper(II)]

Crystal data

 $\begin{bmatrix} Cu_2(C_{13}H_8NO_4S)_4(C_2H_3N)_2 \end{bmatrix}$ $M_r = 1306.24$ Triclinic, $P\overline{1}$ a = 10.7377 (1) Å b = 11.0957 (1) Å c = 12.4857 (2) Å a = 77.9948 (5)° $\beta = 88.1362$ (5)° $\gamma = 72.3710$ (5)° V = 1385.97 (3) Å³

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 18 pixels mm⁻¹ ω scans at fixed χ =55° Absorption correction: multi-scan (*Scalepack*; Otwinowski & Minor, 1997) $T_{min} = 0.636, T_{max} = 0.826$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.061$ S = 1.056335 reflections 380 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 1 F(000) = 666 $D_x = 1.565 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6289 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 90 K Rod, blue $0.50 \times 0.40 \times 0.20 \text{ mm}$

12571 measured reflections 6335 independent reflections 5914 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0208P)^2 + 0.9758P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.36$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.37846 (2)	0.99509 (2)	0.01065 (2)	0.00993 (5)	
C20	0.00546 (18)	1.0018 (2)	0.19864 (15)	0.0383 (4)	
H20A	0.021784	0.918044	0.249462	0.057*	
H20B	-0.082418	1.027638	0.165040	0.057*	
H20C	0.012133	1.066883	0.238691	0.057*	
C21	0.10207 (15)	0.99118 (16)	0.11335 (13)	0.0219 (3)	
N22	0.17853 (12)	0.98250 (13)	0.04760 (11)	0.0210 (3)	
C1A	0.73172 (13)	0.54587 (13)	-0.03417 (11)	0.0129 (3)	
C2A	0.63214 (13)	0.61581 (13)	0.02586 (10)	0.0121 (3)	
C3A	0.57027 (13)	0.55063 (13)	0.10719 (11)	0.0131 (3)	
H3A	0.502908	0.597453	0.147404	0.016*	
C4A	0.60775 (13)	0.41742 (13)	0.12878 (11)	0.0135 (3)	
C5A	0.70116 (14)	0.34601 (13)	0.06829 (11)	0.0154 (3)	
H5A	0.723021	0.254424	0.082499	0.018*	
C6A	0.76180 (14)	0.41077 (14)	-0.01307 (12)	0.0161 (3)	
H6A	0.825160	0.362840	-0.055605	0.019*	
S7A	0.81150 (3)	0.63183 (3)	-0.13466 (3)	0.01537 (8)	
C8A	0.90777 (13)	0.50792 (13)	-0.20027 (11)	0.0141 (3)	
C9A	0.87216 (14)	0.50745 (14)	-0.30608 (12)	0.0164 (3)	
H9A	0.796224	0.570717	-0.341701	0.020*	
C10A	0.94849 (14)	0.41366 (15)	-0.35961 (12)	0.0199 (3)	
H10A	0.925925	0.414027	-0.432642	0.024*	
C11A	1.05753 (15)	0.31967 (15)	-0.30620 (13)	0.0220 (3)	
H11A	1.108205	0.254619	-0.342354	0.026*	
C12A	1.09315 (14)	0.31990 (15)	-0.20054 (13)	0.0211 (3)	
H12A	1.167443	0.254741	-0.164227	0.025*	
C13A	1.01995 (14)	0.41563 (15)	-0.14789 (12)	0.0176 (3)	
H13A	1.046003	0.418341	-0.076659	0.021*	
C14A	0.58662 (13)	0.76073 (13)	0.00758 (10)	0.0119 (2)	
015A	0.32797 (9)	1.18158 (9)	0.00850 (8)	0.0148 (2)	
016A	0.46503 (10)	0.81172 (9)	0.01343 (8)	0.0167 (2)	
N17A	0.54354 (12)	0.34971 (12)	0.21587 (9)	0.0167 (2)	
O18A	0.57926 (13)	0.23095 (10)	0.23492 (9)	0.0291 (3)	
O19A	0.45741 (11)	0.41481 (10)	0.26574 (9)	0.0218 (2)	
C1B	0.47177 (13)	0.84097 (13)	0.39310 (11)	0.0132 (3)	
C2B	0.55474 (13)	0.90071 (13)	0.32621 (11)	0.0123 (3)	
C3B	0.66210 (13)	0.91810 (13)	0.37284 (11)	0.0132 (3)	
H3B	0.718486	0.957058	0.328018	0.016*	
C4B	0.68656 (13)	0.87855 (13)	0.48456 (11)	0.0135 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5B	0.60457 (14)	0.82457 (13)	0.55299 (11)	0.0146 (3)
H5B	0.620979	0.800878	0.630000	0.018*
C6B	0.49851 (13)	0.80600 (13)	0.50678 (11)	0.0146 (3)
H6B	0.442099	0.768585	0.553019	0.017*
S7B	0.34082 (3)	0.80704 (4)	0.33483 (3)	0.01856 (8)
C8B	0.28760 (13)	0.71437 (14)	0.45143 (11)	0.0161 (3)
C9B	0.18868 (14)	0.77613 (15)	0.51410 (13)	0.0203 (3)
H9B	0.148411	0.866897	0.493867	0.024*
C10B	0.14911 (15)	0.70463 (16)	0.60623 (13)	0.0228 (3)
H10B	0.082094	0.746774	0.649382	0.027*
C11B	0.20682 (15)	0.57216 (16)	0.63558 (12)	0.0221 (3)
H11B	0.181478	0.523963	0.700033	0.026*
C12B	0.30193 (15)	0.50986 (15)	0.57050 (13)	0.0210 (3)
H12B	0.339840	0.418677	0.589475	0.025*
C13B	0.34171 (14)	0.58063 (14)	0.47772 (12)	0.0177 (3)
H13B	0.405530	0.537858	0.432525	0.021*
C14B	0.53438 (13)	0.94456 (13)	0.20461 (11)	0.0127 (3)
O15B	0.36927 (9)	1.03736 (9)	-0.14980 (8)	0.01443 (19)
O16B	0.42258 (10)	0.95862 (10)	0.16679 (8)	0.0179 (2)
N17B	0.80353 (12)	0.89184 (12)	0.53147 (10)	0.0176 (2)
O18B	0.81739 (12)	0.86967 (12)	0.63151 (9)	0.0276 (3)
O19B	0.88348 (10)	0.92404 (11)	0.46750 (9)	0.0218 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01075 (8)	0.00931 (8)	0.00903 (8)	-0.00330 (6)	0.00151 (6)	-0.00015 (6)
C20	0.0299 (9)	0.0581 (13)	0.0299 (9)	-0.0159 (9)	0.0122 (8)	-0.0135 (9)
C21	0.0170 (7)	0.0264 (8)	0.0228 (8)	-0.0082 (6)	-0.0015 (6)	-0.0034 (6)
N22	0.0148 (6)	0.0245 (7)	0.0233 (6)	-0.0080(5)	0.0009 (5)	-0.0010 (5)
C1A	0.0140 (6)	0.0137 (6)	0.0112 (6)	-0.0047 (5)	0.0003 (5)	-0.0022 (5)
C2A	0.0143 (6)	0.0115 (6)	0.0104 (6)	-0.0037 (5)	-0.0011 (5)	-0.0018 (5)
C3A	0.0150 (6)	0.0133 (6)	0.0105 (6)	-0.0037 (5)	0.0001 (5)	-0.0025 (5)
C4A	0.0173 (6)	0.0136 (6)	0.0099 (6)	-0.0068 (5)	0.0002 (5)	0.0000 (5)
C5A	0.0183 (7)	0.0106 (6)	0.0163 (6)	-0.0035 (5)	-0.0010 (5)	-0.0019 (5)
C6A	0.0169 (7)	0.0140 (7)	0.0177 (7)	-0.0037 (5)	0.0028 (5)	-0.0055 (5)
S7A	0.01914 (17)	0.01343 (16)	0.01462 (16)	-0.00625 (13)	0.00703 (13)	-0.00429 (12)
C8A	0.0141 (6)	0.0146 (6)	0.0146 (6)	-0.0054 (5)	0.0047 (5)	-0.0040 (5)
C9A	0.0135 (6)	0.0179 (7)	0.0165 (7)	-0.0030 (5)	0.0004 (5)	-0.0036 (5)
C10A	0.0186 (7)	0.0262 (8)	0.0175 (7)	-0.0068 (6)	0.0016 (5)	-0.0103 (6)
C11A	0.0177 (7)	0.0212 (8)	0.0286 (8)	-0.0039 (6)	0.0068 (6)	-0.0122 (6)
C12A	0.0136 (7)	0.0202 (7)	0.0256 (8)	-0.0014 (6)	0.0008 (6)	-0.0015 (6)
C13A	0.0154 (7)	0.0230 (7)	0.0142 (6)	-0.0067 (6)	0.0008 (5)	-0.0022 (5)
C14A	0.0165 (6)	0.0115 (6)	0.0070 (6)	-0.0035 (5)	0.0009 (5)	-0.0012 (5)
O15A	0.0164 (5)	0.0110 (5)	0.0177 (5)	-0.0050 (4)	0.0039 (4)	-0.0039 (4)
016A	0.0149 (5)	0.0102 (5)	0.0231 (5)	-0.0029 (4)	0.0014 (4)	-0.0009 (4)
N17A	0.0243 (6)	0.0150 (6)	0.0116 (5)	-0.0087 (5)	0.0004 (5)	-0.0004 (4)
O18A	0.0527 (8)	0.0130 (5)	0.0222 (6)	-0.0134 (5)	0.0126 (5)	-0.0016 (4)

O19A	0.0243 (5)	0.0208 (5)	0.0188 (5)	-0.0072 (4)	0.0082 (4)	-0.0015 (4)
C1B	0.0130 (6)	0.0118 (6)	0.0127 (6)	-0.0017 (5)	0.0005 (5)	-0.0013 (5)
C2B	0.0140 (6)	0.0098 (6)	0.0109 (6)	-0.0008 (5)	0.0020 (5)	-0.0017 (5)
C3B	0.0149 (6)	0.0108 (6)	0.0133 (6)	-0.0028 (5)	0.0034 (5)	-0.0031 (5)
C4B	0.0135 (6)	0.0125 (6)	0.0147 (6)	-0.0032 (5)	0.0003 (5)	-0.0043 (5)
C5B	0.0182 (7)	0.0133 (6)	0.0104 (6)	-0.0025 (5)	0.0010 (5)	-0.0016 (5)
C6B	0.0154 (6)	0.0151 (7)	0.0118 (6)	-0.0042 (5)	0.0032 (5)	-0.0007 (5)
S7B	0.01666 (17)	0.02532 (19)	0.01348 (16)	-0.01036 (14)	-0.00195 (13)	0.00278 (13)
C8B	0.0139 (6)	0.0204 (7)	0.0144 (6)	-0.0077 (5)	0.0000 (5)	-0.0006 (5)
C9B	0.0181 (7)	0.0177 (7)	0.0269 (8)	-0.0069 (6)	0.0033 (6)	-0.0066 (6)
C10B	0.0210 (7)	0.0297 (8)	0.0239 (8)	-0.0124 (6)	0.0093 (6)	-0.0134 (6)
C11B	0.0228 (7)	0.0304 (8)	0.0163 (7)	-0.0158 (7)	0.0014 (6)	-0.0007 (6)
C12B	0.0194 (7)	0.0187 (7)	0.0226 (7)	-0.0060 (6)	-0.0029 (6)	0.0015 (6)
C13B	0.0133 (6)	0.0209 (7)	0.0178 (7)	-0.0036 (5)	0.0000 (5)	-0.0041 (6)
C14B	0.0167 (6)	0.0088 (6)	0.0111 (6)	-0.0020 (5)	0.0016 (5)	-0.0018 (5)
O15B	0.0153 (5)	0.0167 (5)	0.0099 (4)	-0.0040 (4)	0.0027 (4)	-0.0015 (4)
O16B	0.0172 (5)	0.0245 (5)	0.0104 (4)	-0.0073 (4)	0.0004 (4)	0.0017 (4)
N17B	0.0187 (6)	0.0177 (6)	0.0180 (6)	-0.0065 (5)	-0.0004 (5)	-0.0059 (5)
O18B	0.0295 (6)	0.0413 (7)	0.0168 (5)	-0.0159 (5)	-0.0035 (4)	-0.0080 (5)
O19B	0.0196 (5)	0.0248 (6)	0.0243 (5)	-0.0116 (4)	0.0030 (4)	-0.0053 (4)

Geometric parameters (Å, °)

Cu1—O16B	1.9505 (10)	C13A—H13A	0.9500
Cu1—O16A	1.9576 (10)	C14A—O15A ⁱ	1.2574 (17)
Cu1—O15B	1.9588 (9)	C14A—O16A	1.2624 (17)
Cu1—O15A	1.9685 (10)	N17A—O18A	1.2287 (16)
Cu1—N22	2.2206 (12)	N17A—O19A	1.2287 (16)
Cu1—Cu1 ⁱ	2.6478 (3)	C1B—C6B	1.4062 (18)
C20—C21	1.460 (2)	C1B—C2B	1.4176 (18)
C20—H20A	0.9800	C1B—S7B	1.7746 (14)
C20—H20B	0.9800	C2B—C3B	1.3893 (19)
С20—Н20С	0.9800	C2B—C14B	1.4966 (18)
C21—N22	1.139 (2)	C3B—C4B	1.3808 (19)
C1A—C6A	1.4032 (19)	C3B—H3B	0.9500
C1A—C2A	1.4123 (18)	C4B—C5B	1.3862 (19)
C1A—S7A	1.7734 (14)	C4B—N17B	1.4623 (18)
C2A—C3A	1.3919 (18)	C5B—C6B	1.381 (2)
C2A—C14A	1.5017 (18)	C5B—H5B	0.9500
C3A—C4A	1.3785 (19)	C6B—H6B	0.9500
СЗА—НЗА	0.9500	S7B—C8B	1.7839 (14)
C4A—C5A	1.3865 (19)	C8B—C13B	1.391 (2)
C4A—N17A	1.4654 (17)	C8B—C9B	1.392 (2)
C5A—C6A	1.3816 (19)	C9B—C10B	1.388 (2)
С5А—Н5А	0.9500	C9B—H9B	0.9500
С6А—Н6А	0.9500	C10B—C11B	1.385 (2)
S7A—C8A	1.7840 (14)	C10B—H10B	0.9500
C8A—C9A	1.3887 (19)	C11B—C12B	1.390 (2)

C8A—C13A	1.397 (2)	C11B—H11B	0.9500
C9A—C10A	1.392 (2)	C12B—C13B	1.391 (2)
С9А—Н9А	0.9500	C12B—H12B	0.9500
C10A—C11A	1.387 (2)	C13B—H13B	0.9500
C10A—H10A	0.9500	C14B—016B	1.2574 (17)
C11A - C12A	1 386 (2)	$C14B - O15B^{i}$	1 2655 (16)
C11A—H11A	0.9500	N17B-018B	1.2055 (10)
	1 380 (2)	N17B 010B	1.2207(10) 1.2349(16)
C12A = C13A	0.0500	N17D-019D	1.2349 (10)
CI2A—III2A	0.9500		
O16B—Cu1—O16A	87.64 (4)	C12A—C13A—C8A	119.63 (13)
016B—Cu1—015B	168.27 (4)	C12A—C13A—H13A	120.2
016A - Cu1 - 015B	91 98 (4)	C8A—C13A—H13A	120.2
016B— $Cu1$ — $015A$	89.65 (4)	$O15A^{i}$ $C14A$ $O16A$	126.2
016A - Cu1 - 015A	168 31 (4)	$O15A^{i}$ $C14A$ $C2A$	117.69(12)
015B-Cu1-015A	88 37 (4)	016A - C14A - C2A	117.05(12) 115.55(12)
O15B = Cu1 = O15A O16B = Cu1 = N22	00.57(4)	$C_{14A^{i}}$ C_{15A} C_{11}	113.33(12)
O16b - Cu1 - N22	90.37 (4)	C14A = O15A = Cu1	119.40(9)
O16A - Cu1 - N22	97.89(3)	C14A = O10A = Cu1	123.20(9)
O15B - Cu1 - N22	101.10 (4)	O18A - N17A - O19A	123.80 (12)
OI5A—CuI—N22	93.50 (4)	OI8A—NI7A—C4A	118.00 (12)
Ol6B—Cul—Cul ⁴	83.35 (3)	OI9A—NI7A—C4A	118.21 (11)
Ol6A—Cul—Cul ¹	81.95 (3)	C6B—C1B—C2B	118.05 (12)
O15B—Cu1—Cu1 ⁱ	84.98 (3)	C6B—C1B—S7B	120.91 (10)
O15A—Cu1—Cu1 ⁱ	86.45 (3)	C2B—C1B—S7B	121.02 (10)
N22—Cu1—Cu1 ⁱ	173.92 (4)	C3B—C2B—C1B	119.99 (12)
C21—C20—H20A	109.5	C3B—C2B—C14B	117.13 (12)
C21—C20—H20B	109.5	C1B—C2B—C14B	122.86 (12)
H20A—C20—H20B	109.5	C4B—C3B—C2B	119.77 (12)
C21—C20—H20C	109.5	С4В—С3В—Н3В	120.1
H20A—C20—H20C	109.5	С2В—С3В—Н3В	120.1
H20B-C20-H20C	109.5	C3B—C4B—C5B	121.79 (13)
N22—C21—C20	179.27 (17)	C3B—C4B—N17B	118.98 (12)
C21—N22—Cu1	142.80 (12)	C5B—C4B—N17B	119.22 (12)
C6A—C1A—C2A	118.39 (12)	C6B—C5B—C4B	118.55 (12)
C6A - C1A - S7A	122.63 (10)	C6B—C5B—H5B	120.7
C^2A — C^1A — S^7A	118 97 (10)	C4B-C5B-H5B	120.7
C_{3A} C_{2A} C_{1A}	120.17(12)	C5B-C6B-C1B	120.7 121.77(13)
C_{3A} C_{2A} C_{1AA}	120.17(12) 116.23(12)	C5B C6B H6B	110.1
$C_{1A} = C_{2A} = C_{14A}$	110.23(12) 123.60(12)	C1B C6B H6B	119.1
$C_{1}A = C_{2}A = C_{1}A$	123.00(12) 110.31(13)	C1B = C0B = 110B	101 35 (6)
C4A = C2A = U2A	119.51 (15)	C12D = C2D = C0D	101.33(0)
$C_{A} = C_{A} = H_{A}$	120.5	C12D = C8D = C7D	120.08(13)
C2A—C3A—H3A	120.5		120.24 (11)
$C_{A} = C_{A} = C_{A}$	121.98 (12)		119.66 (11)
$C_3A - C_4A - N_1/A$	118.85 (12)	CIUB—C9B—C8B	119.76 (14)
C5A—C4A—N17A	119.13 (12)	C10B—C9B—H9B	120.1
C6A—C5A—C4A	118.65 (13)	С8В—С9В—Н9В	120.1
C6A—C5A—H5A	120.7	C11B—C10B—C9B	120.33 (14)
С4А—С5А—Н5А	120.7	C11B—C10B—H10B	119.8

C5A—C6A—C1A	121.35 (13)	C9B—C10B—H10B	119.8
С5А—С6А—Н6А	119.3	C10B—C11B—C12B	119.85 (14)
С1А—С6А—Н6А	119.3	C10B—C11B—H11B	120.1
C1A—S7A—C8A	102.32 (6)	C12B—C11B—H11B	120.1
C9A—C8A—C13A	120.39 (13)	C11B—C12B—C13B	120.19 (14)
C9A—C8A—S7A	118.87 (11)	C11B—C12B—H12B	119.9
C13A—C8A—S7A	120.69 (11)	C13B—C12B—H12B	119.9
C8A—C9A—C10A	119.57 (13)	C12B—C13B—C8B	119.66 (14)
С8А—С9А—Н9А	120.2	C12B—C13B—H13B	120.2
С10А—С9А—Н9А	120.2	C8B—C13B—H13B	120.2
C11A—C10A—C9A	119.95 (14)	O16B—C14B—O15B ⁱ	126.33 (12)
C11A—C10A—H10A	120.0	O16B—C14B—C2B	116.29 (12)
C9A—C10A—H10A	120.0	$O15B^{i}$ — $C14B$ — $C2B$	117.37 (12)
C12A—C11A—C10A	120.55 (14)	$C14B^{i}$ — $O15B$ — $Cu1$	121.32 (9)
C12A—C11A—H11A	119.7	C14B-O16B-Cu1	123.77 (9)
C10A—C11A—H11A	119.7	O18B— $N17B$ — $O19B$	123.72 (12)
C11A—C12A—C13A	119.84 (14)	O18B—N17B—C4B	118.56 (12)
C11A - C12A - H12A	120.1	O19B— $N17B$ — $C4B$	117.72 (12)
C13A - C12A - H12A	120.1		11,1,2 (12)
C6A—C1A—C2A—C3A	2.85 (19)	C6B—C1B—C2B—C3B	2.74 (19)
\$7A—C1A—C2A—C3A	-178.32(10)	S7B—C1B—C2B—C3B	-175.48 (10)
C6A—C1A—C2A—C14A	-177.17 (12)	C6B—C1B—C2B—C14B	-178.72 (12)
S7A—C1A—C2A—C14A	1.66 (18)	S7B-C1B-C2B-C14B	3.05 (18)
C1A—C2A—C3A—C4A	0.4 (2)	C1B—C2B—C3B—C4B	-0.8(2)
C14A—C2A—C3A—C4A	-179.61 (12)	C14B—C2B—C3B—C4B	-179.46 (12)
C2A—C3A—C4A—C5A	-3.2 (2)	C2B—C3B—C4B—C5B	-1.8 (2)
C2A—C3A—C4A—N17A	178.95 (12)	C2B—C3B—C4B—N17B	177.03 (12)
C3A—C4A—C5A—C6A	2.6 (2)	C3B—C4B—C5B—C6B	2.4 (2)
N17A—C4A—C5A—C6A	-179.52 (12)	N17B—C4B—C5B—C6B	-176.42 (12)
C4A—C5A—C6A—C1A	0.8 (2)	C4B-C5B-C6B-C1B	-0.4 (2)
C2A—C1A—C6A—C5A	-3.4 (2)	C2B—C1B—C6B—C5B	-2.1(2)
S7A—C1A—C6A—C5A	177.77 (11)	S7B—C1B—C6B—C5B	176.08 (11)
C6A—C1A—S7A—C8A	7.14 (13)	C6B—C1B—S7B—C8B	-5.99 (13)
C2A—C1A—S7A—C8A	-171.63 (11)	C2B—C1B—S7B—C8B	172.19 (11)
C1A—S7A—C8A—C9A	108.76 (12)	C1B—S7B—C8B—C13B	-89.83 (12)
C1A—S7A—C8A—C13A	-73.62 (12)	C1B—S7B—C8B—C9B	92.16 (12)
C13A—C8A—C9A—C10A	0.5 (2)	C13B—C8B—C9B—C10B	3.4 (2)
S7A-C8A-C9A-C10A	178.11 (11)	S7B-C8B-C9B-C10B	-178.58 (12)
C8A—C9A—C10A—C11A	1.5 (2)	C8B-C9B-C10B-C11B	-0.5 (2)
C9A—C10A—C11A—C12A	-1.5 (2)	C9B-C10B-C11B-C12B	-2.1 (2)
C10A—C11A—C12A—C13A	-0.6 (2)	C10B—C11B—C12B—C13B	1.7 (2)
C11A—C12A—C13A—C8A	2.6 (2)	C11B—C12B—C13B—C8B	1.2 (2)
C9A—C8A—C13A—C12A	-2.6 (2)	C9B-C8B-C13B-C12B	-3.7 (2)
S7A—C8A—C13A—C12A	179.85 (11)	S7B-C8B-C13B-C12B	178.26 (11)
C3A-C2A-C14A-O15A ⁱ	138.82 (13)	C3B-C2B-C14B-O16B	-162.85 (12)
C1A—C2A—C14A—O15A ⁱ	-41.16 (18)	C1B-C2B-C14B-O16B	18.58 (19)
C3A—C2A—C14A—O16A	-39.11 (17)	C3B—C2B—C14B—O15B ⁱ	17.83 (18)

C1A—C2A—C14A—O16A	140.91 (13)	C1B—C2B—C14B—O15B ⁱ	-160.74 (13)
O15A ⁱ —C14A—O16A—Cu1	-5.3 (2)	O15B ⁱ —C14B—O16B—Cu1	6.7 (2)
C2A—C14A—O16A—Cu1	172.44 (8)	C2B-C14B-O16B-Cu1	-172.57 (9)
C3A—C4A—N17A—O18A	-179.13 (13)	C3B—C4B—N17B—O18B	172.27 (13)
C5A—C4A—N17A—O18A	2.94 (19)	C5B—C4B—N17B—O18B	-8.87 (19)
C3A—C4A—N17A—O19A	0.73 (19)	C3B—C4B—N17B—O19B	-8.25 (19)
C5A—C4A—N17A—O19A	-177.20 (13)	C5B—C4B—N17B—O19B	170.61 (13)

Symmetry code: (i) -x+1, -y+2, -z.

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C8B–C13B ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C6B—H6B…O18A ⁱⁱ	0.95	2.65	3.2785 (17)	124
C9 <i>B</i> —H9 <i>B</i> ····O19 <i>B</i> ⁱⁱⁱ	0.95	2.39	3.2351 (19)	148
C10—H10 A ···Cg4 ^{iv}	0.95	2.63	3.4171 (17)	140

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*.