

ISSN 2414-3146

Received 3 June 2020 Accepted 20 July 2020

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; coordination polymer; Cul dimer; copper.

CCDC reference: 2017730

Structural data: full structural data are available from iucrdata.iucr.org

data reports

Poly[[[μ-trans-1,2-bis(pyridin-4-yl)ethene-κ²N:N']μ-iodido-copper(I)]–trans-1,2-bis(pyridin-4-yl)ethene (1/0.25)]

Jessica L. Hoffman,^a Jessie E. Akhigbe,^a Eric W. Reinheimer^b and Bradley W. Smucker^a*

^aAustin College, 900 N Grand, Sherman, TX 75090, USA, and ^bRigaku Oxford Diffraction, 9009 New Trails Dr., The Woodlands, TX 77381, USA. *Correspondence e-mail: bsmucker@austincollege.edu

The title compound, {[CuI(bpe)] $\cdot 0.25(bpe)$],, was synthesized similarly to (CuI)₂(bpe) [Neal *et al.* (2019). *IUCrData*, **4**, x190122] with red crystals grown from acetonitrile solutions of CuI and the bpe ligand [bpe = 1,2-bis(pyridin-4-yl)ethene, C₁₂H₁₀N₂]. The structure of the title compound is a type 1 complex in the Graham nomenclature [Graham *et al.* (2000). *Inorg. Chem.* **39**, 5121–5132], having rhombic dimers of Cu₂I₂ that are bridged by two bpe ligands, to form oligomeric ribbons arranged as stairsteps. The step height is 2.8072 (11) Å, which is the Cu-Iⁱ distance of the dimer [symmetry code (i): 1 - x, 2 - y, 1 - z]. The resulting polymer displays a two-dimensional honeycomb framework along the (011) plane, and disordered free bpe molecules fill the voids in the crystal.

Structure description

The structure of the title compound contains discrete rhombic dimers of Cu_2I_2 , where the Cu-I distance is 2.6891 (9) Å, the distance across the dimer $(Cu-I^i \text{ distance})$ is 2.8072 (11) Å, and the $Cu \cdot \cdot Cu^i$ separation is 3.544 (1) Å [symmetry code (i): 1 - x, 2 - y, 1 - z]. The approximately tetrahedral geometry around the Cu^I atoms has an N-Cu-N angle of 127.33 (17)° and $I-Cu-I^i$ angle of 99.74 (3)°. Each bpe ligand connects two copper(I) atoms to form oligomeric zigzag ribbons of CuI(bpe), which can be classified as a type 1 complex (Graham *et al.*, 2000), where bpe is 1,2-bis(pyridin-4-yl)ethene. These ribbons are arranged as stairsteps with each stair resulting from the Cu_2I_2 dimer, hence the step height is 2.8072 (11) Å (the $Cu-I^i$ distance, Fig. 1). This packing is quite different from the analogous CuI(4,4'-bipyridyl) complex, where tetrameric units, composed of two Cu_2I_2 dimers bridged by two 4,4'-bipyridyl ligands, are linked by

additional 4,4'-bipyridyl ligands to form interpenetrating hexagonal honeycomb sheets (Blake *et al.*, 1999).

The title compound is quite similar to structures of [CuI(bpe)] containing guest aniline or *p*-toluidine molecules (Yang *et al.*, 2011), except that it contains a bpe molecule, which is disordered over two inversion centers, with occupancy of 0.25. In attempts at identifying this guest molecule, we considered bpe and acetonitrile (crystallization solvent). Refinements on either molecule required substantial restraints and yielded unsatisfactory results. The final model for both, however, gave normal displacement parameters. A lack of $C \equiv N$ vibrations in the IR spectra of crystals ultimately led towards assigning the guest as a disordered bpe molecule. The use of SQUEEZE (Spek, 2015) also seemed less ideal as the position of the guest was evident in difference maps.

Synthesis and crystallization

The title compound was synthesized using the same procedure as reported in the synthesis of polymeric $[(CuI)_2(bpe)]$ (Neal *et al.*, 2019; Parmeggiani & Sacchetti, 2012). Red crystals were grown by layering an acetonitrile solution containing freshly prepared CuI, ascorbic acid and KI with another acetonitrile solution containing bpe in a thin tube. The concentration of bpe in this tube is inferred to be greater than the concentration of CuI to afford the red type 1 complexes of [CuI(bpe)]rather than the aforementioned complexes of $[(CuI)_2(bpe)]$, which are type 2 (Graham *et al.*, 2000). Similar structures of [(CuI)(bpe)] were reported with guest aniline or *p*-toluidine molecules but were made from solvothermal reactions (Yang *et al.*, 2011).

Table 1	
Experimental details.	

Crystal data	
Chemical formula	$[CuI(C_{12}H_{10}N_2) \cdot 0.25C_{12}H_{10}N_2]$
Mr	418.21
Crystal system, space group	Triclinic, P1
Temperature (K)	293
a, b, c (Å)	7.9004 (2), 10.4260 (3), 10.5078 (3)
α, β, γ (°)	99.903 (2), 104.930 (2), 110.061 (3)
$V(Å^3)$	752.55 (4)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	3.49
Crystal size (mm)	$0.14 \times 0.10 \times 0.06$
Data collection	
Diffractometer	Rigaku XtaLAB Mini II
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.838, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16024, 2683, 2021
R _{int}	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.597
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.091, 1.03
No. of reflections	2683
No. of parameters	200
No. of restraints	87
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.60, -1.01

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Refinement

Details of the crystal data, data collection, and structure refinement are summarized in Table 1. One-half of the guest

Figure 1

Displacement ellipsoid plot (50% probability level) of all non-H atoms for the oligomeric ribbons of Cu_2I_2 dimers bridged by bpe and arranged as stairsteps with 2.8072 (11) Å height (the $Cu-I^i$ distance). Cu-I and $Cu-I^i$ distances are shown. Guest bpe molecule are omitted for clarity.

bpe molecule is placed close to an inversion center, and its occupancy was fixed to 0.5. As a result, the amount of guest bpe for each CuI(bpe) monomer is 0.25. The geometry of the disordered guest molecule was fully restrained using 1,2 and 1,3 distances from a known target. This molecule was also restrained to be flat, with standard deviation of 0.1 Å³, while displacement parameters were restrained, with effective standard deviation of 0.1 Å² to approximate an isotropic behaviour. Finally, rigid bond restraints were applied to the guest bpe molecule (Sheldrick, 2015*b*).

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department at Austin College); Jerry Taylor and Nancy Bryant Foundation (gift to Austin College Science Division).

References

- Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). *Cryst. Eng.* 2, 181–195.
- Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). *Inorg. Chem.* **39**, 5121–5132.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Neal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). *IUCrData*, **4**, x190122.
- Parmeggiani, F. & Sacchetti, A. (2012). J. Chem. Educ. 89, 946-949.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, Z., Chen, Y., Ni, C.-Y., Ren, Z.-G., Wang, H.-F., Li, H.-X. & Lang, J.-P. (2011). *Inorg. Chem. Commun.* **14**, 1537–1540.

full crystallographic data

IUCrData (2020). **5**, x200998 [https://doi.org/10.1107/S2414314620009980]

Poly[[[μ -*trans*-1,2-bis(pyridin-4-yl)ethene- $\kappa^2 N$:N']- μ -iodido-copper(I)]–*trans*-1,2-bis(pyridin-4-yl)ethene (1/0.25)]

Jessica L. Hoffman, Jessie E. Akhigbe, Eric W. Reinheimer and Bradley W. Smucker

Poly[[[μ -trans-1,2-bis(pyridin-4-yl)ethene- $\kappa^2 N$:N']- μ -iodido-copper(I)]-trans-1,2-bis(pyridin-4-yl)ethene (1/0.25)]

Crystal data

 $[CuI(C_{12}H_{10}N_2) \cdot 0.25C_{12}H_{10}N_2 M_r = 418.21$ Triclinic, *P*1 a = 7.9004 (2) Å b = 10.4260 (3) Å c = 10.5078 (3) Å a = 99.903 (2)° $\beta = 104.930$ (2)° $\gamma = 110.061$ (3)° V = 752.55 (4) Å³

Data collection

Rigaku XtaLAB Mini II diffractometer Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis Pro; Rigaku OD, 2019) $T_{\min} = 0.838, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.091$ S = 1.032683 reflections 200 parameters 87 restraints 0 constraints Primary atom site location: dual Secondary atom site location: difference Fourier map Z = 2 F(000) = 404 $D_x = 1.846 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6736 reflections $\theta = 2.1-24.7^{\circ}$ $\mu = 3.49 \text{ mm}^{-1}$ T = 293 K Block, red $0.14 \times 0.10 \times 0.06 \text{ mm}$

16024 measured reflections 2683 independent reflections 2021 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -12 \rightarrow 12$

Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 1.4132P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.60 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.01 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0018 (8)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
I1	0.26536 (6)	0.84672 (5)	0.33204 (4)	0.06679 (19)	
Cu1	0.47272 (12)	0.86742 (10)	0.58757 (8)	0.0777 (3)	
N1	0.6174 (6)	0.7452 (5)	0.5719 (5)	0.0605 (12)	
N2	0.3214 (6)	0.8771 (5)	0.7122 (4)	0.0515 (10)	
C1	0.6526 (9)	0.6715 (7)	0.6588 (6)	0.0683 (16)	
H1	0.603438	0.674885	0.730152	0.082*	
C2	0.7563 (8)	0.5909 (6)	0.6505 (6)	0.0657 (16)	
H2	0.773735	0.540343	0.713949	0.079*	
C3	0.8346 (8)	0.5847 (6)	0.5482 (6)	0.0572 (14)	
C4	0.7964 (9)	0.6579 (7)	0.4552 (7)	0.0743 (18)	
H4	0.843618	0.655522	0.382777	0.089*	
C5	0.6875 (9)	0.7351 (7)	0.4697 (7)	0.0752 (18)	
Н5	0.661750	0.782544	0.404776	0.090*	
C6	0.9505 (8)	0.5005 (6)	0.5415 (6)	0.0614 (15)	
H6	0.953705	0.443793	0.600578	0.074*	
C7	0.0594 (8)	0.9694 (6)	1.0045 (5)	0.0578 (14)	
H7	0.093427	0.942977	1.084213	0.069*	
C8	0.3474 (10)	0.8408 (8)	0.8268 (6)	0.090 (2)	
H8	0.427047	0.792999	0.844460	0.108*	
C9	0.2652 (10)	0.8686 (8)	0.9223 (6)	0.089 (2)	
Н9	0.290839	0.840143	1.001801	0.107*	
C10	0.1457 (7)	0.9378 (5)	0.9018 (5)	0.0470 (12)	
C11	0.1145 (8)	0.9735 (6)	0.7811 (6)	0.0625 (15)	
H11	0.034006	1.020025	0.760252	0.075*	
C12	0.2020 (8)	0.9406 (6)	0.6906 (6)	0.0643 (16)	
H12	0.175498	0.964583	0.608684	0.077*	
C13	0.9182 (15)	0.4586 (15)	1.002 (3)	0.207 (11)	0.5
H13	0.901139	0.363730	1.005612	0.248*	0.5
C14	0.7563 (17)	0.4951 (16)	0.9907 (15)	0.157 (8)	0.5
C15	0.7591 (17)	0.6220 (15)	1.0534 (17)	0.173 (9)	0.5
H15	0.873366	0.708859	1.090084	0.207*	0.5
C16	0.5871 (15)	0.6190 (9)	1.0550 (15)	0.265 (11)	
H16	0.587357	0.707340	1.100402	0.318*	0.5
Н	0.298137	0.295930	0.924152	0.318*	0.5
N17	0.4132 (18)	0.5088 (14)	1.002 (3)	0.268 (16)	0.5
C18	0.5760 (17)	0.3832 (16)	0.926 (2)	0.161 (8)	0.5
H18	0.568167	0.300260	0.863881	0.193*	0.5

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	T T 1	T T))	T 722	T 712	T 712	T 723
	U^{II}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0821 (3)	0.0961 (3)	0.0635 (3)	0.0621 (3)	0.0395 (2)	0.0464 (2)
Cu1	0.0954 (6)	0.1227 (7)	0.0726 (5)	0.0872 (6)	0.0535 (4)	0.0401 (5)
N1	0.068 (3)	0.084 (3)	0.065 (3)	0.056 (3)	0.039 (2)	0.030(2)
N2	0.061 (3)	0.068 (3)	0.053 (2)	0.045 (2)	0.033 (2)	0.025 (2)

C1	0.081 (4)	0.100 (5)	0.067 (4)	0.067 (4)	0.043 (3)	0.039 (3)
C2	0.075 (4)	0.084 (4)	0.076 (4)	0.057 (4)	0.041 (3)	0.039 (3)
C3	0.055 (3)	0.064 (3)	0.077 (4)	0.043 (3)	0.032 (3)	0.028 (3)
C4	0.091 (4)	0.104 (5)	0.085 (4)	0.076 (4)	0.059 (4)	0.046 (4)
C5	0.098 (5)	0.106 (5)	0.082 (4)	0.081 (4)	0.058 (4)	0.052 (4)
C6	0.064 (4)	0.064 (3)	0.086 (4)	0.044 (3)	0.041 (3)	0.034 (3)
C7	0.073 (4)	0.088 (4)	0.047 (3)	0.055 (3)	0.036 (3)	0.034 (3)
C8	0.123 (6)	0.162 (7)	0.073 (4)	0.123 (6)	0.062 (4)	0.064 (4)
C9	0.129 (6)	0.160 (7)	0.065 (4)	0.122 (6)	0.061 (4)	0.070 (4)
C10	0.050 (3)	0.063 (3)	0.046 (3)	0.035 (3)	0.026 (2)	0.021 (2)
C11	0.082 (4)	0.093 (4)	0.067 (3)	0.071 (4)	0.050 (3)	0.046 (3)
C12	0.094 (4)	0.094 (4)	0.064 (3)	0.073 (4)	0.054 (3)	0.050 (3)
C13	0.23 (2)	0.15 (2)	0.20 (2)	0.062 (19)	0.00(2)	0.10(2)
C14	0.27 (2)	0.124 (12)	0.066 (11)	0.082 (13)	0.017 (13)	0.050 (10)
C15	0.162 (16)	0.099 (11)	0.17 (2)	0.014 (12)	-0.024 (16)	0.035 (12)
C16	0.229 (17)	0.209 (17)	0.233 (19)	0.099 (14)	-0.031 (15)	-0.085 (14)
N17	0.192 (18)	0.28 (3)	0.23 (3)	0.106 (17)	0.02 (2)	-0.12 (2)
C18	0.24 (2)	0.124 (14)	0.120 (17)	0.089 (14)	0.042 (17)	0.043 (12)

Geometric parameters (Å, °)

I1—Cu1	2.6891 (9)	C9—C10	1.370 (7)
I1—Cu1 ⁱ	2.8072 (11)	С9—Н9	0.9300
Cu1—N1	1.996 (4)	C10-C11	1.368 (7)
Cu1—N2	2.000 (4)	C11—C12	1.374 (6)
N1—C1	1.326 (7)	C11—H11	0.9300
N1—C5	1.333 (6)	C12—H12	0.9300
N2—C8	1.311 (7)	C13—C13 ^{iv}	1.300 (10)
N2-C12	1.322 (6)	C13—C14	1.437 (9)
C1—C2	1.367 (7)	C13—H13	0.9609
C1—H1	0.9300	C14—N17 ^v	1.348 (15)
С2—С3	1.375 (7)	C14—C15	1.363 (9)
С2—Н2	0.9300	C14—C18	1.394 (9)
C3—C4	1.376 (8)	C15—C16	1.353 (9)
С3—С6	1.475 (7)	C15—N17 ^v	1.45 (2)
C4—C5	1.383 (7)	C15—H15	0.9607
C4—H4	0.9300	C15—H ^v	1.11 (2)
С5—Н5	0.9300	C16—C18 ^v	1.348 (9)
C6—C6 ⁱⁱ	1.314 (10)	C16—N17	1.350 (9)
С6—Н6	0.9300	C16—N17 ^v	1.362 (9)
C7—C7 ⁱⁱⁱ	1.297 (9)	C16—H16	0.9608
C7—C10	1.466 (6)	C16—H ^v	0.967 (18)
С7—Н7	0.9300	N17—C18 ^v	1.21 (2)
С8—С9	1.370 (7)	N17—N17 ^v	1.45 (2)
С8—Н8	0.9300	C18—H18	0.9607
Cu1—I1—Cu1 ⁱ	80.26 (3)	N17 ^v —C14—C15	64.6 (10)
N1—Cu1—N2	127.33 (17)	N17 ^v —C14—C18	52.3 (10)

	100.02 (12)	C15 C14 C10	11(2 (10)
NI—Cul—II	108.03 (13)	C15—C14—C18	116.2 (10)
N2—Cu1—I1	109.45 (12)	N17 ^v —C14—C13	160.3 (17)
N1—Cu1—I1 ¹	107.96 (15)	C15—C14—C13	126.9 (13)
N2—Cu1—I1 ⁱ	100.67 (13)	C18—C14—C13	116.2 (11)
I1—Cu1—I1 ⁱ	99.74 (3)	C16—C15—C14	115.2 (10)
C1—N1—C5	115.8 (4)	C16—C15—N17 ^v	58.1 (6)
C1—N1—Cu1	124.3 (3)	C14—C15—N17 ^v	57.2 (8)
C5—N1—Cu1	119.9 (4)	C16—C15—H15	121.9
C8—N2—C12	115.1 (4)	C14—C15—H15	122.8
C8—N2—Cu1	1248(3)	N17 ^v —C15—H15	179.9
$C_{12} = N_{2} = C_{11}$	1195(3)	C_{16} C_{15} H^{v}	44.9 (10)
N1 C1 C2	124.4(5)	$C10$ $C15$ H^{v}	157.2(16)
N1 = C1 = C2	124.4 (3)	$\frac{14}{17} C_{15} H_{v}$	107.2(10) 102.2(12)
NI = CI = HI	117.0	$H_{15} = C_{15} = H_{15}$	102.5 (15)
	117.8	HIS-CIS-H	//.0
CI_C2_C3	119.9 (5)	C18 ^v —C16—N17	53.2 (10)
C1—C2—H2	120.1	C18 ^v —C16—C15	172.4 (16)
С3—С2—Н2	120.1	N17—C16—C15	129.2 (11)
C2—C3—C4	116.6 (4)	C18 ^v —C16—N17 ^v	116.9 (11)
C2—C3—C6	119.8 (5)	N17—C16—N17 ^v	64.9 (11)
C4—C3—C6	123.5 (5)	C15—C16—N17 ^v	64.5 (9)
C3—C4—C5	119.8 (5)	C18 ^v —C16—H16	62.0
C3—C4—H4	120.1	N17—C16—H16	114.6
C5—C4—H4	120.1	C15—C16—H16	116.1
N1—C5—C4	123.5 (5)	N17 ^v —C16—H16	176.3
N1—C5—H5	118.3	$C18^{v}$ — $C16$ — H^{v}	125.1 (15)
C4—C5—H5	118.3	N17—C16—H ^v	168 (3)
$C6^{ii}$ — $C6$ — $C3$	125.1 (7)	$C15 - C16 - H^{v}$	544(13)
Сб ^{іі} —Сб—Нб	117.4	$N17^{v}$ C16 H ^v	1180(18)
C_{3} C_{6} H_{6}	117.4	H_{16} C16 H_{2}	62.2
C_{3}	117.4	$\frac{1110}{C18^{v}} = \frac{110}{C14^{v}}$	65.8 (8)
$C^{\dagger} = C^{\dagger} = C^{\dagger$	120.7 (0)	C18 - N17 - C14	(3.0(0))
$C_{1} - C_{1} - H_{1}$	110.7	$C_{18} = N_1 / C_{10}$	03.3(7)
C10—C/—H/	110./	$C14^{-}$ N17— $C16^{-}$	128.9 (12)
N2	124.4 (5)		168 (3)
N2—C8—H8	117.8	C14 ^v —N17—C16 ^v	115.6 (11)
С9—С8—Н8	117.8	C16—N17—C16 ^v	115.1 (11)
C10—C9—C8	120.6 (5)	C18 ^v —N17—C15 ^v	123.2 (12)
С10—С9—Н9	119.7	C14 ^v —N17—C15 ^v	58.2 (7)
С8—С9—Н9	119.7	C16—N17—C15 ^v	172.1 (15)
C11—C10—C9	115.5 (4)	C16 ^v —N17—C15 ^v	57.5 (7)
C11—C10—C7	123.8 (4)	C18 ^v —N17—N17 ^v	120.1 (14)
C9—C10—C7	120.8 (4)	C14 ^v —N17—N17 ^v	171 (3)
C10-C11-C12	120.1 (5)	C16—N17—N17 ^v	58.0 (7)
C10—C11—H11	120.0	C16 ^v —N17—N17 ^v	57.1 (7)
C12—C11—H11	120.0	C15 ^v —N17—N17 ^v	114.5 (11)
N2—C12—C11	124.4 (5)	$N17^{v}$ —C18—C16 ^v	63.5 (7)
N2—C12—H12	117.8	$N17^{v}$ —C18—C14	61.9 (9)
C11—C12—H12	117.8	$C16^{v}$ — $C18$ — $C14$	1252(12)
$C13^{iv}$ $C13$ $C14$	124.7 (16)	$N17^{v}$ C18 H18	176.4
		1117 010 1110	1/0.1

C13 ^{iv} —C13—H13	117.5	C16 ^v —C18—H18	117.6
C14—C13—H13	117.6	C14—C18—H18	117.2
C5—N1—C1—C2	1.2 (10)	C13 ^{iv} —C13—C14—C15	-43 (5)
Cu1—N1—C1—C2	-178.1 (5)	C13 ^{iv} —C13—C14—C18	147 (3)
N1—C1—C2—C3	1.1 (11)	N17 ^v —C14—C15—C16	-2.9 (18)
C1—C2—C3—C4	-2.4 (9)	C18—C14—C15—C16	5.8 (16)
C1—C2—C3—C6	178.5 (6)	C13—C14—C15—C16	-164.1 (18)
C2—C3—C4—C5	1.4 (10)	C18—C14—C15—N17 ^v	8.7 (18)
C6—C3—C4—C5	-179.5 (6)	C13—C14—C15—N17 ^v	-161 (2)
C1—N1—C5—C4	-2.3 (10)	C14—C15—C16—N17	-1 (2)
Cu1—N1—C5—C4	177.0 (5)	N17 ^v —C15—C16—N17	-4 (3)
C3—C4—C5—N1	1.0 (11)	C14—C15—C16—N17 ^v	2.9 (18)
C2-C3-C6-C6 ⁱⁱ	-172.0 (8)	C15-C16-N17-C18 ^v	171 (2)
C4—C3—C6—C6 ⁱⁱ	8.9 (12)	N17 ^v —C16—N17—C18 ^v	167 (3)
C12—N2—C8—C9	-2.1 (11)	C18 ^v —C16—N17—C14 ^v	6 (2)
Cu1—N2—C8—C9	169.2 (6)	C15-C16-N17-C14 ^v	177 (2)
N2-C8-C9-C10	0.4 (13)	N17 ^v —C16—N17—C14 ^v	173 (5)
C8—C9—C10—C11	0.9 (11)	C18 ^v —C16—N17—C16 ^v	-167 (3)
C8—C9—C10—C7	-179.2 (7)	C15—C16—N17—C16 ^v	4 (3)
C7 ⁱⁱⁱ —C7—C10—C11	1.9 (12)	N17 ^v —C16—N17—C16 ^v	0.001 (1)
C7 ⁱⁱⁱ —C7—C10—C9	-178.0 (8)	C18 ^v —C16—N17—N17 ^v	-167 (3)
C9—C10—C11—C12	-0.5 (9)	C15—C16—N17—N17 ^v	4 (3)
C7—C10—C11—C12	179.6 (6)	C15—C14—C18—N17 ^v	-10 (2)
C8—N2—C12—C11	2.6 (10)	C13-C14-C18-N17 ^v	161 (2)
Cu1—N2—C12—C11	-169.2 (5)	N17 ^v —C14—C18—C16 ^v	-5 (2)
C10-C11-C12-N2	-1.3 (10)	C15—C14—C18—C16 ^v	-15 (3)
C13 ^{iv} —C13—C14—N17 ^v	-163 (4)	C13—C14—C18—C16 ^v	156 (2)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x, -y+2, -z+2; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+2.