

ISSN 2414-3146

Received 8 June 2020 Accepted 3 July 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; bisindole; MRI; contrast agents.

CCDC reference: 2014000

Structural data: full structural data are available from iucrdata.iucr.org

Diethyl 3,3'-[(3-fluorophenyl)methylene]bis(1*H*-indole-2-carboxylate)

Hong Jiang,^a Yu-Long Li,^a Jin Zhou,^{a,b} Hong-Shun Sun,^a* Qing-Yu Zhang,^a Xing-Hao Shi,^a Zhi-Yuan Zhang^a and Tian Ling^a

^aTargeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China. *Correspondence e-mail: njutshs@126.com

In the title compound, $C_{29}H_{25}FN_2O_4$, the mean planes of the indole ring systems are approximately perpendicular to one another [dihedral angle = 88.3 (4)°]. The benzene ring is twisted with respect to the indole ring systems by 49.8 (5) and 77.6 (3)°. In the crystal, pairs of N-H···O hydrogen bonds link the molecules into the inversion dimers which are further linked into supra-molecular chains propagating along the [110] direction.

Structure description

There are abundant bis(indolyl)methane derivatives in various terrestrial and marine natural resources (Sundberg, 1996). As part of our ongoing studies of bis(indoyl)methane compounds, we now report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The indole ring systems are nearly perpendicular to one another [dihedral angle = $88.3 (4)^{\circ}$] while the benzene ring (C2–C7) is twisted with respect to the N1/C8–C15 and N2/C19–C26 indole ring systems with dihedral angles of 49.8 (5) and 77.6 (3)°, respectively. The carboxyl groups are approximately co-planar with their attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of the N1/C8–C15 and N2/C19–C26 indole C26 indole ring systems being 6.2 (5) and 6.4 (4)°, respectively.

In the crystal, pairwise N1-H1A···O1ⁱ and N2-H2A···O4ⁱⁱ hydrogen bonds both generate $R_2^2(8)$ loops; together these lead to [110] chains of molecules. A weak C11-H11A···O4ⁱⁱⁱ interaction also occurs, which links the chains into (001) sheets (Table 1 and Fig. 2).

Several similar structures have been reported previously, viz. diethyl 3,3'-(phenyl-methylene)bis(1H-indole-2-carboxylate) (Sun et al., 2012), dimethyl 3,3'-[(3-fluoro-

The molecular structure of the title molecule with displacement ellipsoids drawn at the 30% probability level.

phenyl)methylene]bis(1*H*-indole-2-carboxylate) (Lu *et al.*, 2014), dimethyl 3,3'-[(4-fluorophenyl)methylene]bis(1*H*-indole-2-carboxylate) (Sun *et al.*, 2015) and dimethyl 3,3'-[(2-fluorophenyl)methylene]bis(1*H*-indole-2-carboxylate) (Lu *et al.*, 2017). In these structures, the indole ring systems are also nearly perpendicular to one another, making dihedral angles of 82.0 (5), 87.8 (5), 84.0 (5) and 86.0 (5)°, respectively.

Synthesis and crystallization

Ethyl indole-2-carboxylate (1.88 g, 10 mmol) was dissolved in 20 ml of ethanol and 3-fluorobenzaldehyde (0.62 g, 5 mmol) and concentrated HCl (0.5 ml) was added. The mixture was heated to reflux temperature for 2 h. After cooling, the white

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdotsO1^{i}$	0.86	2.16	2.918 (11)	147
$N2-H2A\cdots O4^{ii}$	0.86	2.08	2.904 (9)	159
$C11-H11A\cdots O4^{iii}$	0.93	2.58	3.498 (13)	171
Symmetry codes: (i)	-x, -y, -	-z + 1; (ii)	-x + 1, -y + 1	, -z + 1; (iii)

Symmetry codes. (1) -x, -y, -z + 1, (ii) -x + 1, -y + 1, -z + 1, (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Table	2	
Exper	imental	details

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal data	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Chemical formula	C ₂₉ H ₂₅ FN ₂ O ₄
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$M_{\rm r}$	484.51
Temperature (K) 293 a, b, c (Å) 8.9960 (18), 15.921 (3), 18.297 (4) β (°) 102.59 (3) V (Å ³) 2557.6 (9) Z 4 Radiation type Mo Kα μ (mm ⁻¹) 0.09 Crystal size (mm) 0.20 × 0.20 × 0.10 Data collection Enraf–Nonius CAD-4 Diffractometer Enraf–Nonius CAD-4 Absorption correction ψ scan (North et al., 1968) T _{min} , T _{max} 0.982, 0.991 No. of measured, independent and observed [I > 2σ(I)] reflections 0.131 Rint 0.131 (sin θ/λ) _{max} (Å ⁻¹) 0.603 Refinement 4685 R[F ² > 2σ(F ²)], wR(F ²), S 0.143, 0.306, 1.30 No. of parameters 319 H-atom treatment H atoms treated by a mixture of independent and constrained refinement Δρ _{max} , Δρ _{min} (e Å ⁻³) 0.56, -0.72	Crystal system, space group	Monoclinic, $P2_1/n$
a, b, c (Å) 8.9960 (18), 15.921 (3), 18.297 (4) β (°) 102.59 (3) V (Å ³) 2557.6 (9) Z 4 Radiation type Mo K α μ (mm ⁻¹) 0.09 Crystal size (mm) 0.20 × 0.20 × 0.10 Data collection Enraf–Nonius CAD-4 Diffractometer Enraf–Nonius CAD-4 Absorption correction ψ scan (North <i>et al.</i> , 1968) T_{min}, T_{max} 0.982, 0.991 No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.131 R_{int} 0.131 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.603 Refinement 4685 $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.143, 0.306, 1.30 No. of parameters 319 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) 0.56, -0.72	Temperature (K)	293
$ \begin{array}{lll} \beta\left(\begin{smallmatrix} 0 \\ 102.59 \\ (3) \\ V \\ (A^3) \\ Z \\ Radiation type \\ \mu \ (mm^{-1}) \\ 0.09 \\ Crystal size \ (mm) \\ 0.20 \times 0.20 \times 0.10 \\ \end{array} \right) \\ \begin{array}{lllllllllllllllllllllllllllllllllll$	<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.9960 (18), 15.921 (3), 18.297 (4)
$V(Å^3)$ 2557.6 (9) Z 4Radiation typeMo $K\alpha$ μ (mm ⁻¹)0.09Crystal size (mm) $0.20 \times 0.20 \times 0.10$ Data collectionEnraf-Nonius CAD-4DiffractometerEnraf-Nonius CAD-4Absorption correction ψ scan (North <i>et al.</i> , 1968) T_{min}, T_{max} $0.982, 0.991$ No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.131 $(\sin \theta/\lambda)_{max}(Å^{-1})$ 0.603 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections 4685 No. of parameters 319 H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) $0.56, -0.72$	β (°)	102.59 (3)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$V(Å^3)$	2557.6 (9)
Radiation typeMo Kαμ (mm ⁻¹)0.09Crystal size (mm) $0.20 \times 0.20 \times 0.10$ Data collectionEnraf-Nonius CAD-4Absorption correctionψ scan (North et al., 1968) T_{min}, T_{max} $0.982, 0.991$ No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.131 R_{int} 0.131 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.603 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ $0.143, 0.306, 1.30$ No. of parameters 319 H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) $0.56, -0.72$	Z	4
$\begin{array}{lll} \mu \ (\mathrm{mm}^{-1}) & 0.09 \\ \mathrm{Crystal size} \ (\mathrm{mm}) & 0.20 \times 0.20 \times 0.10 \end{array}$ Data collection Diffractometer Absorption correction $\psi \ \mathrm{scan} \ (\mathrm{North} \ et \ al., 1968) \\ T_{\min}, T_{\max} & 0.982, 0.991 \\ \mathrm{No. of measured, independent and} \\ \mathrm{observed} \ [I > 2\sigma(I)] \ \mathrm{reflections} \\ R_{\mathrm{int}} & 0.131 \\ (\sin \ \theta/\lambda)_{\mathrm{max}} \ (\mathring{A}^{-1}) & 0.603 \end{array}$ Refinement $R[F^2 > 2\sigma(F^2)], \ wR(F^2), S \\ \mathrm{No. of reflections} & 4685 \\ \mathrm{No. of reflections} & 4685 \\ \mathrm{No. of real exters} & 319 \\ \mathrm{H-atom \ treatment} & \mathrm{H \ atoms \ treated \ by \ a \ mixture \ of \\ independent \ and \ constrained \\ -efinement \\ \Delta\rho_{\mathrm{max}}, \ \Delta\rho_{\mathrm{min}} \ (e \ \mathring{A}^{-3}) & 0.56, \ -0.72 \end{array}$	Radiation type	Μο Κα
Crystal size (mm) $0.20 \times 0.20 \times 0.10$ Data collectionEnraf-Nonius CAD-4Diffractometer μ scan (North <i>et al.</i> , 1968) T_{min}, T_{max} $0.982, 0.991$ No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.131 R_{int} 0.131 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.603 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ $0.143, 0.306, 1.30$ No. of parameters 319 H-atom treatmentH atoms treated by a mixture of independent and constrained $refinement$ $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) $0.56, -0.72$	$\mu \text{ (mm}^{-1})$	0.09
Data collection DiffractometerEnraf-Nonius CAD-4 w scan (North et al., 1968) 0.982, 0.991 T_{\min}, T_{\max} 0.982, 0.991No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections5000, 4685, 1424 R_{int} 0.131 0.603Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.143, 0.306, 1.30 No. of reflectionsNo. of parameters319 H-atom treatmentH-atom treatment $\Delta \rho_{\max}, \Delta \rho_{\min}$ (e Å ⁻³)0.56, -0.72	Crystal size (mm)	$0.20 \times 0.20 \times 0.10$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Data collection	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Diffractometer	Enraf–Nonius CAD-4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Absorption correction	ψ scan (North <i>et al.</i> , 1968)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections5000, 4685, 1424 R_{int} 0.131 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.603Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.143, 0.306, 1.30No. of reflections4685No. of parameters319H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)0.56, -0.72	T_{\min}, T_{\max}	0.982, 0.991
$ \begin{array}{ll} \text{Rint} & 0.131 \\ (\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1}) & 0.603 \end{array} \\ \text{Refinement} & \\ R[F^2 > 2\sigma(F^2)], wR(F^2), S & 0.143, 0.306, 1.30 \\ \text{No. of reflections} & 4685 \\ \text{No. of parameters} & 319 \\ \text{H-atom treatment} & H \text{ atoms treated by a mixture of } \\ \text{independent and constrained} \\ \alpha \rho_{\text{max}}, \Delta \rho_{\text{min}} (\text{e } \text{\AA}^{-3}) & 0.56, -0.72 \end{array} $	No. of measured, independent and observed $[L > 2\sigma(L)]$ reflections	5000, 4685, 1424
Nint0.151 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.603Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections4685No. of parameters319H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.56, -0.72	$R_{\rm e}$	0.131
RefinementRefinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.143, 0.306, 1.30No. of reflections4685No. of parameters319H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)0.56, -0.72	$(\sin \theta / \lambda)$ $(\dot{\Delta}^{-1})$	0.603
Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S 0.143, 0.306, 1.30No. of reflections4685No. of parameters319H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)0.56, -0.72	(Shi O/A/max (PC))	0.005
$\begin{split} R[F^2 > 2\sigma(F^2)], & wR(F^2), S & 0.143, 0.306, 1.30 \\ \text{No. of reflections} & 4685 \\ \text{No. of parameters} & 319 \\ \text{H-atom treatment} & \text{H atoms treated by a mixture of independent and constrained refinement} \\ \Delta\rho_{\text{max}}, \Delta\rho_{\text{min}} (e \text{ Å}^{-3}) & 0.56, -0.72 \end{split}$	Refinement	
No. of reflections4685No. of parameters319H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.56, -0.72	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.143, 0.306, 1.30
No. of parameters319H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.56, -0.72	No. of reflections	4685
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.56, -0.72	No. of parameters	319
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.56, -0.72	H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.56, -0.72

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995) and SHELXTL (Sheldrick, 2008).

product was filtered off and washed thoroughly with ethanol (yield = 92%). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Funding information

Funding for this research was provided by: Natural Science Foundation of Jiangsu Province (grant No. BK20181486);

Natural Science Foundation of the Jiangsu Higher Education Institutions (grant No. 17KJB320001); Training program of Students Innovation and Entrepreneurship in Jiangsu Province (grant No. 201812920002Y); Overseas Training Program for Excellent Young Teachers and Principals of Jiangsu Province; Qing Lan Project of Jiangsu Province; Natural Science Foundation of Nanjing Polytechnic Institute (grant No. NHKY-2019-07).

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Lu, X.-H., Sun, H.-S., Cai, Y., Chen, L.-L. & Chen, Y.-F. (2017). Acta Cryst. E73, 1790–1792.
- Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593-595.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, H.-S., Li, Y., Jiang, H., Xu, N. & Xu, H. (2015). Acta Cryst. E71, 1140–1142.
- Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, 02764.
- Sundberg, R. J. (1996). *The Chemistry of Indoles*, p. 113. New York: Academic Press.

full crystallographic data

IUCrData (2020). **5**, x200912 [https://doi.org/10.1107/S2414314620009128]

Diethyl 3,3'-[(3-fluorophenyl)methylene]bis(1H-indole-2-carboxylate)

Hong Jiang, Yu-Long Li, Jin Zhou, Hong-Shun Sun, Qing-Yu Zhang, Xing-Hao Shi, Zhi-Yuan Zhang and Tian Ling

Diethyl 3,3'-[(3-fluorophenyl)methylene]bis(1H-indole-2-carboxylate)

Crystal data

 $C_{29}H_{25}FN_2O_4$ $M_r = 484.51$ Monoclinic, $P2_1/n$ a = 8.9960 (18) Å b = 15.921 (3) Å c = 18.297 (4) Å $\beta = 102.59$ (3)° V = 2557.6 (9) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.982, T_{\max} = 0.991$ 5000 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.143$ $wR(F^2) = 0.306$ S = 1.304685 reflections 319 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1016 $D_x = 1.258 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-12^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.20 \times 0.20 \times 0.10 \text{ mm}$

4685 independent reflections 1424 reflections with $I > 2\sigma(I)$ $R_{int} = 0.131$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = 0 \rightarrow 10$ $k = 0 \rightarrow 19$ $l = -22 \rightarrow 21$ 3 standard reflections every 200 reflections intensity decay: 1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.060P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.009$ $\Delta\rho_{max} = 0.56$ e Å⁻³ $\Delta\rho_{min} = -0.71$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms. The constraint $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(methyl C)$ was applied in all cases.

 $U_{\rm iso}*/U_{\rm eq}$ х v Ζ F 0.5574 (10) 0.2828(5)0.1783 (4) 0.154(4)01 0.1733 (8) 0.0523 (4) 0.5601 (4) 0.080(2)**N**1 0.0972 (9) 0.0284(4)0.4084(5)0.063(2)H1A 0.0468 -0.00280.4327 0.076* 0.3860 (9) 0.1906 (5) C10.3962(5)0.045(2)H1B 0.4561 0.1763 0.4434 0.054* 0.054(2)N2 0.3321 (8) 0.4124(4)0.4463(4)0.064* H2A 0.3634 0.4597 0.4668 0.1390 (4) O2 0.3615 (8) 0.5478(4)0.078(2)C2 0.4782 (11) 0.1845 (6) 0.3395 (6) 0.049(3)O3 0.2781 (3) 0.0609 (19) 0.6571 (7) 0.4797(3)0.094 (5) C3 0.5727 (12) 0.1140(8)0.3428(7)0.112* H3A 0.5770 0.0753 0.3812 04 0.6412(7)0.4138(4)0.5044(4)0.071(2)C4 0.659(2)0.1009(11) 0.2907(12)0.143(7)H4A 0.7197 0.0531 0.2945 0.172* C5 0.6584 (19) 0.129(7) 0.1558 (11) 0.2334(11)0.155* H5A 0.7151 0.1471 0.1972 C6 0.5694 (16) 0.2231 (10) 0.2335(7)0.092(4)C7 0.4733 (12) 0.2417(7)0.2840 (6) 0.071 (3) H7A 0.2792 0.086* 0.4121 0.2893 0.2671 (10) C8 0.1236(5)0.3855(6) 0.050(3)C9 0.1838 (10) 0.0882(5)0.3150(6) 0.051 (3) C10 0.1875 (12) 0.1021 (6) 0.2409(7) 0.080(4)H10A 0.2524 0.1420 0.2276 0.096* C11 0.0911 (12) 0.0547(7) 0.1867 (6) 0.082(4)H11A 0.0929 0.0626 0.1366 0.099* C12 -0.0061(14)-0.0033(7)0.2053(7)0.088(4)0.105* H12A -0.0678-0.03410.1673 C13 -0.0175(6)0.2762 (7) 0.077 (3) -0.0162(12)H13A -0.0844-0.05650.2878 0.092* C14 0.0816 (11) 0.0295 (6) 0.3329(7) 0.058(3)C15 0.2065 (11) 0.0855 (6) 0.4391 (6) 0.057(3)C16 0.2487 (12) 0.0887 (6) 0.061 (3) 0.5223(7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.4070 (12)	0.1489 (9)	0.6278 (6)	0.108 (5)
H17A	0.3662	0.2010	0.6427	0.129*
H17B	0.3673	0.1029	0.6525	0.129*
C18	0.5630 (13)	0.1500 (7)	0.6483 (7)	0.112
H18A	0.5940	0.1565	0.7016	0.168*
H18B	0.6015	0.1960	0.6241	0.168*
H18C	0.6027	0.0982	0.6337	0.168*
C19	0.3282 (9)	0.2778 (5)	0.4087 (5)	0.039 (2)
C20	0.1817 (11)	0.3129 (5)	0.3856 (5)	0.049 (3)
C21	0.0406 (12)	0.2819 (6)	0.3459 (6)	0.069 (3)
H21A	0.0315	0.2268	0.3286	0.082*
C22	-0.0847 (13)	0.3351 (7)	0.3330 (6)	0.077 (4)
H22A	-0.1789	0.3152	0.3073	0.092*
C23	-0.0710 (13)	0.4196 (7)	0.3585 (6)	0.089 (4)
H23A	-0.1560	0.4544	0.3490	0.106*
C24	0.0652 (12)	0.4502 (6)	0.3968 (6)	0.071 (3)
H24A	0.0749	0.5056	0.4131	0.085*
C25	0.1893 (11)	0.3958 (5)	0.4105 (5)	0.054 (3)
C26	0.4231 (11)	0.3414 (5)	0.4456 (5)	0.044 (2)
C27	0.5740 (11)	0.3489 (5)	0.4795 (5)	0.045 (2)
C28	0.8156 (10)	0.2802 (6)	0.5124 (6)	0.075 (3)
H28A	0.8324	0.2942	0.5651	0.089*
H28B	0.8662	0.3218	0.4877	0.089*
C29	0.8750 (12)	0.1962 (7)	0.5028 (6)	0.101 (4)
H29A	0.9824	0.1948	0.5241	0.152*
H29B	0.8573	0.1830	0.4504	0.152*
H29C	0.8242	0.1557	0.5276	0.152*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F	0.256 (10)	0.129 (7)	0.088 (6)	-0.081 (7)	0.063 (6)	-0.033 (5)
01	0.085 (6)	0.085 (5)	0.073 (6)	-0.020 (4)	0.022 (4)	0.013 (4)
N1	0.076 (6)	0.026 (4)	0.088 (7)	-0.012 (4)	0.016 (6)	-0.001 (5)
C1	0.050 (6)	0.033 (5)	0.053 (7)	-0.012 (5)	0.011 (5)	0.000 (5)
N2	0.058 (5)	0.031 (4)	0.065 (6)	-0.009 (4)	0.001 (5)	-0.015 (4)
O2	0.081 (5)	0.091 (6)	0.060 (5)	-0.032 (5)	0.014 (4)	-0.005 (4)
C2	0.057 (7)	0.035 (6)	0.065 (8)	-0.025 (5)	0.033 (6)	-0.021 (5)
03	0.068 (5)	0.036 (4)	0.072 (5)	0.002 (4)	0.001 (4)	-0.004 (3)
C3	0.068 (8)	0.109 (11)	0.117 (12)	-0.005 (8)	0.049 (8)	-0.068 (9)
O4	0.079 (5)	0.030 (4)	0.093 (5)	-0.004 (4)	-0.008 (4)	-0.016 (4)
C4	0.132 (15)	0.105 (14)	0.18 (2)	-0.017 (12)	0.016 (15)	-0.038 (13)
C5	0.132 (14)	0.101 (13)	0.169 (19)	-0.033 (12)	0.065 (14)	-0.106 (13)
C6	0.113 (11)	0.097 (11)	0.066 (10)	-0.081 (9)	0.022 (9)	-0.013 (9)
C7	0.079 (8)	0.067 (8)	0.077 (9)	-0.039 (7)	0.036 (7)	-0.046 (7)
C8	0.062 (7)	0.025 (5)	0.061 (7)	-0.011 (5)	0.013 (6)	-0.002 (5)
C9	0.063 (7)	0.025 (5)	0.069 (8)	-0.017 (5)	0.023 (6)	-0.012 (6)
C10	0.104 (9)	0.053 (7)	0.077 (9)	-0.029 (6)	0.009 (8)	-0.024 (7)

C11	0.097 (9)	0.081 (8)	0.070 (9)	-0.023 (7)	0.021 (7)	-0.029 (7)
C12	0.105 (10)	0.074 (9)	0.084 (10)	-0.019 (8)	0.023 (9)	-0.040 (8)
C13	0.084 (8)	0.034 (6)	0.112 (10)	-0.010 (6)	0.019 (8)	-0.028 (7)
C14	0.063 (7)	0.032 (6)	0.076 (9)	0.006 (5)	0.006 (7)	-0.015 (6)
C15	0.069 (7)	0.031 (6)	0.067 (8)	0.007 (5)	0.010 (7)	-0.003 (6)
C16	0.053 (7)	0.039 (6)	0.094 (10)	-0.010 (6)	0.022 (7)	0.006 (6)
C17	0.062 (8)	0.200 (14)	0.058 (9)	-0.006 (8)	0.008 (7)	-0.030 (9)
C18	0.112	0.112	0.112	0.000	0.024	0.000
C19	0.041 (6)	0.026 (5)	0.049 (6)	-0.005 (4)	0.010 (5)	-0.006 (4)
C20	0.065 (7)	0.032 (5)	0.047 (6)	-0.009 (5)	0.008 (6)	-0.004 (5)
C21	0.072 (8)	0.042 (6)	0.085 (9)	-0.001 (6)	0.003 (7)	-0.010 (6)
C22	0.089 (9)	0.061 (8)	0.070 (8)	-0.002 (7)	-0.008 (7)	-0.015 (6)
C23	0.086 (9)	0.072 (8)	0.098 (10)	0.028 (7)	-0.002 (8)	-0.001 (8)
C24	0.068 (8)	0.039 (6)	0.097 (9)	-0.002 (6)	-0.003 (7)	-0.013 (6)
C25	0.054 (7)	0.036 (6)	0.063 (7)	-0.001 (5)	-0.007 (6)	0.004 (5)
C26	0.053 (6)	0.036 (5)	0.044 (6)	0.003 (5)	0.009 (5)	-0.001 (5)
C27	0.060 (7)	0.030 (5)	0.042 (6)	0.006 (5)	0.001 (5)	-0.008(5)
C28	0.053 (7)	0.056 (7)	0.100 (9)	0.015 (6)	-0.016 (7)	0.001 (6)
C29	0.097 (9)	0.099 (9)	0.104 (10)	0.053 (8)	0.012 (8)	-0.007 (8)

Geometric parameters (Å, °)

FC6	1.374 (13)	C11—C12	1.365 (13)
O1—C16	1.216 (10)	C11—H11A	0.9300
N1—C14	1.356 (11)	C12—C13	1.339 (13)
N1—C15	1.367 (10)	C12—H12A	0.9300
N1—H1A	0.8600	C13—C14	1.418 (12)
C1—C2	1.464 (11)	C13—H13A	0.9300
C1—C8	1.492 (10)	C15—C16	1.488 (13)
C1—C19	1.517 (10)	C17—C18	1.371 (12)
C1—H1B	0.9800	C17—H17A	0.9700
N2—C25	1.335 (10)	C17—H17B	0.9700
N2—C26	1.398 (9)	C18—H18A	0.9600
N2—H2A	0.8600	C18—H18B	0.9600
O2—C16	1.297 (10)	C18—H18C	0.9600
O2—C17	1.440 (11)	C19—C26	1.399 (10)
C2—C7	1.359 (13)	C19—C20	1.409 (11)
C2—C3	1.401 (13)	C20—C25	1.394 (11)
O3—C27	1.351 (9)	C20—C21	1.407 (11)
O3—C28	1.421 (9)	C21—C22	1.389 (12)
C3—C4	1.370 (18)	C21—H21A	0.9300
С3—НЗА	0.9300	C22—C23	1.420 (12)
O4—C27	1.234 (9)	C22—H22A	0.9300
C4—C5	1.363 (19)	C23—C24	1.361 (12)
C4—H4A	0.9300	C23—H23A	0.9300
C5—C6	1.339 (18)	C24—C25	1.392 (11)
С5—Н5А	0.9300	C24—H24A	0.9300
C6—C7	1.426 (15)	C26—C27	1.370 (11)

C7—H7A	0.9300	C28—C29	1.465 (11)
C8—C15	1.364 (11)	C28—H28A	0.9700
C8—C9	1.457 (12)	C28—H28B	0.9700
C9—C10	1.382 (12)	С29—Н29А	0.9600
C9—C14	1.400 (11)	С29—Н29В	0.9600
C10—C11	1.389 (12)	C29—H29C	0.9600
C10—H10A	0.9300		0.0000
C14—N1—C15	108.4 (9)	C8—C15—C16	131.9 (10)
C14—N1—H1A	125.8	O1—C16—O2	125.4 (11)
C15—N1—H1A	125.8	O1—C16—C15	121.1 (10)
C2-C1-C8	111.1 (7)	02-C16-C15	113.2 (10)
C_{2} — C_{1} — C_{19}	115.7 (7)	C18 - C17 - O2	109.1 (10)
C8-C1-C19	114 4 (7)	C18—C17—H17A	109.9
C^2 — $C1$ — $H1B$	104 7	Ω^2 — $C17$ —H17A	109.9
C8-C1-H1B	104.7	C18 - C17 - H17B	109.9
C19-C1-H1B	104.7	Ω^2 — $C17$ —H17B	109.9
$C_{25} N_{2} C_{26}$	109.7 (7)	H17A - C17 - H17B	109.9
$C_{25} = N_2 = C_{20}$	109.7 (7)	$\frac{1117}{A} = \frac{117}{B}$	108.5
C_{25} N_{2} H_{2A}	125.1	C17 C18 H18P	109.5
$C_{20} = N_2 = M_2 = M_2$	123.1 117.4(0)	110 110 110	109.5
$C_{10} = 02 = C_{17}$	117.4(9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{7} C_{2} C_{1}$	119.2(11) 123.7(10)	1124 1124 1126 1126 1126	109.5
C^{2}	123.7(10)	H18A - C18 - H18C	109.5
$C_3 = C_2 = C_1$	11/.1(10)	H18B-C18-H18C	109.5
$C_2/=0_3=C_{28}$	119.0 (/)	$C_{26} = C_{19} = C_{20}$	106.9 (7)
C4 - C3 - C2	121.6 (15)	C26—C19—C1	122.8 (8)
C4—C3—H3A	119.2	C20—C19—C1	130.2 (7)
С2—С3—НЗА	119.2	C25—C20—C21	118.4 (9)
C3—C4—C5	122.0 (19)	C25—C20—C19	107.5 (8)
C3—C4—H4A	119.0	C21—C20—C19	134.1 (8)
C5—C4—H4A	119.0	C22—C21—C20	118.8 (9)
C6—C5—C4	114.4 (18)	C22—C21—H21A	120.6
C6—C5—H5A	122.8	C20—C21—H21A	120.6
C4—C5—H5A	122.8	C21—C22—C23	120.8 (10)
C5—C6—F	120.2 (17)	C21—C22—H22A	119.6
C5—C6—C7	127.9 (14)	C23—C22—H22A	119.6
F—C6—C7	111.8 (15)	C24—C23—C22	120.8 (10)
C2—C7—C6	114.8 (11)	C24—C23—H23A	119.6
С2—С7—Н7А	122.6	С22—С23—Н23А	119.6
С6—С7—Н7А	122.6	C23—C24—C25	117.8 (9)
C15—C8—C9	104.8 (8)	C23—C24—H24A	121.1
C15—C8—C1	127.7 (9)	C25—C24—H24A	121.1
C9—C8—C1	127.4 (9)	N2—C25—C24	127.8 (9)
C10—C9—C14	119.6 (10)	N2-C25-C20	108.8 (8)
C10—C9—C8	133.6 (9)	C24—C25—C20	123.4 (9)
C14—C9—C8	106.8 (9)	C27—C26—N2	116.7 (8)
C11—C10—C9	117.9 (10)	C27—C26—C19	136.2 (8)
C11—C10—H10A	121.0	N2—C26—C19	107.1 (7)

C9—C10—H10A	121.0	O4—C27—O3	118.1 (8)
C12—C11—C10	121.6 (11)	O4—C27—C26	126.7 (8)
C12—C11—H11A	119.2	O3—C27—C26	114.9 (8)
C10—C11—H11A	119.2	O3—C28—C29	106.7 (8)
C13—C12—C11	122.5 (12)	O3—C28—H28A	110.4
C13—C12—H12A	118.7	C29—C28—H28A	110.4
C11—C12—H12A	118.7	O3—C28—H28B	110.4
C12—C13—C14	117.2 (11)	C29—C28—H28B	110.4
С12—С13—Н13А	121.4	H28A—C28—H28B	108.6
C14—C13—H13A	121.4	С28—С29—Н29А	109.5
N1—C14—C9	108.6 (9)	C28—C29—H29B	109.5
N1—C14—C13	130.4 (11)	H29A—C29—H29B	109.5
C9-C14-C13	121.0 (11)	C28—C29—H29C	109.5
N1-C15-C8	111.4 (9)	H29A—C29—H29C	109.5
N1-C15-C16	116 3 (10)	H29B-C29-H29C	109.5
			109.0
C8—C1—C2—C7	110.8 (9)	C17—O2—C16—O1	3.8 (15)
C19—C1—C2—C7	-21.8 (13)	C17—O2—C16—C15	177.6 (9)
C8—C1—C2—C3	-67.4 (11)	N1-C15-C16-O1	-11.3 (14)
C19—C1—C2—C3	159.9 (8)	C8—C15—C16—O1	176.3 (10)
C7—C2—C3—C4	-0.8 (16)	N1-C15-C16-O2	174.6 (8)
C1—C2—C3—C4	177.5 (11)	C8—C15—C16—O2	2.1 (15)
C2—C3—C4—C5	1 (2)	C16—O2—C17—C18	138.6 (11)
C3—C4—C5—C6	1 (2)	C2-C1-C19-C26	-72.7 (11)
C4—C5—C6—F	-179.3 (12)	C8—C1—C19—C26	156.2 (8)
C4—C5—C6—C7	-3 (2)	C2-C1-C19-C20	104.3 (11)
C3—C2—C7—C6	-0.4 (13)	C8—C1—C19—C20	-26.8 (14)
C1—C2—C7—C6	-178.6 (8)	C26—C19—C20—C25	-1.7 (10)
С5—С6—С7—С2	2.2 (17)	C1—C19—C20—C25	-179.0 (9)
F	179.2 (8)	C26-C19-C20-C21	179.0 (10)
C2-C1-C8-C15	149.4 (10)	C1-C19-C20-C21	1.6 (18)
C19—C1—C8—C15	-77.3 (12)	C25—C20—C21—C22	0.2 (15)
C2-C1-C8-C9	-34.5 (13)	C19—C20—C21—C22	179.5 (10)
C19—C1—C8—C9	98.8 (11)	C20—C21—C22—C23	0.8 (16)
C15—C8—C9—C10	177.8 (11)	C21—C22—C23—C24	-0.5 (18)
C1-C8-C9-C10	1.0 (17)	C22—C23—C24—C25	-0.6 (17)
C15—C8—C9—C14	-1.5 (10)	C26—N2—C25—C24	-177.8 (10)
C1C8C14	-178.2 (8)	C26—N2—C25—C20	0.5 (11)
C14—C9—C10—C11	-1.9 (15)	C23—C24—C25—N2	179.7 (10)
C8—C9—C10—C11	178.9 (10)	C23—C24—C25—C20	1.7 (16)
C9—C10—C11—C12	0.9 (16)	C21—C20—C25—N2	-179.8 (8)
C10-C11-C12-C13	0.7 (19)	C19—C20—C25—N2	0.7 (11)
C11—C12—C13—C14	-1.2 (18)	C21—C20—C25—C24	-1.4 (15)
C15—N1—C14—C9	0.3 (10)	C19—C20—C25—C24	179.1 (9)
C15—N1—C14—C13	-179.8 (9)	C25—N2—C26—C27	179.2 (8)
C10-C9-C14-N1	-178.7 (9)	C25—N2—C26—C19	-1.5 (10)
C8—C9—C14—N1	0.7 (10)	C20-C19-C26-C27	-179.0 (11)
C10—C9—C14—C13	1.4 (14)	C1—C19—C26—C27	-1.4 (16)
	. ,		

C8—C9—C14—C13 C12—C13—C14—N1 C12—C13—C14—C9 C14—N1—C15—C8 C14—N1—C15—C16 C9—C8—C15—N1 C1—C8—C15—N1 C9—C8—C15—N1 C9—C8—C15—C16	-179.2 (8) -179.8 (10) 0.1 (15) -1.3 (11) -175.3 (8) 1.7 (10) 178.5 (8) 174.4 (9)	C20—C19—C26—N2 C1—C19—C26—N2 C28—O3—C27—O4 C28—O3—C27—C26 N2—C26—C27—O4 C19—C26—C27—O4 N2—C26—C27—O3 C19—C26—C27—O3	1.9 (10) 179.5 (8) 3.8 (13) 178.8 (8) -7.4 (14) 173.6 (10) 178.1 (7) -1.0 (16)
C9—C8—C15—C16	174.4 (9)	C19—C26—C27—O3	-1.0 (16)
C1—C8—C15—C16	-8.8 (16)	C27—O3—C28—C29	-178.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
N1—H1A····O1 ⁱ	0.86	2.16	2.918 (11)	147
N2—H2A····O4 ⁱⁱ	0.86	2.08	2.904 (9)	159
C11—H11A····O4 ⁱⁱⁱ	0.93	2.58	3.498 (13)	171

Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1/2, -y+1/2, z-1/2.