

ISSN 2414-3146

Received 30 June 2020 Accepted 6 July 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; pyrrolo[2,1b]oxazol-5(6*H*)-one; C— $H\cdots O$ contacts; C— $H\cdots \pi$ contacts.

CCDC reference: 2014300

Structural data: full structural data are available from iucrdata.iucr.org

7a-Phenyltetrahydropyrrolo[2,1-b]oxazol-5(6H)one

Elena I. Linkova,^a Vyacheslav S. Grinev,^{b,a}* Oksana A. Mayorova^b and Alevtina Yu. Yegorova^a

^aInstitute of Chemistry, N.G. Chernyshevsky National Research Saratov State University, Ulitsa Astrakhanskaya, 83, Saratov 410012, Russian Federation, and ^bInstitute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russian Federation. *Correspondence e-mail: grinev@ibppm.ru

In the title compound, $C_{12}H_{13}NO_2$, the pyrrolidinone moiety is almost flat while the oxazole ring adopts an envelope conformation with the carbon atom bearing the phenyl substituent as the flap: the angle between the mean planes of the fused heterocyclic rings is 45.47 (19)°. In the crystal, $C-H\cdots O$ and $C-H\cdots \pi$ contacts link the molecules into infinite [010] chains.

Structure description

The title compound, $C_{12}H_{13}NO_2$, has been reported in the literature several times (Aeberli & Houlihan, 1969; Aeberli *et al.*, 1976; Amal'chieva & Egorova, 2006). It has been also reported for its anti-depressant (Aeberli *et al.*, 1976) and anti-convulsant activities (Trapani *et al.*, 1996) as well as the synthetic potential to obtain 4,5-dihydro-2*H*-pyridazin-3-ones (Lim *et al.*, 2003). We now describe its crystal structure.

Molecules of title compound consist of pyrrolidinone and oxazole rings fused *via* the C3–N1 edge into a bicyclic system (Fig. 1). The pyrrolidinone moiety is almost flat (r.m.s. deviation = 0.054 Å) with a maximum torsion angle N1–C6–C5–C4 of 13.4 (5)°, whereas the minimum torsion angle C5–C4–C3–N1 is 2.7 (5)°. The oxazole ring is more twisted and adopts an envelope conformation with atom C3 as the flap and a maximum torsion angle C2–O1–C3–N1 of -35.7 (4)°. The heterocyclic rings are fused with a dihedral angle between their mean planes of 45.47 (19)°. The phenyl substituent is located orthogonally to the mean plane of the whole bicycle [dihedral angle = 89.28 (14)°].

In contrast to closely related pyrrolopyrimidinones (Grinev et al., 2020), there is no classical hydrogen bonding in the crystal of the title molecule, obviously due to the

Table 1	
Hydrogen-bond geometry (A, $^{\circ}$).	
Cg3 is the centroid of the C7–C12 ring.	

0		0		
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} \text{C5-H5} A \cdots \text{O2}^{\text{i}} \\ \text{C10-H10} \cdots \text{Cg3}^{\text{ii}} \end{array}$	0.97 0.93	2.58 2.88	3.346 (6) 3.734 (6)	136 154

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1.

absence of NH groups (Fig. 2). The molecules are connected via weak C5–H5A···O2 links (Table 1) to generate infinite chains directed along [010]. The H5A···O2 distance of 2.58 Å is significantly longer than the corresponding distance in pyrrolopyrimidinones [2.28 (5)–2.306 (18) Å]. Moreover, there are C10–H10··· π contacts to an adjacent phenyl ring (Fig. 3), which reinforce the [010] chains.

Figure 1

The molecular structure of the title compound showing 50% displacement ellipsoids.

Figure 2

The packing of the title compound viewed down [100] showing hydrogen bonds as red dashed lines.

Table 2 Experimental details.	
Crystal data	
Chemical formula	$C_{12}H_{13}NO_2$
$M_{ m r}$	203.23
Crystal system, space group	Monoclinic, P2 ₁
Temperature (K)	295
a, b, c (Å)	5.7173 (17), 7.346 (3), 12.436 (4)
β (°)	93.07 (3)
$V(Å^3)$	521.5 (3)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.55 \times 0.1 \times 0.08$
Data collection	
Data collection	A silont Technologica New
Dimactometer	Xcalibur Ruby
Absorption correction	Multi-scan (CrysAlis PRO:
Absolption correction	Agilent 2014)
т т	0.217 + 1.000
No of measured independent and	5059 2406 1462
observed $[I > 2\sigma(I)]$ reflections	5059, 2400, 1402
$R_{\rm e}$	0.048
$(\sin \theta/\lambda)$ (\dot{A}^{-1})	0.691
$(\sin \theta/\lambda)_{\max}(A)$	0.071
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.160, 1.06
No. of reflections	2406
No. of parameters	137
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.16, -0.15

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Synthesis and crystallization

5-Phenylfuran-2(3*H*)-one (1 g, 6 mmol) and ethanolamine (0.34 g, 6 mmol) were placed in a round-bottomed flask equipped with Dean–Stark apparatus. Dry benzene (30 ml) was added and the reaction mixture refluxed for 3-4 h. After

Figure 3 The packing of the title compound showing $C-H\cdots\pi$ interactions. being left to stand overnight, the separated crystals and precipitate were washed with benzene and acetone and the solid placed in a vacuum desiccator for drying (yield 0.91 g, 75%; m.p. $65-67^{\circ}$ C). The single crystal used for data collection was obtained directly from the cooled reaction mixture.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: Russian Foundation for Basic Research (grant No. 19-33-90157 to Alevtina Yu. Yegorova). References

- Aeberli, P., Gogerty, J. H., Houlihan, W. J. & Iorio, L. C. (1976). J. Med. Chem. 19, 436–438.
- Aeberli, P. & Houlihan, W. J. (1969). J. Org. Chem. 34, 165-170.
- Agilent (2014). CrysAlis PRO. Agilent Technologies, USA.
- Amal'chieva, O. A. & Egorova, A. Yu. (2006). Russ. J. Org. Chem. 42, 1340–1343.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Grinev, V. S., Linkova, E. I., Krainov, M. N., Dmitriev, M. V. & Yegorova, A. Y. (2020). Acta Cryst. C76, 483–489.
- Lim, Y. J., Angela, M. & Buonora, P. T. (2003). *Tetrahedron Lett.* 44, 7799–7801.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Trapani, G., Franco, M., Latrofa, A., Carotti, A., Cellamare, S., Serra, M., Ghiani, C. A., Tuligi, G., Biggio, G. & Liso, G. (1996). J. Pharm. Pharmacol. 48, 834–840.

full crystallographic data

IUCrData (2020). **5**, x200919 [https://doi.org/10.1107/S2414314620009190]

7a-Phenyltetrahydropyrrolo[2,1-b]oxazol-5(6H)-one

Elena I. Linkova, Vyacheslav S. Grinev, Oksana A. Mayorova and Alevtina Yu. Yegorova

7a-Phenyltetrahydropyrrolo[2,1-b]oxazol-5(6H)-one

Crystal data

 $C_{12}H_{13}NO_2$ $M_r = 203.23$ Monoclinic, $P2_1$ a = 5.7173 (17) Å b = 7.346 (3) Å c = 12.436 (4) Å $\beta = 93.07 (3)^\circ$ $V = 521.5 (3) Å^3$ Z = 2

Data collection

Agilent Technologies New Xcalibur, Ruby diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4752 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) $T_{\min} = 0.217, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.160$ S = 1.062406 reflections 137 parameters 1 restraint Primary atom site location: structure-invariant direct methods F(000) = 216 $D_x = 1.294 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1357 reflections $\theta = 3.5-22.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 295 KNeedle, clear colourless $0.55 \times 0.1 \times 0.08 \text{ mm}$

5059 measured reflections 2406 independent reflections 1462 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 29.4^\circ, \ \theta_{min} = 3.2^\circ$ $h = -7 \rightarrow 7$ $k = -9 \rightarrow 9$ $l = -16 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0638P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³ Extinction correction: SHELXL2018/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.094 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4191 (7)	0.8471 (7)	0.1967 (3)	0.0669 (12)	
H1A	0.440537	0.941850	0.143766	0.080*	
H1B	0.563590	0.831027	0.240152	0.080*	
N1	0.3418 (5)	0.6763 (5)	0.1455 (2)	0.0560 (9)	
01	0.0340 (4)	0.7581 (5)	0.2424 (2)	0.0666 (9)	
C2	0.2140 (7)	0.8897 (6)	0.2663 (3)	0.0694 (13)	
H2A	0.264333	0.883883	0.341924	0.083*	
H2B	0.155301	1.011334	0.250689	0.083*	
O2	0.4289 (5)	0.7275 (5)	-0.0288 (2)	0.0743 (10)	
C3	0.1537 (6)	0.6008 (6)	0.2049 (3)	0.0545 (10)	
C4	-0.0033 (7)	0.4983 (8)	0.1217 (3)	0.0750 (13)	
H4A	-0.017904	0.371365	0.141669	0.090*	
H4B	-0.158290	0.552282	0.115247	0.090*	
C5	0.1181 (7)	0.5165 (7)	0.0181 (3)	0.0686 (12)	
H5A	0.180468	0.399755	-0.003026	0.082*	
H5B	0.009114	0.559003	-0.038927	0.082*	
C6	0.3109 (7)	0.6501 (6)	0.0374 (3)	0.0559 (10)	
C7	0.2432 (6)	0.4828 (5)	0.2990 (3)	0.0489 (9)	
C8	0.4440 (6)	0.3789 (6)	0.2926 (3)	0.0622 (11)	
H8	0.529967	0.384189	0.231306	0.075*	
C9	0.5168 (7)	0.2675 (6)	0.3775 (4)	0.0712 (12)	
H9	0.653085	0.199387	0.373066	0.085*	
C10	0.3912 (8)	0.2559 (7)	0.4680 (4)	0.0724 (12)	
H10	0.441108	0.179917	0.524518	0.087*	
C11	0.1929 (9)	0.3565 (8)	0.4745 (3)	0.0746 (13)	
H11	0.107507	0.349304	0.535934	0.090*	
C12	0.1163 (7)	0.4699 (6)	0.3904 (3)	0.0633 (11)	
H12	-0.020343	0.537312	0.395607	0.076*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.068 (2)	0.072 (3)	0.061 (3)	-0.019 (3)	0.005 (2)	-0.004 (2)
N1	0.0587 (17)	0.066 (2)	0.0439 (19)	-0.0115 (16)	0.0075 (13)	0.0058 (16)
O1	0.0574 (14)	0.0675 (18)	0.076 (2)	0.0055 (15)	0.0118 (13)	0.0046 (16)
C2	0.075 (3)	0.063 (3)	0.070 (3)	-0.005 (2)	0.005 (2)	0.000 (2)
02	0.090 (2)	0.082 (2)	0.0525 (18)	-0.0011 (18)	0.0205 (15)	0.0124 (16)
C3	0.0511 (19)	0.063 (2)	0.050(2)	-0.0077 (18)	0.0097 (16)	0.001 (2)
C4	0.075 (3)	0.088 (4)	0.061 (3)	-0.026 (3)	-0.002(2)	0.003 (3)
C5	0.078 (2)	0.068 (3)	0.060(2)	-0.003 (2)	0.006 (2)	-0.012 (2)
C6	0.061 (2)	0.060 (3)	0.047 (2)	0.008 (2)	0.0061 (16)	0.005 (2)
C7	0.0494 (19)	0.051 (2)	0.047 (2)	-0.0065 (17)	0.0098 (14)	0.0002 (19)
C8	0.060(2)	0.073 (3)	0.055 (2)	-0.001 (2)	0.0119 (18)	0.006 (2)
С9	0.064 (2)	0.068 (3)	0.082 (3)	0.005 (2)	0.007 (2)	0.012 (3)
C10	0.098 (3)	0.062 (3)	0.057 (3)	-0.011 (3)	-0.002 (2)	0.013 (2)

data reports

C11	0.106 (3)	0.069 (3)	0.052 (2)	-0.003 (3)	0.028 (2)	0.009 (2)	
C12	0.070 (2)	0.062 (3)	0.059 (2)	-0.003 (2)	0.0219 (18)	0.002 (2)	

Geometric parameters (Å, °)

C1—H1A	0.9700	C4—C5	1.502 (6)
C1—H1B	0.9700	C5—H5A	0.9700
C1—N1	1.464 (6)	С5—Н5В	0.9700
C1—C2	1.527 (6)	C5—C6	1.486 (6)
N1—C3	1.447 (5)	C7—C8	1.384 (5)
N1—C6	1.361 (5)	C7—C12	1.385 (5)
O1—C2	1.432 (5)	C8—H8	0.9300
O1—C3	1.434 (5)	C8—C9	1.382 (6)
C2—H2A	0.9700	С9—Н9	0.9300
C2—H2B	0.9700	C9—C10	1.370 (6)
O2—C6	1.230 (5)	C10—H10	0.9300
C3—C4	1.531 (5)	C10—C11	1.359 (7)
С3—С7	1.523 (5)	C11—H11	0.9300
C4—H4A	0.9700	C11—C12	1.389 (6)
C4—H4B	0.9700	C12—H12	0.9300
H1A—C1—H1B	109.3	C4—C5—H5A	110.3
N1—C1—H1A	111.5	C4—C5—H5B	110.3
N1—C1—H1B	111.5	H5A—C5—H5B	108.6
N1—C1—C2	101.5 (3)	C6—C5—C4	107.0 (4)
C2	111.5	C6—C5—H5A	110.3
C2—C1—H1B	111.5	C6—C5—H5B	110.3
C3—N1—C1	108.8 (3)	N1—C6—C5	108.0 (4)
C6—N1—C1	124.8 (4)	O2—C6—N1	123.3 (4)
C6—N1—C3	112.9 (3)	O2—C6—C5	128.7 (4)
C2—O1—C3	105.2 (3)	C8—C7—C3	121.1 (3)
C1—C2—H2A	110.1	C8—C7—C12	118.8 (4)
C1—C2—H2B	110.1	C12—C7—C3	120.0 (3)
01—C2—C1	108.0 (3)	C7—C8—H8	120.0
O1—C2—H2A	110.1	C9—C8—C7	120.0 (4)
O1—C2—H2B	110.1	С9—С8—Н8	120.0
H2A—C2—H2B	108.4	С8—С9—Н9	119.5
N1—C3—C4	105.6 (3)	C10—C9—C8	121.0 (4)
N1—C3—C7	112.5 (3)	С10—С9—Н9	119.5
O1—C3—N1	103.8 (3)	C9—C10—H10	120.3
O1—C3—C4	110.1 (3)	C11—C10—C9	119.4 (4)
O1—C3—C7	110.8 (3)	C11—C10—H10	120.3
C7—C3—C4	113.6 (4)	C10—C11—H11	119.6
C3—C4—H4A	110.8	C10-C11-C12	120.8 (4)
C3—C4—H4B	110.8	C12—C11—H11	119.6
H4A—C4—H4B	108.9	C7—C12—C11	120.1 (4)
C5—C4—C3	104.8 (3)	C7—C12—H12	120.0
С5—С4—Н4А	110.8	C11—C12—H12	120.0

C5—C4—H4B	110.8		
C5—C4—H4B C1—N1—C3—O1 C1—N1—C3—C4 C1—N1—C3—C7 C1—N1—C6—O2 C1—N1—C6—C5 N1—C1—C2—O1 N1—C3—C4—C5 N1—C3—C7—C8 N1—C3—C7—C12 O1—C3—C7—C12 O1—C3—C7—C12 O1—C3—C7—C12 C2—C1—N1—C3	110.8 33.1 (3) 148.9 (4) -86.7 (4) 32.0 (6) -148.2 (4) -5.7 (4) 2.7 (5) -34.1 (5) 149.6 (4) 114.1 (4) -149.7 (3) 34.0 (5) -16.7 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.9 (4) -9.5 (5) -177.5 (4) 177.4 (4) 85.8 (4) -90.5 (4) 13.4 (5) -166.8 (4) -109.9 (4) 5.9 (5) 130.3 (4) -121.0 (4) 0.9 (6)
C2-C1-N1-C6 C2-O1-C3-N1 C2-O1-C3-C4 C2-O1-C3-C7 C3-N1-C6-O2 C3-N1-C6-C5	120.9 (4) -35.7 (4) -148.3 (3) 85.2 (3) 168.1 (4) -12.2 (5)	C8—C7—C12—C11 C8—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C7 C12—C7—C8—C9	1.0 (6) -0.4 (7) 0.2 (7) -0.5 (7) -1.1 (5)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5 <i>A</i> ···O2 ⁱ	0.97	2.58	3.346 (6)	136
C10—H10… <i>Cg</i> 3 ⁱⁱ	0.93	2.88	3.734 (6)	154

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*; (ii) -*x*+1, *y*-1/2, -*z*+1.