

IUCrData

ISSN 2414-3146

Received 27 May 2020 Accepted 25 June 2020

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; terpyridine; ketone; crystal structure.

CCDC reference: 2012289

Structural data: full structural data are available from iucrdata.iucr.org

(2-Hydroxyphenyl)(4,2':4',4"-terpyridin-6'-yl)methanone

S. Devika,^a Noor Shahina Begum,^a* Kiran B. Manjappa^b* and Ding-Yah Yang^b

^aDepartment of Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore-560 056, Karnataka, India, and ^bGraduate Program for Biomedical and Materials Science, Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung-40704, Taiwan. *Correspondence e-mail: noorsb05@gmail.com, kiran@thu.edu.tw

The title compound, $C_{22}H_{15}N_3O_2$, can be described as a ketone with a phenol substituent and a terpyridine ligand coordinated to the carbonyl group. The three six-membered rings of the terpyridine ligand are not coplanar. The dihedral angles between the mean planes of the central ring and the external pyridine ligands are 22.77 (9) and 26.77 (7)°. The central ring of the terpyridine ligand is also not coplanar with the *o*-hydroxy phenyl ring, the dihedral angle being 39.72 (5)°. An intramolecular O-H···O hydrogen bond occurs. The crystal structure of the title compound is consolidated by C-H···O and C-H···N hydrogen bonding interactions.

Structure description

Pyridine and derivatives play critical roles in the biochemical field. The hydrazone derivatives of benzoylpyridines exhibit cytotoxic activity towards tumor cell lines (Santos *et al.*, 2018) and show excellent antiproliferative activity (Kalinowski *et al.*, 2007). The quest for an efficient method for the preparation of such pyridine derivatives is ongoing. Herein, we report a novel method for the preparation of a 2-benzoylpyridine derivative in a one-pot reaction of 3-aminocoumarin with 4-acetylpyridine. The structural elucidation of the compound by spectroscopic investigation and single-crystal analysis has been performed.

The molecular structure of the title compound is shown in Fig. 1. It crystallizes in the orthorhombic crystal system in $P2_12_12_1$ space group with one molecule in the asymmetric unit. The compound can be described as a ketone with a phenol substituent and a terpyridine ligand coordinated to the carbonyl group. The dihedral angle between the mean planes of the central ring of the terpyridine ligand and the *o*-hydroxy phenyl ring is

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

39.72 (5)°. The three six-membered rings of the terpyridine ligand are not coplanar. The dihedral angles between the mean planes of the central ring and the external pyridine ligands are 22.77 (9) and 26.77 (7)° (for C13–C17/N2 and C18–C22/N3, respectively). A strong intramolecular O–H···O hydrogen bond (O2–H2'···O1) exists between the O1 and O2 atoms of the phenol ring (Table 1).

Figure 2

Unit-cell packing of the title compound showing intramolecular O– $H\!\cdots\!O$ and intermolecular C– $H\!\cdots\!O$ interactions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

, , ,				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O2−H2′···O1	0.87 (4)	1.73 (4)	2.527 (3)	152 (3)
$C16-H16\cdots O2^{i}$	0.95	2.59	3.309 (3)	132
$C17 - H17 \cdot \cdot \cdot N2^{ii}$	0.95	2.49	3.344 (3)	150
$C21 - H21 \cdots O1^{iii}$	0.95	2.45	3.380 (3)	165

Symmetry codes: (i) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) x, y - 1, z.

The crystal packing features the C21-H21···O1 interaction along the crystallographic *a* axis. The O1 atom of the phenol group is involves in both intra- and inter-molecular hydrogen bonding (Table 1, Fig. 2). The crystal structure is further stabilized by the following intermolecular interactions: C17-H17···N2ⁱⁱ [symmetry code: (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$], which connects the molecules in a zigzag pattern, and C16-H16···O2ⁱ [symmetry code: (i) $-x + \frac{3}{2}$, -y + 1, $z - \frac{1}{2}$], which forms molecular chains along the crystallographic *b* and *a* axes, respectively (Fig. 3). In addition, a weak π - π stacking interaction exhibiting a centroid-centroid distance of 3.7919 (15) Å between C7-C12 and C13-C17/N2 rings is observed (Fig. 4).

Synthesis and crystallization

A mixture of 3-amino-4-hydroxycoumarin (10 mmol, 1.0 equiv.), 4-acetylpyridine (22 mmol, 2.2 equiv.) and a few drops of TEA (0.2 equiv.) in toluene (25 ml) was refluxed under nitrogen for 4 h. The progress of the reaction was monitored by TLC. The reaction mixture was allowed to attain room temperature and the solvent was dried using a rotary evaporator. The crude product was purified by flash column chromatography to obtain a yellowish brown solid with 67%

Unit-cell packing of the title compound showing intermolecular C– $H \cdots N$ and C– $H \cdots O$ interactions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.

Figure 4

Unit-cell packing depicting the intermolecular π - π stacking interactions as dotted lines.

yield, $R_{\rm f} = 0.10$ (5% DCM/MeOH), m.p. 190–192°C. The compound was recrystallized from ethanol solution. ¹H NMR (CDCl₃, 400 MHz) δ 12.13 (s, 1H), 8.84 (d, J = 6.4 Hz, 2H), 8.81 (d, J = 6.4 Hz, 2H), 8.25 (dd, J = 8.0, 1.2 Hz, 1H), 8.22 (d, J =1.2 Hz, 1H), 8.19 (*d*, *J* = 1.2 Hz, 1H), 8.01 (*dd*, *J* = 4.8, 1.6 Hz, 2H), 7.66 (*dd*, *J* = 3.2, 1.6 Hz, 2H), 7.58 (*t*, *J* = 7.6 Hz, 1H), 7.12 (d, J = 8.4-0 Hz, 1H), 6.96 (t, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) & 196.7, 164.9, 156.6, 154.4, 150.9, 150.8, 150.7, 148.7, 144.8, 144.6, 137.1, 134.2, 122.3, 121.4, 121.1, 120.4, 118.9, 118.5.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$C_{22}H_{15}N_3O_2$
M _r	353.37
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	150
a, b, c (Å)	7.2994 (2), 9.6105 (3), 23.9296 (8)
$V(Å^3)$	1678.68 (9)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.48 \times 0.25 \times 0.18$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Bruker, 1998)
T_{\min}, T_{\max}	0.879, 0.928
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23873, 3416, 3003
R _{int}	0.041
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.088, 1.10
No. of reflections	3416
No. of parameters	248
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.18, -0.23
,	

Computer programs: SMART and SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

References

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kalinowski, D. S., Yu, Y., Sharpe, P. C., Islam, M., Liao, Y.-T., Lovejoy, D. B., Kumar, N., Bernhardt, P. V. & Richardson, D. R. (2007). J. Med. Chem. 50, 3716-3729.
- Santos, A. F., Ferreira, I. P., Pinheiro, C. B., Santos, V. G., Lopes, M. T. P., Teixeira, L. R., Rocha, W. R., Rodrigues, G. L. S. & Beraldo, H. (2018). ACS Omega, 3, 7027-7035.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2020). **5**, x200857 [https://doi.org/10.1107/S2414314620008573]

(2-Hydroxyphenyl)(4,2':4',4''-terpyridin-6'-yl)methanone

S. Devika, Noor Shahina Begum, Kiran B. Manjappa and Ding-Yah Yang

(2-Hydroxyphenyl)(4,2':4',4''-terpyridin-6'-yl)methanone

C22H15N3O2 $D_{\rm x} = 1.398 {\rm Mg m^{-3}}$ $M_r = 353.37$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9903 reflections Orthorhombic, $P2_12_12_1$ $\theta = 2.9 - 26.3^{\circ}$ a = 7.2994 (2) Å b = 9.6105 (3) Å $\mu = 0.09 \text{ mm}^{-1}$ T = 150 Kc = 23.9296 (8) Å V = 1678.68 (9) Å³ Parallelepiped, yellow Z = 4 $0.48 \times 0.25 \times 0.18$ mm F(000) = 736Data collection Bruker SMART APEX CCD 3416 independent reflections diffractometer 3003 reflections with $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube $R_{\rm int} = 0.041$ ω scans $\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 3.3^\circ$ Absorption correction: multi-scan $h = -9 \rightarrow 8$ $k = -12 \rightarrow 11$ (SADABS; Bruker, 1998) $T_{\rm min} = 0.879, \ T_{\rm max} = 0.928$ $l = -29 \rightarrow 29$ 23873 measured reflections Refinement Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.038$ Hydrogen site location: mixed $wR(F^2) = 0.088$ H atoms treated by a mixture of independent S = 1.10and constrained refinement 3416 reflections $w = 1/[\sigma^2(F_o^2) + (0.0377P)^2 + 0.4435P]$ where $P = (F_0^2 + 2F_c^2)/3$ 248 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Crystal data

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydroxy H atom was located in the Fourier maps and freyly refined, while all other H atoms were fixed geometrically and allow to ride on their parent carbon atoms, with a C—H distance of 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

	x	V	Z	$U_{\rm iso}^*/U_{\rm eq}$
01	0 6864 (3)	0 49905 (18)	1 05784 (7)	0 0296 (4)
02	0.0001(3) 0.7035(3)	0.49051 (18)	1.05701(7) 1.16325(7)	0.0220(1)
62 H2'	0.706 (5)	0.522 (3)	1.10323(7) 1.1292(14)	0.051 (10)*
N1	0.6398(3)	0.18406(19)	0.98997(7)	0.0195 (4)
N2	0.3663(3)	0.6191 (2)	0.76383 (9)	0.0348 (6)
N3	0.8135(4)	-0.2862(2)	0.91678 (9)	0.0367 (6)
C1	0.6004 (3)	0.3190(2)	0.99800 (9)	0.0193 (5)
C2	0.5477 (3)	0.4093 (2)	0.95579 (9)	0.0201 (5)
H2	0.525464	0.504644	0.963740	0.024*
C3	0.5278 (3)	0.3587 (2)	0.90164 (9)	0.0197 (5)
C4	0.5690 (3)	0.2187 (2)	0.89279 (9)	0.0199 (5)
H4	0.557492	0.179870	0.856446	0.024*
C5	0.6269 (3)	0.1354 (2)	0.93715 (9)	0.0194 (5)
C6	0.6289 (3)	0.3781 (2)	1.05576 (9)	0.0211 (5)
C7	0.5894 (3)	0.2996 (2)	1.10698 (9)	0.0195 (5)
C8	0.5071 (3)	0.1676 (2)	1.10724 (10)	0.0220 (5)
H8	0.476367	0.124708	1.072717	0.026*
С9	0.4699 (3)	0.0988 (3)	1.15652 (10)	0.0263 (5)
Н9	0.414255	0.009436	1.155914	0.032*
C10	0.5147 (4)	0.1617 (3)	1.20729 (10)	0.0296 (6)
H10	0.490145	0.114222	1.241306	0.036*
C11	0.5937 (4)	0.2912 (3)	1.20868 (10)	0.0294 (6)
H11	0.623645	0.332654	1.243546	0.035*
C12	0.6301 (3)	0.3618 (2)	1.15932 (10)	0.0230 (5)
C13	0.4716 (3)	0.4501 (2)	0.85454 (9)	0.0208 (5)
C14	0.3732 (4)	0.5721 (3)	0.86268 (10)	0.0281 (6)
H14	0.339665	0.600640	0.899286	0.034*
C15	0.3244 (4)	0.6518 (3)	0.81667 (11)	0.0350 (6)
H15	0.256962	0.734852	0.823080	0.042*
C16	0.4630 (4)	0.5027 (3)	0.75683 (11)	0.0315 (6)
H16	0.496579	0.477605	0.719817	0.038*
C17	0.5177 (3)	0.4161 (3)	0.79977 (10)	0.0248 (5)
H17	0.586121	0.334272	0.792006	0.030*
C18	0.6840 (3)	-0.0113 (2)	0.92905 (9)	0.0205 (5)
C19	0.7538 (3)	-0.0593 (3)	0.87856 (10)	0.0252 (5)
H19	0.759270	0.000724	0.847051	0.030*
C20	0.8152 (4)	-0.1948 (3)	0.87460 (11)	0.0333 (6)
H20	0.861862	-0.225112	0.839599	0.040*
C21	0.7440 (4)	-0.2392 (3)	0.96517 (11)	0.0321 (6)
H21	0.739621	-0.301578	0.995929	0.039*
C22	0.6785 (4)	-0.1058 (2)	0.97307 (10)	0.0250 (5)
H22	0.630106	-0.078786	1.008290	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0424 (11)	0.0236 (9)	0.0228 (9)	-0.0076 (8)	-0.0032 (8)	0.0015 (7)
O2	0.0489 (12)	0.0263 (10)	0.0212 (9)	-0.0064 (8)	-0.0069 (8)	-0.0005 (8)
N1	0.0189 (10)	0.0212 (10)	0.0183 (10)	-0.0016 (8)	0.0001 (7)	0.0018 (8)
N2	0.0347 (13)	0.0338 (13)	0.0360 (13)	0.0014 (11)	-0.0033 (10)	0.0151 (10)
N3	0.0515 (15)	0.0219 (12)	0.0366 (13)	0.0032 (11)	-0.0013 (11)	-0.0022 (9)
C1	0.0161 (11)	0.0223 (12)	0.0195 (11)	-0.0022 (9)	0.0010 (9)	-0.0001 (9)
C2	0.0198 (11)	0.0175 (12)	0.0231 (12)	-0.0018 (9)	0.0003 (9)	-0.0004 (9)
C3	0.0155 (11)	0.0227 (12)	0.0208 (11)	-0.0013 (9)	-0.0003 (9)	0.0024 (9)
C4	0.0187 (11)	0.0230 (12)	0.0179 (11)	-0.0019 (9)	-0.0020 (9)	0.0001 (9)
C5	0.0178 (11)	0.0194 (12)	0.0211 (11)	-0.0033 (9)	0.0003 (9)	0.0017 (9)
C6	0.0202 (12)	0.0213 (12)	0.0217 (12)	0.0020 (10)	-0.0021 (9)	0.0004 (10)
C7	0.0187 (11)	0.0215 (12)	0.0183 (11)	0.0040 (9)	-0.0014 (9)	-0.0001 (9)
C8	0.0196 (11)	0.0247 (13)	0.0217 (11)	0.0013 (9)	0.0007 (9)	-0.0017 (10)
C9	0.0253 (12)	0.0242 (13)	0.0294 (13)	-0.0001 (10)	0.0057 (11)	0.0035 (10)
C10	0.0345 (14)	0.0326 (14)	0.0217 (12)	0.0038 (12)	0.0047 (11)	0.0075 (11)
C11	0.0375 (15)	0.0333 (14)	0.0175 (12)	0.0053 (12)	-0.0012 (10)	-0.0018 (11)
C12	0.0262 (12)	0.0211 (12)	0.0218 (12)	0.0030 (10)	-0.0012 (10)	-0.0008 (10)
C13	0.0183 (11)	0.0207 (11)	0.0232 (11)	-0.0019 (9)	-0.0035 (9)	0.0032 (10)
C14	0.0312 (13)	0.0259 (13)	0.0272 (13)	0.0026 (11)	-0.0017 (11)	0.0020 (10)
C15	0.0371 (15)	0.0257 (14)	0.0423 (16)	0.0063 (12)	-0.0035 (13)	0.0064 (12)
C16	0.0299 (14)	0.0412 (16)	0.0235 (13)	-0.0002 (12)	-0.0019 (11)	0.0080 (12)
C17	0.0243 (13)	0.0267 (14)	0.0233 (12)	0.0018 (10)	-0.0031 (10)	0.0010 (10)
C18	0.0195 (12)	0.0209 (12)	0.0209 (11)	-0.0032 (10)	-0.0040 (9)	-0.0004 (9)
C19	0.0304 (13)	0.0226 (12)	0.0226 (12)	-0.0020 (10)	-0.0026 (10)	0.0011 (10)
C20	0.0436 (15)	0.0279 (14)	0.0283 (13)	0.0019 (12)	0.0018 (12)	-0.0040 (11)
C21	0.0444 (17)	0.0220 (13)	0.0299 (13)	-0.0020 (12)	-0.0046 (12)	0.0047 (11)
C22	0.0315 (13)	0.0227 (13)	0.0208 (12)	-0.0013 (10)	-0.0006 (10)	0.0011 (9)

Geometric parameters (Å, °)

01—C6	1.237 (3)	C9—C10	1.396 (3)
O2—C12	1.351 (3)	С9—Н9	0.9500
O2—H2′	0.87 (3)	C10—C11	1.372 (4)
N1-C1	1.342 (3)	C10—H10	0.9500
N1C5	1.351 (3)	C11—C12	1.388 (3)
N2-C16	1.334 (3)	C11—H11	0.9500
N2-C15	1.338 (3)	C13—C14	1.389 (3)
N3—C20	1.338 (3)	C13—C17	1.392 (3)
N3—C21	1.343 (3)	C14—C15	1.388 (3)
C1—C2	1.386 (3)	C14—H14	0.9500
C1—C6	1.509 (3)	C15—H15	0.9500
C2—C3	1.392 (3)	C16—C17	1.381 (3)
С2—Н2	0.9500	C16—H16	0.9500
C3—C4	1.395 (3)	C17—H17	0.9500
C3—C13	1.487 (3)	C18—C19	1.390 (3)

64 65	1 205 (2)	G18 G 22	1 201 (2)
C4—C5	1.395 (3)		1.391 (3)
C4—H4	0.9500	C19—C20	1.380 (3)
C5—C18	1.484 (3)	C19—H19	0.9500
С6—С7	1.467 (3)	C20—H20	0.9500
C7—C8	1.404 (3)	C21—C22	1.381 (4)
C7—C12	1.419 (3)	C21—H21	0.9500
C8—C9	1.379 (3)	C22—H22	0.9500
C8—H8	0.9500		
	0.9200		
C12 O2 H2/	105 (2)	C10 C11 H11	110.0
$C_{12} = 02 = 112$	105(2)		119.9
CI = NI = CJ	110.90 (19)		117.7 (2)
C10-N2-C15	115.9 (2)		117.7(2)
C20—N3—C21	115.7 (2)	02	122.0 (2)
N1—C1—C2	124.1 (2)	C11—C12—C7	120.3 (2)
N1—C1—C6	117.72 (19)	C14—C13—C17	117.1 (2)
C2—C1—C6	118.1 (2)	C14—C13—C3	122.4 (2)
C1—C2—C3	119.3 (2)	C17—C13—C3	120.6 (2)
С1—С2—Н2	120.4	C15—C14—C13	119.2 (2)
С3—С2—Н2	120.4	C15—C14—H14	120.4
C2—C3—C4	117.1 (2)	C13—C14—H14	120.4
C2—C3—C13	121.9 (2)	N2-C15-C14	124.1 (2)
C4-C3-C13	120 9 (2)	N2-C15-H15	1179
C_{3} C_{4} C_{5}	120.3(2) 120.2(2)	C14-C15-H15	117.9
$C_3 C_4 H_4$	110.0	N2 C16 C17	1244(2)
$C_5 = C_4 = 114$	119.9	$N_2 = C_{10} = C_{17}$	124.4 (2)
C3-C4-H4	119.9	N2-C10-H10	117.8
NI-C5-C4	122.3 (2)	C1/C16H16	117.8
N1-C5-C18	115.6 (2)	C16—C17—C13	119.3 (2)
C4—C5—C18	122.1 (2)	C16—C17—H17	120.3
O1—C6—C7	121.0 (2)	C13—C17—H17	120.3
O1—C6—C1	115.9 (2)	C19—C18—C22	116.9 (2)
C7—C6—C1	123.0 (2)	C19—C18—C5	122.1 (2)
C8—C7—C12	117.8 (2)	C22—C18—C5	120.9 (2)
C8—C7—C6	123.5 (2)	C20—C19—C18	119.4 (2)
C12—C7—C6	118.7 (2)	C20—C19—H19	120.3
C9—C8—C7	121.4 (2)	С18—С19—Н19	120.3
С9—С8—Н8	119.3	N3—C20—C19	124.4 (2)
C7—C8—H8	119.3	N3-C20-H20	117.8
C_{8} C_{9} C_{10}	119.3 119.4(2)	C_{19} C_{20} H_{20}	117.8
	120.3	N3 C21 C22	124.2(2)
$C_{0} = C_{0} = H_{0}$	120.5	$N_{2} = C_{21} = C_{22}$	124.2(2)
C10 - C9 - H9	120.5	$N_{3} = C_{21} = H_{21}$	117.9
	120.8 (2)	C22—C21—H21	117.9
C11—C10—H10	119.6	C21—C22—C18	119.5 (2)
C9—C10—H10	119.6	C21—C22—H22	120.3
C10—C11—C12	120.2 (2)	C18—C22—H22	120.3
C5—N1—C1—C2	0.2 (3)	C6—C7—C12—O2	0.1 (3)
C5—N1—C1—C6	-175.1 (2)	C8—C7—C12—C11	1.9 (3)
N1—C1—C2—C3	2.1 (3)	C6-C7-C12-C11	179.6 (2)
	× /		× /

C6—C1—C2—C3	177.4 (2)	C2—C3—C13—C14	-24.2 (3)
C1—C2—C3—C4	-2.1 (3)	C4—C3—C13—C14	158.0 (2)
C1—C2—C3—C13	180.0 (2)	C2-C3-C13-C17	155.4 (2)
C2—C3—C4—C5	0.1 (3)	C4—C3—C13—C17	-22.4(3)
C13—C3—C4—C5	178.0 (2)	C17—C13—C14—C15	0.8 (4)
C1—N1—C5—C4	-2.3 (3)	C3—C13—C14—C15	-179.6 (2)
C1—N1—C5—C18	175.8 (2)	C16—N2—C15—C14	-0.8 (4)
C3—C4—C5—N1	2.2 (3)	C13—C14—C15—N2	-0.1 (4)
C3-C4-C5-C18	-175.8 (2)	C15—N2—C16—C17	1.0 (4)
N1-C1-C6-01	143.3 (2)	N2-C16-C17-C13	-0.3 (4)
C2-C1-C6-01	-32.3 (3)	C14—C13—C17—C16	-0.7 (3)
N1—C1—C6—C7	-37.6 (3)	C3—C13—C17—C16	179.7 (2)
C2-C1-C6-C7	146.9 (2)	N1-C5-C18-C19	-151.7 (2)
O1—C6—C7—C8	173.4 (2)	C4—C5—C18—C19	26.4 (3)
C1—C6—C7—C8	-5.7 (3)	N1-C5-C18-C22	24.9 (3)
O1—C6—C7—C12	-4.2 (3)	C4-C5-C18-C22	-157.0 (2)
C1—C6—C7—C12	176.7 (2)	C22—C18—C19—C20	-0.7 (4)
C12—C7—C8—C9	-1.3 (3)	C5-C18-C19-C20	176.0 (2)
C6—C7—C8—C9	-178.9 (2)	C21—N3—C20—C19	0.9 (4)
C7—C8—C9—C10	0.1 (3)	C18—C19—C20—N3	-0.3 (4)
C8—C9—C10—C11	0.5 (4)	C20—N3—C21—C22	-0.5 (4)
C9-C10-C11-C12	0.1 (4)	N3-C21-C22-C18	-0.4 (4)
C10-C11-C12-O2	178.2 (2)	C19—C18—C22—C21	1.1 (4)
C10-C11-C12-C7	-1.3 (4)	C5-C18-C22-C21	-175.7 (2)
C8—C7—C12—O2	-177.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D···· A	D—H··· A	
02—H2'…O1	0.87 (4)	1.73 (4)	2.527 (3)	152 (3)	
C16—H16…O2 ⁱ	0.95	2.59	3.309 (3)	132	
C17—H17…N2 ⁱⁱ	0.95	2.49	3.344 (3)	150	
C21—H21····O1 ⁱⁱⁱ	0.95	2.45	3.380 (3)	165	

Symmetry codes: (i) -*x*+3/2, -*y*+1, *z*-1/2; (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) *x*, *y*-1, *z*.