

ISSN 2414-3146

Received 27 July 2020 Accepted 9 August 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 1,4-benzodioxane; calcium atom; carboxylate groups; hydrogen bonding.

Structural data: full structural data are available from iucrdata.iucr.org

Tetraaquabis(2,3-dihydro-1,4-benzodioxine-2carboxylato)calcium(II)

Esmit B. Camargo-Cortés,^a* Mirna Acosta,^a Juan C. Martínez^a and Leslie W. Pineda^{b,c}

^aCentro Especializado en Investigaciones en Química Inorgánica (CEIQUI), Escuela de Química, Universidad Autónoma de Chiriquí, David, Panama, ^bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501-2060, San José, Costa Rica, and ^cEscuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica. *Correspondence e-mail: esmit.camargo@unachi.ac.pa

The acid-base reaction of 1,4-benzodioxane 2-carboxylic acid with calcium carbonate furnished the centrosymmetric title compound, $[Ca(C_9H_7O_4)_2(H_2O)_4]$, in which the metal ion is octahedrally coordinated by two monodentate 1,4-benzodioxane 2-carboxylate ligands and four water molecules. In the crystal, $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds link the molecules into a three-dimensional network.

Structure description

1,4-Benzodioxanes are components of some therapeutic agents used in cardiovascular treatments, acting as α - and β -adrenergic antagonists (Nelson *et al.*, 1977, 1979; Pigini *et al.*, 1988). For the latter application, the enantiopure derivatives of chiral 2-substituted 1,4-benzodioxanes lend affinity and selectivity, mainly those derived from 1,4-benzodioxane 2-carboxylic acid (Ennis & Old, 1992; Antus *et al.*, 1993; Khouili *et al.*, 1999; Jasinski *et al.*, 2009). Naturally ocurring compounds with a similar structure to these heterocyclic scaffolds are known as 1,4-benzodioxane lignans, which also exhibit a wide array of biological activities (*e.g.*, anticancer, antioxidant; Pilkington & Barker, 2015).

In this work, we report the synthesis and the structure of the coordination properties of 1,4-benzodioxane 2-carboxylic acid toward calcium carbonate to afford the title compound $Ca(C_9H_7O_4)_2(H_2O)_4$.

The crystal structure of the title compound has monoclinic symmetry with half a molecule in the asymmetric unit, the other half being generated by a crystallographic inversion center. The calcium ion is bonded to four aqua ligands and two 1,4-benzo-dioxane 2-carboxylate ligands, whose carboxylate groups link to the central atom in

Table 1	
Hydrogen-bond geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H5A\cdots O1^{i}$	0.84(2)	1.96 (2)	2.800 (3)	178 (4)
$O5-H5B\cdots O4^{ii}$	0.84 (3)	2.07 (3)	2.828 (3)	149 (4)
$O6-H6A\cdots O2^{iii}$	0.83 (3)	1.93 (2)	2.707 (3)	155 (3)
$O6-H6B\cdots O2^{i}$	0.84(3)	1.88 (4)	2.715 (3)	176 (3)
$C2-H2\cdots O2^i$	1.00	2.53	3.379 (4)	143
$C6-H6\cdots O3^{iv}$	0.95	2.54	3.357 (4)	145

Symmetry codes: (i) x - 1, y, z; (ii) x, y, z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

monodentate mode (Fig. 1). The Ca1-O1, Ca1-O5, and Ca1-O6 bond lengths are 2.304 (2), 2.358 (2) and 2.317 (2) Å, respectively. The dioxane ring adopts a half-chair conformation with the pendant carboxylate group in an axial orientation. In the arbitrarily chosen asymmetric unit, C2 has an *R* configuration but crystal symmetry generates a racemic mixture.

In the crystal, $O-H\cdots O$ hydrogen bonds link the molecules into (010) sheets with the acceptor O atoms being parts of carboxylate groups (O1 and O2) and the dioxane ring (O4) and the packing is consolidated by weak $C-H\cdots O$ interactions (Fig. 2, Table 1).

Synthesis and crystallization

In a 100 mL two-necked flask, anhydrous CaCO₃ (0.0100 g, 0.100 mmol) was dissolved in deionized water (20 mL) by heating to 338 K, and a solution of 1,4-benzodioxane-2-carboxylic acid (0.0560 g, 0.200 mmol) dissolved in distilled water (10 mL) was added dropwise at 353 K. The reaction mixture was refluxed for 2 h and then concentrated under vacuum to 10 mL. The precipitate obtained upon cooling overnight was filtered off and washed with cold distilled water. Colorless crystals suitable for X-ray analysis were grown from a warm water–methanol mixed solvent mixture (1:1) at room temperature. Yield: 0.0362 g (55%), m.p. 501–505 K. FTIR data (KBr, cm⁻¹): 3600 and 3000 (*br*, *m*); 3568 (*m*); 1330 (*m*); 879 (*m*); 833 (*s*); 767 (*s*); 752 (*s*); 654 (*m*); 569 (*m*); 545 (*w*); 476

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are generated by the symmetry operation 1 - x, 1 - y, 2 - z.

Experimental details.	
Crystal data	
Chemical formula	$[Ca(C_9H_7O_4)_2(H_2O)_4]$
M _r	470.44
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.3477 (4), 26.6084 (18), 7.7367 (5)
β (°)	106.715 (2)
$V(Å^3)$	1054.37 (13)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.36
Crystal size (mm)	$0.35 \times 0.25 \times 0.15$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan (SADABS; Bruker, 2015)
T_{\min}, T_{\max}	0.661, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32373, 2384, 2242
R _{int}	0.036
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.647
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.133, 1.39
No. of reflections	2384
No. of parameters	158
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.42, -0.43

Computer programs: *APEX3* and *SAINT* (Bruker, 2015), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2020) and *publCIF* (Westrip, 2010).

(*m*). ¹H NMR (400 MHz, mix 1:1 D₂O: CD₄O, 298 K): δ 6.87– 6.99 (*s*, 4H), 4.82 (*dd*, 1H), 4.35 p.p.m. (*qd*, 2H). ¹³C NMR (400 MHz, 1:1 mix D₂O: CD₄O, 298 K): δ 176, 143, 142, 123, 122, 117, 115, 73.5, 66 p.p.m. The ¹H NMR and ¹³C NMR spectra for the title compound are included in the supporting information.

Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

Packing of the molecules of the title compound. $O{-}H{\cdots}O$ and $C{-}H{\cdots}O$ hydrogen bonds are shown as green dashed lines.

Acknowledgements

Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica are acknowledged for funding the purchase of a D8 Venture SC XRD. CELEQ is thanked for supporting liquid nitrogen for the X-ray measurements.

Funding information

Funding for this research was provided by: Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica; Escuela de Química, Universidad de Costa Rica; Vicerrectoría de Investigación y Posgrado, Universidad Autónoma de Chiriquí, Panamá (grant No. 1.87-205-100-2016-23-i01).

References

Antus, S., Gottsegen, A., Kajtár, J., Kovács, T., Tóth, T. S. & Wagner, H. (1993). *Tetrahedron Asymmetry*, **4**, 339–344.

- Bruker (2015). *APEX3*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ennis, M. D. & Old, D. W. (1992). Tetrahedron Lett. 33, 6283-6286.
- Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B., Mallesha, L. & Mohana, K. N. (2009). J. Chem. Crystallogr. 39, 453–457.
- Khouili, M., Pujol, M. D., Solans, X., Font-Bardia, M., Souizi, A., Coudert, G. & Guillaumet, G. (1999). Acta Cryst. C55, 387–389.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Nelson, W. L., Powell, M. L. & Dyer, D. C. (1979). J. Med. Chem. 22, 1125–1127.
- Nelson, W. L., Wennerstrom, J. E., Dyer, D. C. & Engel, M. (1977). J. Med. Chem. 20, 880–885.
- Pigini, M., Brasili, L., Giannella, M., Giardinà, D., Gulini, U., Quaglia, W. & Melchiorre, C. (1988). J. Med. Chem. 31, 2300–2304.
- Pilkington, L. I. & Barker, D. (2015). Nat. Prod. Rep. 32, 1369–1388.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2020). **5**, x201092 [https://doi.org/10.1107/S2414314620010925]

Tetraaquabis(2,3-dihydro-1,4-benzodioxine-2-carboxylato)calcium(II)

F(000) = 492

 $\theta = 2.9 - 27.4^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 1.482 {\rm Mg m^{-3}}$

Block, clear light white

 $0.35 \times 0.25 \times 0.15 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9843 reflections

Esmit B. Camargo-Cortés, Mirna Acosta, Juan C. Martínez and Leslie W. Pineda

Tetraaquabis(2,3-dihydro-1,4-benzodioxine-2-carboxylato)calcium(II)

Crystal data

 $[Ca(C_9H_7O_4)_2(H_2O)_4]$ $M_r = 470.44$ Monoclinic, $P2_1/n$ a = 5.3477 (4) Å*b* = 26.6084 (18) Å c = 7.7367 (5) Å $\beta = 106.715 \ (2)^{\circ}$ $V = 1054.37 (13) \text{ Å}^3$ Z = 2

Data collection

Bruker D8 Venture	32373 measured reflections
diffractometer	2384 independent reflections
Mirrors monochromator	2242 reflections with $I > 2\sigma(I)$
Detector resolution: 10.4167 pixels mm ⁻¹	$R_{\rm int} = 0.036$
ω scans	$\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Bruker, 2015)	$k = -34 \rightarrow 34$
$T_{\min} = 0.661, \ T_{\max} = 0.746$	$l = -10 \longrightarrow 8$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: mixed
$wR(F^2) = 0.133$	H atoms treated by a mixture of independent
S = 1.39	and constrained refinement
2384 reflections	$w = 1/[\sigma^2(F_o^2) + 3.3804P]$
158 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.42 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cal	0.5	0.5	1.0	0.0115 (2)
01	0.6722 (4)	0.55435 (8)	0.8323 (3)	0.0144 (4)
O2	0.8347 (4)	0.54948 (9)	0.5982 (3)	0.0164 (5)
03	0.5527 (5)	0.66992 (9)	0.6702 (3)	0.0199 (5)
04	0.4402 (4)	0.60021 (8)	0.3776 (3)	0.0144 (4)
05	0.2000 (4)	0.56223 (9)	1.0277 (3)	0.0167 (5)
H5A	0.041 (3)	0.5599 (16)	0.972 (4)	0.030 (12)*
H5B	0.210 (7)	0.5750 (15)	1.129 (3)	0.033 (12)*
O6	0.1782 (4)	0.47510 (9)	0.7438 (3)	0.0158 (5)
H6A	0.208 (8)	0.4613 (13)	0.655 (3)	0.028 (12)*
H6B	0.070 (7)	0.4981 (12)	0.703 (5)	0.043 (14)*
C1	0.6624 (6)	0.56196 (11)	0.6687 (4)	0.0116 (6)
C2	0.4144 (6)	0.58769 (12)	0.5516 (4)	0.0121 (6)
H2	0.2671	0.5632	0.5335	0.015*
C3	0.3443 (6)	0.63398 (12)	0.6413 (5)	0.0171 (6)
H3A	0.1807	0.6488	0.5636	0.021*
H3B	0.316	0.6247	0.7582	0.021*
C4	0.6346 (6)	0.67786 (12)	0.5198 (4)	0.0160 (6)
C5	0.7822 (7)	0.72053 (13)	0.5151 (5)	0.0226 (7)
H5	0.8188	0.7437	0.6124	0.027*
C6	0.8762 (7)	0.72926 (13)	0.3682 (5)	0.0261 (8)
H6	0.9784	0.7583	0.3656	0.031*
C7	0.8210 (7)	0.69567 (14)	0.2255 (5)	0.0251 (8)
H7	0.8838	0.702	0.1246	0.03*
C8	0.6745 (6)	0.65272 (13)	0.2289 (4)	0.0191 (7)
H8	0.6373	0.6297	0.1311	0.023*
С9	0.5828 (6)	0.64388 (11)	0.3781 (4)	0.0129 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cal	0.0075 (4)	0.0198 (4)	0.0070 (4)	0.0002 (3)	0.0018 (3)	0.0016 (3)
01	0.0118 (10)	0.0243 (12)	0.0078 (10)	0.0001 (8)	0.0037 (8)	0.0026 (8)
O2	0.0128 (10)	0.0270 (12)	0.0100 (10)	0.0058 (9)	0.0041 (8)	0.0011 (9)
O3	0.0215 (12)	0.0206 (12)	0.0194 (12)	-0.0010 (9)	0.0089 (9)	-0.0046 (9)
O4	0.0146 (10)	0.0181 (11)	0.0091 (10)	-0.0028 (8)	0.0013 (8)	0.0012 (8)
05	0.0087 (10)	0.0279 (12)	0.0125 (11)	0.0006 (9)	0.0015 (8)	-0.0042 (9)
06	0.0144 (11)	0.0227 (12)	0.0095 (10)	0.0042 (9)	0.0022 (8)	-0.0015 (9)
C1	0.0105 (13)	0.0133 (13)	0.0107 (13)	-0.0024 (10)	0.0025 (11)	-0.0008 (10)
C2	0.0080 (13)	0.0196 (15)	0.0090 (13)	-0.0004 (11)	0.0027 (10)	0.0020 (11)
C3	0.0113 (14)	0.0227 (16)	0.0209 (16)	0.0027 (12)	0.0103 (12)	0.0029 (13)
C4	0.0125 (14)	0.0164 (15)	0.0179 (15)	0.0035 (11)	0.0023 (12)	0.0026 (12)
C5	0.0173 (16)	0.0154 (15)	0.0330 (19)	0.0005 (12)	0.0039 (14)	0.0005 (14)
C6	0.0172 (17)	0.0210 (17)	0.038 (2)	-0.0025 (13)	0.0051 (15)	0.0121 (15)
C7	0.0187 (16)	0.0316 (19)	0.0244 (18)	0.0005 (14)	0.0053 (14)	0.0144 (15)

data reports

C8	0.0182 (16)	0.0249 (17)	0.0124 (15)	0.0016 (13)	0.0016 (12)	0.0059 (12)
C9	0.0077 (13)	0.0177 (15)	0.0141 (14)	0.0025 (11)	0.0041 (11)	0.0042 (11)

Geometric parameters (Å, °)

Ca1—O1 ⁱ	2.304 (2)	O6—H6B	0.839 (10)	
Ca1—O1	2.304 (2)	C1—C2	1.535 (4)	
Ca1—O6 ⁱ	2.317 (2)	C2—C3	1.513 (4)	
Ca1—O6	2.317 (2)	C2—H2	1.0	
Ca1—O5 ⁱ	2.358 (2)	С3—НЗА	0.99	
Ca1—O5	2.358 (2)	C3—H3B	0.99	
Ca1—H6B	2.74 (4)	C4—C9	1.386 (4)	
01—C1	1.268 (4)	C4—C5	1.389 (5)	
O2—C1	1.243 (4)	C5—C6	1.388 (5)	
O3—C4	1.372 (4)	С5—Н5	0.95	
O3—C3	1.437 (4)	C6—C7	1.385 (6)	
O4—C9	1.389 (4)	С6—Н6	0.95	
O4—C2	1.432 (3)	C7—C8	1.390 (5)	
O5—H5A	0.838 (10)	С7—Н7	0.95	
O5—H5B	0.838 (10)	C8—C9	1.397 (4)	
O6—H6A	0.837 (10)	C8—H8	0.95	
O1 ⁱ —Ca1—O1	180.0	O1—C1—C2	116.1 (3)	
O1 ⁱ —Ca1—O6 ⁱ	90.95 (8)	O4—C2—C3	110.2 (2)	
O1—Ca1—O6 ⁱ	89.05 (8)	O4—C2—C1	111.0 (2)	
O1 ⁱ —Ca1—O6	89.05 (8)	C3—C2—C1	112.3 (2)	
O1—Ca1—O6	90.95 (8)	O4—C2—H2	107.7	
O6 ⁱ —Ca1—O6	180.00 (10)	С3—С2—Н2	107.7	
O1 ⁱ —Ca1—O5 ⁱ	90.17 (8)	C1—C2—H2	107.7	
O1—Ca1—O5 ⁱ	89.83 (8)	O3—C3—C2	109.3 (2)	
O6 ⁱ —Ca1—O5 ⁱ	85.49 (8)	O3—C3—H3A	109.8	
O6—Ca1—O5 ⁱ	94.51 (8)	С2—С3—НЗА	109.8	
O1 ⁱ —Ca1—O5	89.83 (8)	O3—C3—H3B	109.8	
O1—Ca1—O5	90.17 (8)	С2—С3—Н3В	109.8	
O6 ⁱ —Ca1—O5	94.51 (8)	НЗА—СЗ—НЗВ	108.3	
O6—Ca1—O5	85.49 (8)	O3—C4—C9	122.0 (3)	
O5 ⁱ —Ca1—O5	180.0	O3—C4—C5	118.1 (3)	
O1 ⁱ —Ca1—H6B	94.9 (10)	C9—C4—C5	119.9 (3)	
O1—Ca1—H6B	85.1 (9)	C6—C5—C4	120.0 (3)	
O6 ⁱ —Ca1—H6B	163.5 (6)	С6—С5—Н5	120.0	
O6—Ca1—H6B	16.5 (6)	C4—C5—H5	120.0	
O5 ⁱ —Ca1—H6B	109.8 (6)	C7—C6—C5	120.0 (3)	
O5—Ca1—H6B	70.2 (6)	С7—С6—Н6	120.0	
C1	138.9 (2)	С5—С6—Н6	120.0	
C4—O3—C3	113.1 (2)	C6—C7—C8	120.5 (3)	
C9—O4—C2	113.2 (2)	C6—C7—H7	119.7	
Ca1—O5—H5A	121 (3)	C8—C7—H7	119.7	
Ca1—O5—H5B	120 (3)	C7—C8—C9	119.2 (3)	

H5A—O5—H5B	107 (2)	С7—С8—Н8	120.4
Ca1—O6—H6A	124 (3)	С9—С8—Н8	120.4
Ca1—O6—H6B	112 (3)	C4—C9—O4	122.1 (3)
H6A—O6—H6B	106 (2)	C4—C9—C8	120.4 (3)
O2—C1—O1	124.9 (3)	O4—C9—C8	117.5 (3)
O2—C1—C2	118.9 (3)		
$C_{21} = 01 = C_{11} = 02$	-1022(4)	03-C4-C5-C6	178.0 (3)
Ca1 - O1 - C1 - C2	76.5 (4)	C9-C4-C5-C6	0.4(5)
C9—O4—C2—C3	45.0 (3)	C4—C5—C6—C7	0.6 (5)
C9—O4—C2—C1	-79.9 (3)	C5—C6—C7—C8	-0.8(5)
O2—C1—C2—O4	-8.8 (4)	C6—C7—C8—C9	0.2 (5)
O1—C1—C2—O4	172.4 (2)	O3—C4—C9—O4	1.4 (5)
O2—C1—C2—C3	-132.6 (3)	C5—C4—C9—O4	178.9 (3)
O1—C1—C2—C3	48.5 (4)	O3—C4—C9—C8	-178.6 (3)
C4—O3—C3—C2	48.5 (3)	C5—C4—C9—C8	-1.1 (5)
O4—C2—C3—O3	-63.0 (3)	C2—O4—C9—C4	-15.5 (4)
C1—C2—C3—O3	61.3 (3)	C2—O4—C9—C8	164.4 (3)
C3—O3—C4—C9	-19.4 (4)	C7—C8—C9—C4	0.8 (5)
C3—O3—C4—C5	163.1 (3)	С7—С8—С9—О4	-179.1 (3)

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O5—H5A···O1 ⁱⁱ	0.84 (2)	1.96 (2)	2.800 (3)	178 (4)
O5—H5 <i>B</i> ···O4 ⁱⁱⁱ	0.84 (3)	2.07 (3)	2.828 (3)	149 (4)
$O6-H6A\cdots O2^{iv}$	0.83 (3)	1.93 (2)	2.707 (3)	155 (3)
O6—H6 <i>B</i> ···O2 ⁱⁱ	0.84 (3)	1.88 (4)	2.715 (3)	176 (3)
C2—H2···O2 ⁱⁱ	1.00	2.53	3.379 (4)	143
C6—H6…O3 ^v	0.95	2.54	3.357 (4)	145

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) *x*, *y*, *z*+1; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*+1/2, -*y*+3/2, *z*-1/2.