ISSN 2414-3146

Received 17 June 2020 Accepted 29 July 2020

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; racemate; platinum; metallic complex.

CCDC reference: 2020002

Structural data: full structural data are available from iucrdata.iucr.org

data reports

[2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl- $\kappa^2 P, P'$]dichloridoplatinum(II) acetonitrile trisolvate

Jason D. Braun, Guneet Uppal and David E. Herbert*

Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada. *Correspondence e-mail: david.herbert@umanitoba.ca

The crystal structure (150 K) of the racemic title compound, $[PtCl_2(C_{44}H_{32}P_2)]$ -3CH₃CN, has been determined. The asymmetric unit comprises a single molecule of the title compound co-crystallized with three acetonitrile solvent molecules. Four molecules are observed in the unit cell, with *R* and *S* enantiomers present in a 2:2 ratio. Evidence of intramolecular π -stacking is observed with no discernable intermolecular interactions.

Structure description

The increasing demand for chiral compounds in the pharmaceutical, agrochemical and food industries has driven the development of chiral ligands and coordination complexes, which can perform asymmetric catalysis to yield desirable organic molecules with high enantioselectivities (Novori, 1994). Popular design motifs for chiral ligands are those that incorporate an atropisomeric backbone featuring C_2 symmetry (Genet *et al.*, 2014). 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl (BINAP, Fig. 1), first developed by Noyori and Takaya in 1980 (Miyashita et al., 1980), fits this brief. In the decades since its appearance in the literature, BINAP derivatives have been used to construct a wide variety of coordination complexes, typically involving late transition metals (Misra et al., 2017). Palladium complexes of BINAP have been historically amongst the most common (Pereira et al., 2013). They are exceptionally popular due to their successful and versatile application as catalysts in a variety of organic reactions such as the enantioselective benzoylation of alcohols (Iwata et al., 2002) and asymmetric alkylations (Guerrero-Ríos & Martin, 2014). Although less common than complexes of the second-row metal Pd, atropisomers of (BINAP)PtCl₂ (Fig. 2) have found use in catalytic reactions such as enantioselective Baeyer-Villiger oxidations of cyclic ketones with hydrogen peroxide (Strukul et al., 1997) and as precatalysts for asymmetric carbonyl-ene reactions (Doherty et al., 2006). Enantiomeric complexes of the formula L_2 PtCl₂ including (BINAP)PtCl₂

Figure 2 Atropisomers of (BINAP)PtCl2.

have also been examined for their cytotoxic activity against cancer cell lines and their ability to bind to the human telomeric sequence folded in the G-quadruplex structure (Bombard *et al.*, 2010). There is therefore significant interest in elucidating the solid-state structures of these types of compounds to help guide future design strategies appropriate for particular applications.

While the structure of $\{(R)$ -BINAP}PtCl₂ has been described as a dichloromethane solvate in the orthorhombic space group $P2_12_12_1$ (Doherty *et al.*, 2006), the corresponding racemate (*rac*BINAP)PtCl₂ has yet to be structurally char-

Solid-state structure of (BINAP)PtCl₂ showing (*a*) fully atom labels of the *R* enantiomer and (*b*) side-on views of both *R* and S atropisomers present the crystal structure. Displacement ellipsoids are shown at the 50% probability. Hydrogen atoms and co-crystallized acetonitrile solvent molecules are omitted for clarity.

Table 1			
Selected	geometric parameters	(Å,	°).

Selected geometric parameters (11,).						
Pt1-Cl1	2.3518 (8)	P1-Pt1	2.2447 (8)			
Pt1-Cl2	2.3536 (8)	P2-Pt1	2.2422 (8)			
Cl1-Pt1-Cl2	87.44 (3)	P2-Pt1-Cl1	170.91 (3)			
P1-Pt1-Cl1	90.31 (3)	P2-Pt1-Cl2	90.62 (3)			
P1-Pt1-Cl2	171.33 (3)	P2-Pt1-P1	92.87 (3)			

acterized. We report here the solid-state crystal structure of (racBINAP)PtCl₂ determined via single-crystal X-ray diffraction and discuss its structural properties. The solid-state structure of [racBINAP]PtCl₂ obtained by modelling singlecrystal X-ray diffraction data is shown in Fig. 3 with selected bonds and angles in Table 1. The compound crystallizes in the monoclinic space group $P2_1/c$ with three acetonitrile solvent molecules present within the asymmetric unit. The complex adopts a slightly distorted square-planar coordination geometry about the central Pt^{II} atom with *trans* atoms situated at bond angles of 171°, resulting in a τ_4 value of 0.12. The bidentate BINAP ligand coordinates to Pt with a bite angle (P1-Pt1-P2) of 92.87 (3)°, consistent with typical literature values of approximately 93° (Birkholz et al., 2009). Evidence of intramolecular π stacking between naphthyl and phenyl substituents is observed, generating close contacts ranging from 3.2 to 4.0 Å. Fig. 4 shows the distances between calculated centroids of two of the phosphorus phenyl substituents and the nearest six membered carbon ring of a napthyl unit.

Compared to the Pd analogue (Véron *et al.*, 2013), the Pt– Cl bond lengths [Pt1–Cl1 = 2.3518 (8) Å; Pt1–Cl2 = 2.3536 (8) Å]) are only around 0.01 Å longer. The two Pt–Cl distances are also statistically indistinguishable, implying similar orbital overlap between the Pt^{II} metal centre and the

Figure 4

View showing the close intramolecular contacts between the naphthyl and phenyl rings in the title compound.

 $[PtCl_2(C_{44}H_{32}P_2)]\cdot 3C_2H_3N$

strong *trans* phosphine donors. An only slightly acute Cl1—Pt1—Cl2 angle of 87.44 (3)° is observed, indicating slight steric repulsion from the diphenylphosphine arms. Angles closer to the ideal of 90° are seen between *cis*-disposed phosphorus and chlorine atoms. The bond lengths involving the Pt metal centre are similar to those in the enantiopure (*R*-BINAP)PtCl₂ (Doherty *et al.*, 2006); however, deviations are observed in several of the angles.

In a single unit cell, four molecules can be found (Fig. 5), with two of each enantiomer present. Interestingly, no significant intermolecular interactions are present within the sum of the van der Waals radii. The closest intermolecular interaction stems from hydrogen bonds between neighbouring acetonitrile solvent molecules. These interactions are all greater than 3.40 Å and so were not investigated any further. Distances of 3.30 to 3.70 Å can be observed between naphthyl carbon atoms of neighbouring complexes; however, the arrangement is not stacked and so not likely to be significant.

Synthesis and crystallization

Crystals of (racBINAP)PtCl₂ were obtained as a side-product from a reaction mixture of (COD)PtCl₂ and a tridentate, diarylamido-N,N-phenanthridine-based ligand (Mandapati *et al.*, 2019). BINAP was used to construct this ligand *via* a Pdcross coupling reaction and was not completely removed from the proligand before metalation. Crystal-structure data were collected from a multi-faceted crystal of suitable size and quality selected from a representative sample of crystals of the same habit using an optical microscope.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	
$M_{\rm r}$	
Crustel sustem space group	

M _r	1011.79
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.3681 (4), 12.5001 (4),
	30.7944 (11)
β (°)	96.439 (2)
$V(A^3)$	4348.4 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	3.46
Crystal size (mm)	$0.39 \times 0.19 \times 0.13$
Data collection	
Diffractometer	Bruker D8 Quest ECO CMOS
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.553, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	142092, 13302, 11205
R _{int}	0.079
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.715
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.072, 1.09
No. of reflections	13302
No. of parameters	526
No. of restraints	18
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.25, -1.49

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *OLEX2* (Dolomanov *et al.*, 2009) and *PLATON* (Spek, 2020).

Funding information

The following sources of funding are gratefully acknowledged: the Natural Sciences Engineering Research Council of Canada for a Discovery Grant to DEH (RGPIN-2014–03733) and a USRA to GU; the Canadian Foundation for Innovation

Figure 5

A projection showing the unit-cell contents and packing of (*rac*BINAP)PtCl₂. Displacement ellipsoids are shown at 50% probability level. Hydrogen atoms are omitted for clarity.

and Research Manitoba for an award in support of an X-ray diffractometer (CFI No. 32146); the University of Manitoba for a UMGF PhD Fellowship (JDB).

References

- Birkholz (née Gensow), M., Freixa, Z. & van Leeuwen, P. W. N. M. (2009). *Chem. Soc. Rev.* **38**, 1099–1118.
- Bombard, S., Gariboldi, M. B., Monti, E., Gabano, E., Gaviglio, L.,
- Ravera, M. & Osella, D. (2010). J. Biol. Inorg. Chem. 15, 841–850. Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin,
- USA. Doherty, S., Knight, J. G., Smyth, C. H., Harrington, R. W. & Clegg, W. (2006). J. Org. Chem. **71**, 9751–9764.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Genet, J.-P., Ayad, T. & Ratovelomanana-Vidal, V. (2014). Chem. Rev. 114, 2824–2880.
- Guerrero-Ríos, I. & Martin, E. (2014). Dalton Trans. 43, 7533-7539.

- Iwata, T., Miyake, Y., Nishibayashi, Y. & Uemura, S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1548–1554.
- Mandapati, P., Braun, J. D., Killeen, C., Davis, R. L., Williams, J. A. G. & Herbert, D. E. (2019). *Inorg. Chem.* 58, 14808–14817.
- Misra, A., Dwivedi, J. & Kishore, D. (2017). Synth. Commun. 47, 497– 535.
- Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932–7934.
- Noyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: Wiley.
- Pereira, M. M., Calvete, M. J. F., Carrilho, R. M. B. & Abreu, A. R. (2013). Chem. Soc. Rev. 42, 6990–7027.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Strukul, G., Varagnolo, A. & Pinna, F. (1997). J. Mol. Catal. A Chem. 117, 413–423.
- Véron, A. C., Felber, M., Blacque, O. & Spingler, B. (2013). Polyhedron, 52, 102–105.

full crystallographic data

IUCrData (2020). **5**, x201048 [https://doi.org/10.1107/S2414314620010482]

[2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl- $\kappa^2 P, P'$]dichloridoplatinum(II) acetonitrile trisolvate

F(000) = 2016

 $\theta = 2.4 - 30.5^{\circ}$

 $\mu = 3.46 \text{ mm}^{-1}$

Block, orange

 $0.39 \times 0.19 \times 0.13 \text{ mm}$

T = 150 K

 $D_{\rm x} = 1.546 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9175 reflections

Jason D. Braun, Guneet Uppal and David E. Herbert

 $[2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl-\kappa^2 P, P']$ dichloridoplatinum(II) acetonitrile trisolvate

Crystal data

 $[PtCl_{2}(C_{44}H_{32}P_{2})] \cdot 3C_{2}H_{3}N$ $M_{r} = 1011.79$ Monoclinic, $P2_{1}/c$ a = 11.3681 (4) Å b = 12.5001 (4) Å c = 30.7944 (11) Å $\beta = 96.439$ (2)° V = 4348.4 (3) Å³ Z = 4

Data collection

Bruker D8 Quest ECO CMOS	13302 independent reflections
diffractometer	11205 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus tube	$R_{\rm int} = 0.079$
φ and ω scans	$\theta_{\rm max} = 30.6^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(SADABS; Bruker, 2016)	$k = -17 \rightarrow 17$
$T_{\min} = 0.553, T_{\max} = 0.746$	$l = -44 \rightarrow 44$
142092 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.072$	$w = 1/[\sigma^2(F_o^2) + (0.0143P)^2 + 16.231P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
13302 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
526 parameters	$\Delta \rho_{\rm max} = 1.25 \text{ e} \text{ Å}^{-3}$
18 restraints	$\Delta \rho_{\min} = -1.49 \text{ e} \text{ Å}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A single-crystal was mounted on a MiTiGen loop and data collection was carried out in a cold stream of nitrogen. All diffractometer manipulations were carried out using Bruker *APEX3* software (Bruker-AXS, 2016). Structure solution and refinement were carried out in the OLEX2 (Dolomanov *et al.*, 2009) program using *SHELXT* (Sheldrick, 2015*a*) and *SHELXL* (Sheldrick, 2015*b*) softwares. All hydrogen atoms within the structure were placed in geometrically idealized positions and were constrained to ride on their parent atoms (C–H = 0.95 Å). The absence of additional symmetry was confirmed using ADDSYM incorporated in the *PLATON* program (Spek, 2020). The presence of inter- or intramolecular hydrogen bonds was probed, but not observed below a limit of 3.40 Å with a D–H···A angle of less than 120° .

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2521 (3)	0.1586 (3)	0.40291 (10)	0.0175 (6)	
C2	0.2621 (3)	0.0859 (3)	0.43763 (11)	0.0218 (7)	
H2	0.302614	0.020146	0.435151	0.026*	
C3	0.2128 (3)	0.1098 (4)	0.47570 (12)	0.0309 (9)	
H3	0.220148	0.060652	0.499378	0.037*	
C4	0.1533 (3)	0.2046 (4)	0.47912 (13)	0.0367 (10)	
H4	0.119892	0.220626	0.505285	0.044*	
C5	0.1415 (3)	0.2765 (4)	0.44510 (14)	0.0350 (9)	
Н5	0.100082	0.341684	0.447939	0.042*	
C6	0.1902 (3)	0.2542 (3)	0.40638 (12)	0.0237 (7)	
H6	0.181422	0.303483	0.382742	0.028*	
C7	0.2479 (3)	0.0151 (3)	0.32864 (10)	0.0159 (6)	
C8	0.1587 (3)	-0.0380 (3)	0.34728 (12)	0.0231 (7)	
H8	0.135936	-0.014840	0.374495	0.028*	
C9	0.1026 (4)	-0.1259 (3)	0.32576 (13)	0.0305 (8)	
H9	0.041022	-0.161847	0.338345	0.037*	
C10	0.1359 (3)	-0.1609 (3)	0.28637 (13)	0.0272 (8)	
H10	0.098355	-0.221397	0.272208	0.033*	
C11	0.2243 (3)	-0.1073 (3)	0.26758 (11)	0.0228 (7)	
H11	0.247682	-0.131209	0.240550	0.027*	
C12	0.2784 (3)	-0.0190 (3)	0.28826 (10)	0.0182 (6)	
H12	0.337044	0.018842	0.274784	0.022*	
C13	0.4718 (3)	0.0833 (2)	0.37430 (9)	0.0123 (5)	
C14	0.5161 (3)	-0.0090 (2)	0.35467 (10)	0.0139 (6)	
H14	0.464981	-0.048898	0.334186	0.017*	
C15	0.6304 (3)	-0.0415 (2)	0.36460 (10)	0.0161 (6)	
H15	0.657915	-0.102753	0.350507	0.019*	
C16	0.7085 (3)	0.0145 (2)	0.39555 (10)	0.0147 (6)	
C17	0.8273 (3)	-0.0188 (3)	0.40605 (11)	0.0215 (7)	
H17	0.855246	-0.080496	0.392353	0.026*	
C18	0.9025 (3)	0.0369 (3)	0.43572 (12)	0.0247 (7)	
H18	0.981974	0.013862	0.442746	0.030*	
C19	0.8609 (3)	0.1288 (3)	0.45579 (11)	0.0232 (7)	
H19	0.913246	0.167801	0.476178	0.028*	
C20	0.7463 (3)	0.1628 (3)	0.44639 (10)	0.0176 (6)	
H20	0.720221	0.224811	0.460328	0.021*	
C21	0.6662 (3)	0.1061 (2)	0.41602 (10)	0.0140 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C22	0.5464 (3)	0.1407 (2)	0.40469 (9)	0.0123 (5)
C23	0.5052 (3)	0.2397 (2)	0.42572 (9)	0.0131 (5)
C24	0.4825 (3)	0.3333 (2)	0.40198 (9)	0.0128 (5)
C25	0.4400 (3)	0.4247 (2)	0.42271 (10)	0.0158 (6)
H25	0.426277	0.489099	0.406547	0.019*
C26	0.4186 (3)	0.4219 (3)	0.46534 (10)	0.0171 (6)
H26	0.387404	0.483429	0.478066	0.020*
C27	0.4419 (3)	0.3292 (2)	0.49086 (10)	0.0148 (6)
C28	0.4214 (3)	0.3262 (3)	0.53539 (10)	0.0195 (6)
H28	0.391311	0.387923	0.548380	0.023*
C29	0.4443 (3)	0.2361 (3)	0.55992 (10)	0.0219 (6)
H29	0.429616	0.234811	0.589678	0.026*
C30	0.4899 (3)	0.1448 (3)	0.54072 (10)	0.0199 (6)
H30	0.505993	0.082119	0.557782	0.024*
C31	0.5114 (3)	0.1453 (2)	0.49788 (10)	0.0162 (6)
H31	0.542657	0.083009	0.485726	0.019*
C32	0.4877 (3)	0.2373 (2)	0.47126 (9)	0.0128 (5)
C33	0.4989 (3)	0.4806 (3)	0.33082 (10)	0.0168 (6)
C34	0.3962 (3)	0.5418 (3)	0.33043 (11)	0.0203 (7)
H34	0.325124	0.509001	0.337272	0.024*
C35	0.3965 (4)	0.6497 (3)	0.32019 (11)	0.0252 (7)
H35	0.326574	0.691091	0.320763	0.030*
C36	0.4990 (4)	0.6970 (3)	0.30914 (12)	0.0307 (9)
H36	0.499050	0.770707	0.301582	0.037*
C37	0.6009 (4)	0.6378 (3)	0.30905 (13)	0.0302 (8)
H37	0.671299	0.670836	0.301692	0.036*
C38	0.6014 (3)	0.5294 (3)	0.31972 (12)	0.0236 (7)
H38	0.671870	0.488684	0.319405	0.028*
C39	0.6310(3)	0.2806 (2)	0.33394 (10)	0.0154 (6)
C40	0.6356 (3)	0.2005 (3)	0.30250 (10)	0.0174 (6)
H40	0.565041	0.177771	0.285560	0.021*
C41	0.7432 (3)	0.1544 (3)	0.29603 (12)	0.0245 (7)
H41	0.745961	0.099678	0.274747	0.029*
C42	0.8462 (3)	0.1873 (3)	0.32027 (13)	0.0265 (8)
H42	0.919463	0.154959	0.315777	0.032*
C43	0.8429 (3)	0.2678 (3)	0.35128 (12)	0.0257 (7)
H43	0.914178	0.291634	0.367440	0.031*
C44	0.7358 (3)	0.3132 (3)	0.35860 (11)	0.0207(7)
H44	0.733391	0.366573	0.380423	0.025*
C45	0.0714 (4)	0.5037 (4)	0.32714 (18)	0.0429 (11)
C46	0.0589 (4)	0.5036 (4)	0.28013 (17)	0.0473 (12)
H46A	0.122395	0.546344	0.269788	0.071*
H46B	-0.017963	0.534298	0.269059	0.071*
H46C	0.063717	0.429940	0.269533	0.071*
C47	0.8616 (4)	0.2521 (4)	0.56830 (15)	0.0408 (10)
C48	0.7545 (5)	0.3114 (6)	0.5712 (2)	0.0727 (19)
H48A	0.774248	0.385073	0.580191	0.109*
H48B	0.709346	0.277725	0.592839	0.109*
	0.,02010		0.07 - 007	0.107

H48C	0.706889	0.311867	0.542659	0.109*
C11	0.14268 (7)	0.21270 (7)	0.27128 (3)	0.02745 (19)
C12	0.34019 (8)	0.38528 (6)	0.24790 (2)	0.02091 (16)
N1	0.0830 (6)	0.5016 (5)	0.3642 (2)	0.0805 (17)
N2	0.9465 (5)	0.2073 (4)	0.56653 (16)	0.0643 (14)
P1	0.32310 (7)	0.13146 (6)	0.35451 (2)	0.01190 (14)
P2	0.49025 (7)	0.33817 (6)	0.34282 (2)	0.01222 (14)
Pt1	0.32836 (2)	0.26525 (2)	0.30614 (2)	0.01414 (3)
C51	0.8660 (10)	0.5704 (9)	0.4281 (4)	0.144 (3)
H51A	0.894116	0.636153	0.443150	0.216*
H51B	0.790640	0.584487	0.410230	0.216*
H51C	0.924592	0.546071	0.409218	0.216*
C52	0.8493 (11)	0.4896 (11)	0.4595 (5)	0.142 (3)
N3	0.8066 (10)	0.4370 (8)	0.4778 (4)	0.144 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0155 (14)	0.0225 (16)	0.0150 (14)	-0.0041 (12)	0.0049 (11)	-0.0059 (12)
C2	0.0181 (16)	0.0295 (18)	0.0180 (15)	-0.0067 (13)	0.0028 (12)	0.0005 (13)
C3	0.0261 (19)	0.053 (3)	0.0149 (16)	-0.0179 (17)	0.0061 (14)	-0.0020 (15)
C4	0.0241 (18)	0.066 (3)	0.0225 (18)	-0.0163 (19)	0.0125 (15)	-0.0214 (18)
C5	0.0227 (18)	0.045 (2)	0.039 (2)	-0.0012 (17)	0.0096 (16)	-0.0223 (19)
C6	0.0174 (15)	0.0272 (19)	0.0268 (17)	-0.0012 (13)	0.0036 (12)	-0.0075 (14)
C7	0.0163 (14)	0.0158 (15)	0.0148 (14)	-0.0016 (11)	-0.0016 (11)	0.0010 (11)
C8	0.0231 (17)	0.0245 (18)	0.0220 (16)	-0.0072 (13)	0.0038 (13)	-0.0031 (13)
C9	0.031 (2)	0.028 (2)	0.032 (2)	-0.0154 (16)	0.0050 (16)	-0.0027 (15)
C10	0.0298 (19)	0.0165 (16)	0.034 (2)	-0.0084 (14)	-0.0038 (15)	-0.0042 (14)
C11	0.0272 (18)	0.0200 (16)	0.0202 (16)	-0.0010 (13)	-0.0010 (13)	-0.0050 (13)
C12	0.0213 (16)	0.0164 (15)	0.0169 (15)	0.0004 (12)	0.0023 (12)	-0.0017 (11)
C13	0.0143 (13)	0.0108 (13)	0.0122 (13)	-0.0014 (10)	0.0030 (10)	0.0018 (10)
C14	0.0184 (15)	0.0116 (13)	0.0116 (13)	-0.0014 (11)	0.0017 (11)	-0.0012 (10)
C15	0.0203 (15)	0.0139 (14)	0.0147 (14)	0.0022 (11)	0.0042 (11)	-0.0017 (11)
C16	0.0140 (14)	0.0157 (14)	0.0152 (14)	0.0018 (11)	0.0045 (11)	0.0007 (11)
C17	0.0186 (16)	0.0241 (17)	0.0222 (16)	0.0047 (13)	0.0035 (13)	-0.0016 (13)
C18	0.0121 (15)	0.035 (2)	0.0271 (18)	0.0024 (13)	0.0014 (13)	0.0002 (15)
C19	0.0176 (16)	0.0303 (19)	0.0211 (16)	-0.0035 (13)	-0.0002 (13)	-0.0020 (13)
C20	0.0150 (14)	0.0200 (15)	0.0182 (15)	-0.0007 (12)	0.0032 (11)	-0.0015 (12)
C21	0.0138 (14)	0.0150 (14)	0.0134 (13)	-0.0017 (11)	0.0031 (11)	0.0010 (11)
C22	0.0153 (14)	0.0098 (13)	0.0124 (13)	-0.0026 (10)	0.0038 (10)	0.0004 (10)
C23	0.0143 (13)	0.0111 (13)	0.0141 (13)	-0.0011 (11)	0.0020 (10)	-0.0004 (10)
C24	0.0126 (13)	0.0125 (13)	0.0129 (13)	-0.0020 (10)	0.0005 (10)	-0.0012 (10)
C25	0.0176 (15)	0.0136 (14)	0.0159 (14)	0.0016 (11)	0.0008 (11)	0.0012 (11)
C26	0.0212 (16)	0.0140 (14)	0.0162 (14)	0.0022 (12)	0.0031 (12)	-0.0026 (11)
C27	0.0158 (14)	0.0146 (14)	0.0143 (14)	-0.0012 (11)	0.0034 (11)	-0.0025 (11)
C28	0.0240 (17)	0.0196 (16)	0.0161 (15)	-0.0012 (13)	0.0068 (12)	-0.0045 (12)
C29	0.0301 (17)	0.0230 (16)	0.0136 (13)	-0.0032 (14)	0.0061 (12)	-0.0017 (12)
C30	0.0286 (18)	0.0169 (15)	0.0144 (14)	-0.0003 (13)	0.0032 (13)	0.0026 (11)

C31	0.0195 (15)	0.0138 (14)	0.0154 (14)	-0.0007 (11)	0.0020 (11)	0.0002 (11)
C32	0.0135 (12)	0.0119 (13)	0.0129 (12)	-0.0012 (11)	0.0010 (10)	-0.0007 (10)
C33	0.0250 (16)	0.0147 (14)	0.0105 (13)	-0.0017 (12)	0.0009 (12)	0.0013 (10)
C34	0.0293 (18)	0.0139 (15)	0.0175 (15)	0.0008 (13)	0.0015 (13)	0.0026 (11)
C35	0.040 (2)	0.0167 (16)	0.0188 (16)	0.0063 (14)	0.0027 (14)	0.0001 (12)
C36	0.059 (3)	0.0129 (15)	0.0209 (17)	-0.0026 (16)	0.0075 (17)	0.0009 (13)
C37	0.043 (2)	0.0193 (17)	0.0300 (19)	-0.0100 (16)	0.0134 (17)	0.0004 (14)
C38	0.0307 (19)	0.0180 (16)	0.0238 (17)	-0.0045 (14)	0.0108 (14)	0.0023 (13)
C39	0.0167 (14)	0.0157 (15)	0.0142 (13)	-0.0010 (11)	0.0037 (11)	0.0025 (11)
C40	0.0206 (15)	0.0154 (14)	0.0172 (14)	-0.0013 (12)	0.0058 (12)	0.0018 (11)
C41	0.0281 (18)	0.0193 (17)	0.0284 (18)	0.0025 (14)	0.0134 (15)	0.0000 (13)
C42	0.0178 (16)	0.0291 (19)	0.0342 (19)	0.0051 (14)	0.0097 (14)	0.0091 (15)
C43	0.0167 (15)	0.0324 (18)	0.0283 (17)	-0.0045 (14)	0.0034 (13)	0.0076 (15)
C44	0.0190 (16)	0.0237 (17)	0.0195 (15)	-0.0051 (13)	0.0025 (12)	0.0009 (13)
C45	0.030 (2)	0.043 (3)	0.056 (3)	0.0023 (19)	0.006 (2)	-0.003 (2)
C46	0.036 (2)	0.048 (3)	0.054 (3)	0.010 (2)	-0.007 (2)	-0.002 (2)
C47	0.046 (3)	0.043 (3)	0.034 (2)	0.003 (2)	0.0074 (18)	-0.0024 (19)
C48	0.037 (3)	0.092 (5)	0.088 (5)	0.011 (3)	0.001 (3)	-0.031 (4)
Cl1	0.0199 (4)	0.0220 (4)	0.0371 (5)	-0.0016 (3)	-0.0112 (3)	0.0027 (3)
Cl2	0.0344 (4)	0.0152 (3)	0.0128 (3)	0.0019 (3)	0.0008 (3)	0.0034 (3)
N1	0.091 (5)	0.086 (4)	0.066 (4)	0.013 (3)	0.019 (3)	-0.001 (3)
N2	0.071 (3)	0.069 (3)	0.054 (3)	0.029 (3)	0.013 (2)	0.001 (2)
P1	0.0128 (3)	0.0113 (3)	0.0118 (3)	-0.0015 (3)	0.0020 (3)	-0.0003 (3)
P2	0.0151 (4)	0.0104 (3)	0.0114 (3)	-0.0009 (3)	0.0024 (3)	0.0009 (3)
Pt1	0.01585 (5)	0.01254 (5)	0.01380 (5)	0.00102 (5)	0.00066 (4)	0.00026 (4)
C51	0.144 (6)	0.130 (7)	0.170 (8)	-0.018 (5)	0.072 (4)	-0.085 (6)
C52	0.142 (6)	0.128 (7)	0.168 (8)	-0.018 (5)	0.071 (5)	-0.086 (6)
N3	0.145 (6)	0.130 (7)	0.170 (8)	-0.016 (5)	0.068 (4)	-0.085 (6)

Geometric parameters (Å, °)

C1—C2	1.398 (5)	C27—C32	1.423 (4)	
C1—C6	1.397 (5)	C28—H28	0.9500	
C1—P1	1.805 (3)	C28—C29	1.366 (5)	
С2—Н2	0.9500	C29—H29	0.9500	
C2—C3	1.387 (5)	C29—C30	1.410 (5)	
С3—Н3	0.9500	C30—H30	0.9500	
C3—C4	1.374 (6)	C30—C31	1.368 (4)	
C4—H4	0.9500	C31—H31	0.9500	
C4—C5	1.376 (7)	C31—C32	1.421 (4)	
С5—Н5	0.9500	C33—C34	1.395 (5)	
C5—C6	1.398 (5)	C33—C38	1.391 (5)	
С6—Н6	0.9500	C33—P2	1.824 (3)	
С7—С8	1.389 (5)	C34—H34	0.9500	
C7—C12	1.395 (4)	C34—C35	1.386 (5)	
C7—P1	1.825 (3)	С35—Н35	0.9500	
С8—Н8	0.9500	C35—C36	1.383 (6)	
С8—С9	1.399 (5)	C36—H36	0.9500	

С9—Н9	0.9500	C36—C37	1.375 (6)
C9—C10	1.381 (5)	С37—Н37	0.9500
C10—H10	0.9500	С37—С38	1.394 (5)
C10—C11	1.387 (5)	С38—Н38	0.9500
C11—H11	0.9500	C39—C40	1.397 (4)
C11—C12	1.383 (5)	C39—C44	1.399 (4)
С12—Н12	0.9500	C39—P2	1.803 (3)
C13—C14	1.421 (4)	C40—H40	0.9500
C13—C22	1.390 (4)	C40—C41	1.387 (5)
C13—P1	1.833 (3)	C41—H41	0.9500
C14—H14	0.9500	C41—C42	1.379 (5)
C14—C15	1.363 (4)	C42—H42	0.9500
С15—Н15	0.9500	C42—C43	1.390 (6)
C15—C16	1.413 (4)	C43—H43	0.9500
C16—C17	1.416 (4)	C43—C44	1.385 (5)
C16—C21	1.418 (4)	C44—H44	0.9500
С17—Н17	0.9500	C45—C46	1.438 (7)
C17—C18	1.369 (5)	C45—N1	1.134 (7)
C18—H18	0.9500	C46—H46A	0.9800
C18—C19	1.411 (5)	C46—H46B	0.9800
С19—Н19	0.9500	C46—H46C	0.9800
C19—C20	1.369 (5)	C47—C48	1.437 (7)
С20—Н20	0.9500	C47—N2	1.123 (6)
C20—C21	1.419 (4)	C48—H48A	0.9800
C21—C22	1.434 (4)	C48—H48B	0.9800
C22—C23	1.497 (4)	C48—H48C	0.9800
C23—C24	1.389 (4)	Pt1—C11	2.3518 (8)
C23—C32	1.439 (4)	Pt1—Cl2	2.3536 (8)
C24—C25	1.420 (4)	P1—Pt1	2.2447 (8)
C24—P2	1.835 (3)	P2—Pt1	2.2422 (8)
С25—Н25	0.9500	C51—H51A	0.9800
C25—C26	1.362 (4)	C51—H51B	0.9800
C26—H26	0.9500	C51—H51C	0.9800
C26—C27	1.408 (4)	C51—C52	1.426 (17)
C27—C28	1.417 (4)	C52—N3	1.023 (15)
C2—C1—P1	120.3 (3)	С30—С29—Н29	120.3
C6—C1—C2	119.7 (3)	С29—С30—Н30	119.5
C6—C1—P1	120.0 (3)	C31—C30—C29	121.0 (3)
C1—C2—H2	120.0	С31—С30—Н30	119.5
C3—C2—C1	120.1 (4)	C30—C31—H31	119.4
С3—С2—Н2	120.0	C30—C31—C32	121.1 (3)
С2—С3—Н3	120.0	C32—C31—H31	119.4
C4—C3—C2	119.9 (4)	C27—C32—C23	119.6 (3)
С4—С3—Н3	120.0	C31—C32—C23	122.8 (3)
C3—C4—H4	119.6	C31—C32—C27	117.6 (3)
C3—C4—C5	120.8 (3)	C34—C33—P2	118.2 (2)
C5—C4—H4	119.6	C38—C33—C34	118.8 (3)

C4—C5—H5	119.8	C38—C33—P2	122.9 (3)
C4—C5—C6	120.4 (4)	С33—С34—Н34	119.6
С6—С5—Н5	119.8	C35—C34—C33	120.8 (3)
C1—C6—C5	119.1 (4)	С35—С34—Н34	119.6
С1—С6—Н6	120.4	С34—С35—Н35	120.1
С5—С6—Н6	120.4	C36—C35—C34	119.7 (4)
C8-C7-C12	119.2 (3)	С36—С35—Н35	120.1
C8-C7-P1	121.9(3)	C35—C36—H36	119.9
C12-C7-P1	121.9(3) 118.8(2)	C_{37} $-C_{36}$ $-C_{35}$	120.2(3)
C7-C8-H8	120.2	C_{37} — C_{36} — H_{36}	119.9
C7 - C8 - C9	119.7 (3)	$C_{36} - C_{37} - H_{37}$	119.9
C9-C8-H8	120.2	$C_{36} - C_{37} - C_{38}$	120.2(4)
$C_8 = C_9 = H_9$	110.2	C_{38} C_{37} H_{37}	110.0
$C_{10} - C_{9} - C_{8}$	120.6 (3)	C_{33} C_{38} C_{37}	120.2(4)
C_{10} C_{9} H_{9}	110.7	C_{33} C_{38} H_{38}	110.0
$C_{10} - C_{10} - H_{10}$	120.1	C37_C38_H38	119.9
C_{9} C_{10} C_{11}	120.1 110 7 (3)	$C_{37} - C_{38} - C_{44}$	119.9 110.3(3)
C_{1}	119.7 (5)	$C_{40} = C_{39} = C_{44}$	119.5(3)
$C_{11} = C_{10} = H_{10}$	120.1	C40 - C39 - F2	119.0(2)
	120.0	$C_{44} = C_{59} = F_2$	121.1(2)
C12 $C11$ $U11$	119.9 (5)	$C_{39} - C_{40} - H_{40}$	120.0
	120.0	C41 - C40 - C39	120.0 (3)
C/-C12-H12	119.0	C40 = C41 = U41	120.0
CII = CI2 = C/	120.8 (3)	C40 - C41 - H41	119.8
CII—CI2—HI2	119.6	C42 - C41 - C40	120.5 (3)
CI4—CI3—PI	118.9 (2)	C42—C41—H41	119.8
C22—C13—C14	119.1 (3)	C41—C42—H42	120.0
C22—C13—P1	121.7 (2)	C41—C42—C43	120.1 (3)
C13—C14—H14	119.3	C43—C42—H42	120.0
C15—C14—C13	121.4 (3)	C42—C43—H43	120.0
C15—C14—H14	119.3	C44—C43—C42	120.0 (3)
C14—C15—H15	119.5	C44—C43—H43	120.0
C14—C15—C16	121.0 (3)	C39—C44—H44	119.9
C16—C15—H15	119.5	C43—C44—C39	120.2 (3)
C15—C16—C17	121.3 (3)	C43—C44—H44	119.9
C15—C16—C21	118.8 (3)	N1—C45—C46	178.3 (6)
C17—C16—C21	119.9 (3)	C45—C46—H46A	109.5
C16—C17—H17	119.6	C45—C46—H46B	109.5
C18—C17—C16	120.7 (3)	C45—C46—H46C	109.5
C18—C17—H17	119.6	H46A—C46—H46B	109.5
C17—C18—H18	120.3	H46A—C46—H46C	109.5
C17—C18—C19	119.5 (3)	H46B—C46—H46C	109.5
C19—C18—H18	120.3	N2—C47—C48	178.6 (6)
C18—C19—H19	119.4	C47—C48—H48A	109.5
C20—C19—C18	121.2 (3)	C47—C48—H48B	109.5
С20—С19—Н19	119.4	C47—C48—H48C	109.5
С19—С20—Н20	119.7	H48A—C48—H48B	109.5
C19—C20—C21	120.6 (3)	H48A—C48—H48C	109.5
C21—C20—H20	119.7	H48B—C48—H48C	109.5

C16—C21—C20	118.2 (3)	C1—P1—C7	106.21 (15)
C16—C21—C22	119.7 (3)	C1—P1—C13	105.57 (14)
C20—C21—C22	122.1 (3)	C1—P1—Pt1	117.11 (12)
C13—C22—C21	120.0 (3)	C7—P1—C13	104.64 (14)
C13—C22—C23	121.4 (3)	C7—P1—Pt1	110.51 (10)
C21—C22—C23	118.6 (3)	C13—P1—Pt1	111.90 (10)
C24—C23—C22	121.2 (3)	C24—P2—Pt1	111.01 (10)
C24—C23—C32	119.5 (3)	C33—P2—C24	104.08 (14)
C32—C23—C22	119.3 (3)	C33—P2—Pt1	110.78 (11)
C23—C24—C25	119.6 (3)	C39—P2—C24	106.24 (14)
C23—C24—P2	121.6 (2)	C39—P2—C33	106.87 (15)
C25—C24—P2	118.5 (2)	C39—P2—Pt1	116.96 (11)
C24—C25—H25	119.4	Cl1—Pt1—Cl2	87.44 (3)
C26—C25—C24	121.3 (3)	P1—Pt1—C11	90.31 (3)
C26—C25—H25	119.4	P1—Pt1—Cl2	171.33 (3)
С25—С26—Н26	119.5	P2—Pt1—C11	170.91 (3)
C25—C26—C27	121.1 (3)	P2—Pt1—Cl2	90.62 (3)
С27—С26—Н26	119.5	P2—Pt1—P1	92.87 (3)
C26—C27—C28	121.4 (3)	H51A—C51—H51B	109.5
C26—C27—C32	118.8 (3)	H51A—C51—H51C	109.5
C28—C27—C32	119.8 (3)	H51B—C51—H51C	109.5
C27—C28—H28	119.5	С52—С51—Н51А	109.5
C29—C28—C27	121.0 (3)	С52—С51—Н51В	109.5
C29—C28—H28	119.5	С52—С51—Н51С	109.5
С28—С29—Н29	120.3	N3—C52—C51	159.4 (19)
C28—C29—C30	119.5 (3)		
C1—C2—C3—C4	0.5 (5)	C23—C24—P2—C33	-163.2 (3)
C2-C1-C6-C5	1.4 (5)	C23—C24—P2—C39	-50.6 (3)
C2-C1-P1-C7	66.5 (3)	C23-C24-P2-Pt1	77.5 (3)
C2-C1-P1-C13	-44.3 (3)	C24—C23—C32—C27	3.0 (4)
C2-C1-P1-Pt1	-169.6 (2)	C24—C23—C32—C31	-178.7 (3)
C2—C3—C4—C5	0.2 (6)	C24—C25—C26—C27	2.3 (5)
C3—C4—C5—C6	-0.1 (6)	C25—C24—P2—C33	23.5 (3)
C4—C5—C6—C1	-0.7 (5)	C25—C24—P2—C39	136.1 (2)
C6—C1—C2—C3	-1.3 (5)	C25-C24-P2-Pt1	-95.7 (2)
C6—C1—P1—C7	-115.7 (3)	C25—C26—C27—C28	179.1 (3)
C6-C1-P1-C13	133.5 (3)	C25—C26—C27—C32	-0.5 (5)
C6—C1—P1—Pt1	8.2 (3)	C26—C27—C28—C29	-180.0 (3)
C7—C8—C9—C10	0.6 (6)	C26—C27—C32—C23	-2.2 (4)
C8—C7—C12—C11	-2.6 (5)	C26—C27—C32—C31	179.4 (3)
C8—C7—P1—C1	-2.9 (3)	C27—C28—C29—C30	0.5 (5)
C8—C7—P1—C13	108.5 (3)	C28—C27—C32—C23	178.3 (3)
C8—C7—P1—Pt1	-130.9 (3)	C28—C27—C32—C31	-0.1 (4)
C8—C9—C10—C11	-1.1 (6)	C28—C29—C30—C31	-0.1 (5)
C9—C10—C11—C12	-0.2 (6)	C29—C30—C31—C32	-0.4 (5)
C10-C11-C12-C7	2.1 (5)	C30—C31—C32—C23	-177.8 (3)
C12—C7—C8—C9	1.2 (5)	C30—C31—C32—C27	0.5 (5)

C12—C7—P1—C1	174.9 (3)	C32—C23—C24—C25	-1.3 (4)
C12—C7—P1—C13	-73.7 (3)	C32—C23—C24—P2	-174.5 (2)
C12—C7—P1—Pt1	46.9 (3)	C32—C27—C28—C29	-0.4 (5)
C13—C14—C15—C16	1.3 (5)	C33—C34—C35—C36	1.6 (5)
C13—C22—C23—C24	-69.7 (4)	C34—C33—C38—C37	0.9 (5)
C13—C22—C23—C32	109.7 (3)	C34—C33—P2—C24	-75.0 (3)
C14—C13—C22—C21	-0.3 (4)	C34—C33—P2—C39	172.9 (2)
C14—C13—C22—C23	178.8 (3)	C34—C33—P2—Pt1	44.4 (3)
C14—C13—P1—C1	134.1 (2)	C34—C35—C36—C37	-1.2 (6)
C14—C13—P1—C7	22.2 (3)	C35—C36—C37—C38	0.6 (6)
C14—C13—P1—Pt1	-97.5 (2)	C36—C37—C38—C33	-0.4 (6)
C14—C15—C16—C17	180.0 (3)	C38—C33—C34—C35	-1.5 (5)
C14—C15—C16—C21	-0.5 (5)	C38—C33—P2—C24	108.7 (3)
C15—C16—C17—C18	179.2 (3)	C38—C33—P2—C39	-3.5 (3)
C15—C16—C21—C20	-178.8 (3)	C38—C33—P2—Pt1	-131.9 (3)
C15—C16—C21—C22	-0.7 (4)	C39—C40—C41—C42	-0.4 (5)
C16—C17—C18—C19	-0.4 (5)	C40—C39—C44—C43	1.2 (5)
C16—C21—C22—C13	1.0 (4)	C40—C39—P2—C24	129.9 (3)
C16—C21—C22—C23	-178.1 (3)	C40—C39—P2—C33	-119.4 (3)
C17—C16—C21—C20	0.7 (4)	C40-C39-P2-Pt1	5.4 (3)
C17—C16—C21—C22	178.9 (3)	C40—C41—C42—C43	-0.4 (5)
C17—C18—C19—C20	0.6 (6)	C41—C42—C43—C44	1.6 (5)
C18—C19—C20—C21	-0.1 (5)	C42—C43—C44—C39	-1.9 (5)
C19—C20—C21—C16	-0.6 (5)	C44—C39—C40—C41	0.0 (5)
C19—C20—C21—C22	-178.6 (3)	C44—C39—P2—C24	-48.8 (3)
C20—C21—C22—C13	179.1 (3)	C44—C39—P2—C33	61.9 (3)
C20—C21—C22—C23	0.0 (4)	C44—C39—P2—Pt1	-173.4 (2)
C21—C16—C17—C18	-0.3 (5)	P1-C1-C2-C3	176.5 (3)
C21—C22—C23—C24	109.4 (3)	P1-C1-C6-C5	-176.4 (3)
C21—C22—C23—C32	-71.3 (4)	P1—C7—C8—C9	179.0 (3)
C22-C13-C14-C15	-0.9 (4)	P1-C7-C12-C11	179.6 (3)
C22—C13—P1—C1	-52.6 (3)	P1-C13-C14-C15	172.6 (2)
C22-C13-P1-C7	-164.4 (2)	P1-C13-C22-C21	-173.6 (2)
C22-C13-P1-Pt1	75.9 (2)	P1-C13-C22-C23	5.5 (4)
C22—C23—C24—C25	178.1 (3)	P2-C24-C25-C26	172.0 (3)
C22—C23—C24—P2	4.9 (4)	P2-C33-C34-C35	-178.0 (3)
C22—C23—C32—C27	-176.3 (3)	P2-C33-C38-C37	177.2 (3)
C22—C23—C32—C31	2.0 (4)	P2-C39-C40-C41	-178.8 (2)
C23—C24—C25—C26	-1.4 (5)	P2-C39-C44-C43	179.9 (3)