Received 3 August 2020 Accepted 31 August 2020

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; indole; hydrogen bonding.

CCDC reference: 2026531

Structural data: full structural data are available from iucrdata.iucr.org

Will E. Lynch,* Christine R. Whitlock and Clifford W. Padgett

Georgia Southern University, Department of Chemistry and Biochemistry, Box 8064, Statesboro, GA 30460, USA. *Correspondence e-mail: wlynch@georgiasouthern.edu

Our work in the area of synthesis of tris indole compounds as a potential chelator led to the synthesis and crystallization of ethyl 1*H*-indole-2-carboxylate, $C_{11}H_{11}NO_2$, an indole that was synthesized by the thionyl chloride reaction of 1*H*-indole-2-carboxylic acid, followed by dissolution in ethanol. The molecular packing exhibits a herringbone pattern with the zigzag running along the *b*-axis direction; the compound crystallizes as a hydrogen-bonded dimer resulting from $O \cdots H - N$ hydrogen bonds, between the indole N - H group and the keto oxygen atom, which build centrosymmetric $R_2^2(10)$ ring motifs in the crystal.

Structure description

Indole esters can easily be prepared from 1*H*-indole-2-carboxylic acid *via* an isolated acyl chloride intermediate followed by dissolving the residue in the appropriate alcohol solvent. These indole-type compounds are of interest because of their prevalence in nature (Stempel & Gaich, 2016). Derivatives of this type of compound have also been implicated in a number of biological roles including antifungal (Kipp *et al.*, 1999), antitumor (Lu *et al.*, 2016) and anti-inflammatory (Liu *et al.*, 2016) agents. These types of compounds have also been reported as potential cellular inhibitors of kinase (Jobson *et al.*, 2009) as well as an antagonist for glycine-binding sites (Ohtani *et al.*, 2002). Previous reports include the structures of indole-2-carboxylic acid (Morzyk-Ociepa *et al.*, 2004) and methyl 1*H*-indole-2-carboxylate (Almutairi *et al.*, 2017).

Herein we report the crystal structure of ethyl 1*H*-indole-2-carboxylate (Fig. 1), which forms a hydrogen-bonded dimer. The hydrogen bonding occurs between N atoms of the indole ring and the keto oxygen atoms with an R(10) synthon. The hydrogen bond between N1 and O2ⁱ is characterized by an N···O separation of 2.877 (3) Å [symmetry code: (i) -x + 2, -y + 1, -z + 1; Table 1], and the ring motifs, $R_2^2(10)$, are placed on inversion centres in the space group $P2_1/c$ (Fig. 2). The crystal structure exhibits a classic

Figure 1

A view of the molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

herringbone pattern (Fig. 2) with the blocks consisting of the hydrogen-bonded dimers, with the zigzag running along the *b*-axis direction. The molecule is nearly planar, with a r.m.s.d. of 0.028 Å for the non-hydrogen atoms. There are no other short contacts or π - π interactions observed in the crystal.

Synthesis and crystallization

The title compound was synthesized by modification of an early method laid out by Terent'ev *et al.* (1969). Indole-2-carboxylic acid (0.50 g, 3.1 mmol) was dissolved in SOCl₂ (19 ml) at 0°C. After stirring for 1 h, the solution was rotary evaporated and to the resulting oil was added absolute ethanol (17 ml) at room temperature. After stirring overnight, the solution was vacuum filtered to yield ethyl 1*H*-indole-2-carboxylate as a beige solid, which was recrystallized from methanol to yield 0.54 g (2.9 mmol, 93%) of the product. Further recrystallization by slow evaporation from methanol solution resulted in X-ray quality crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

Crystal packing diagram of title compound viewed along [100]. Hydrogen bonds are coloured red.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^i$	0.84 (3)	2.08 (3)	2.877 (3)	158 (3)

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{11}H_{11}NO_2$
M _r	189.21
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	170
a, b, c (Å)	5.5622 (7), 18.891 (2), 9.6524 (13)
β(°)	104.454 (13)
$V(\dot{A}^3)$	982.1 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.4 \times 0.05 \times 0.05$
Data collection	
Diffractometer	Rigaku XtaLAB mini
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.998, 1.000
No. of measured, independent and	5586, 1804, 991
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.047
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.144, 1.01
No. of reflections	1804
No. of parameters	132
H-atom treatment	H atoms treated by a mixture of independent and constrained
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{\AA}^{-3})$	0.28 -0.16

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Funding information

The authors wish to thank Georgia Southern University and the Department of Chemistry and Biochemistry for financial support of the department X-ray facility, and Georgia Southern College of Science and Mathematics Office of Undergraduate Research for partial support.

References

- Almutairi, M. S., Ghabbour, H. A. & Attia, M. I. (2017). Z. Kristallogr. New Cryst. Struct. 232, 431–432.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Jobson, A. G., Lountos, G. T., Lorenzi, P. L., Llamas, J., Connelly, J., Cerna, D., Tropea, J. E., Onda, A., Zoppoli, G., Kondapaka, S., Zhang, G., Caplen, N. J., Cardellina, J. H., Yoo, S. S., Monks, A., Self, C., Waugh, D. S., Shoemaker, R. H. & Pommier, Y. (2009). J. Pharmacol. Exp. Ther. 331, 816–826.

Kipp, C. & Young, A. R. (1999). Photochem. Photobiol. 70, 191–198.

Liu, Z., Tang, L., Zhu, H., Xu, T., Qiu, C., Zheng, S., Gu, Y., Feng, J., Zhang, Y. & Liang, G. (2016). J. Med. Chem. **59**, 4637–4650.

- Lu, J.-J., Fu, L., Tang, Z., Zhang, C., Qin, L., Wang, J., Yu, Z., Shi, D., Xiao, X., Xie, F., Huang, W. & Deng, W. (2016). Oncotarget, 7, 2985–3001.
- Morzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 79–86.
- Ohtani, K.-I., Tanaka, H., Yoneda, Y., Yasuda, H., Ito, A., Nagata, R. & Nakamura, M. (2002). *Brain Res.* **944**, 165–173.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stempel, E. & Gaich, T. (2016). Acc. Chem. Res. 49, 2390-2402.
- Terent'ev, A. P., Yudin, L. G., Smirnova, G. V. & Kost, A. N. (1969). Chem. Heterocycl. Compd. 3, 455–455.

full crystallographic data

IUCrData (2020). **5**, x201205 [https://doi.org/10.1107/S2414314620012055]

Ethyl 1*H*-indole-2-carboxylate

Will E. Lynch, Christine R. Whitlock and Clifford W. Padgett

Ethyl 1H-indole-2-carboxylate

Crystal data

C11H11NO2 $M_r = 189.21$ Monoclinic, $P2_1/c$ a = 5.5622 (7) Å*b* = 18.891 (2) Å c = 9.6524 (13) Å $\beta = 104.454 (13)^{\circ}$ V = 982.1 (2) Å³ Z = 4

Data collection

Rigaku XtaLAB mini diffractometer Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) $T_{\min} = 0.998, T_{\max} = 1.000$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.049$ Hydrogen site location: mixed $wR(F^2) = 0.144$ H atoms treated by a mixture of independent S = 1.01and constrained refinement 1804 reflections $w = 1/[\sigma^2(F_o^2) + (0.0611P)^2]$ 132 parameters where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: dual $\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement. All carbon-bound H atoms were positioned geometrically and refined as riding, with C - H = 0.95, 0.98 or 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$ for C(H) and CH₃ groups, respectively. Hydrogen atom of the N— H group was refined freely.

F(000) = 400 $D_{\rm x} = 1.280 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 611 reflections $\theta = 2.4 - 21.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 170 KNeedle, colourless $0.4 \times 0.05 \times 0.05$ mm

5586 measured reflections 1804 independent reflections 991 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.047$ $\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ $h = -6 \rightarrow 6$ $k = -22 \rightarrow 22$ $l = -6 \rightarrow 11$

 $\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

	r	11	7	II. */II	
	<i>x</i>	<i>y</i>	2		
01	0.4202 (3)	0.51968 (8)	0.18977 (19)	0.0674 (5)	
02	0.8074 (3)	0.53509 (10)	0.32447 (19)	0.0769 (6)	
N1	0.7445 (4)	0.41313 (12)	0.4844 (2)	0.0618 (6)	
C1	0.6528 (4)	0.35476 (13)	0.5376 (2)	0.0546 (6)	
C6	0.4072 (4)	0.34466 (13)	0.4568 (2)	0.0561 (6)	
C9	0.6121 (5)	0.50269 (13)	0.2963 (3)	0.0603 (7)	
C8	0.5633 (4)	0.44041 (13)	0.3735 (3)	0.0559 (6)	
C7	0.3542 (4)	0.39987 (13)	0.3545 (3)	0.0604 (7)	
H7	0.201542	0.407332	0.285492	0.072*	
C2	0.7649 (5)	0.30983 (14)	0.6497 (3)	0.0667 (7)	
H2	0.931108	0.317126	0.703333	0.080*	
C10	0.4457 (5)	0.58135 (13)	0.1043 (3)	0.0713 (8)	
H10A	0.570546	0.572318	0.049089	0.086*	
H10B	0.499351	0.622958	0.166698	0.086*	
C5	0.2734 (5)	0.28695 (15)	0.4909 (3)	0.0713 (8)	
Н5	0.107754	0.278384	0.437693	0.086*	
C3	0.6258 (5)	0.25482 (14)	0.6791 (3)	0.0745 (8)	
H3	0.696946	0.223507	0.755363	0.089*	
C4	0.3833 (5)	0.24349 (15)	0.6006 (3)	0.0760 (8)	
H4	0.292584	0.204613	0.624028	0.091*	
C11	0.1971 (5)	0.59444 (16)	0.0056 (3)	0.0935 (10)	
H11A	0.149807	0.553780	-0.058508	0.140*	
H11B	0.204101	0.637068	-0.051138	0.140*	
H11C	0.073960	0.601063	0.061479	0.140*	
H1	0.879 (5)	0.4339 (15)	0.520 (3)	0.087 (10)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0631 (11)	0.0688 (12)	0.0625 (11)	-0.0022 (9)	0.0009 (9)	0.0064 (9)
O2	0.0672 (13)	0.0828 (13)	0.0715 (13)	-0.0150 (10)	0.0001 (10)	0.0024 (10)
N1	0.0537 (14)	0.0712 (15)	0.0544 (13)	-0.0052 (12)	0.0021 (12)	-0.0023 (12)
C1	0.0522 (15)	0.0606 (16)	0.0496 (14)	-0.0010 (12)	0.0101 (12)	-0.0062 (13)
C6	0.0500 (15)	0.0628 (15)	0.0530 (14)	0.0000 (12)	0.0082 (12)	-0.0084 (13)
C9	0.0573 (17)	0.0670 (17)	0.0524 (15)	0.0007 (14)	0.0054 (14)	-0.0125 (14)
C8	0.0564 (16)	0.0586 (15)	0.0486 (14)	0.0021 (12)	0.0054 (12)	-0.0056 (13)
C7	0.0487 (15)	0.0709 (17)	0.0557 (15)	0.0014 (13)	0.0021 (12)	-0.0063 (14)
C2	0.0571 (16)	0.0769 (18)	0.0607 (17)	0.0033 (14)	0.0046 (13)	0.0009 (15)
C10	0.0766 (19)	0.0626 (17)	0.0715 (18)	-0.0028 (14)	0.0127 (15)	0.0068 (14)
C5	0.0549 (16)	0.0793 (18)	0.0742 (19)	-0.0090 (14)	0.0056 (14)	-0.0001 (16)
C3	0.0708 (19)	0.0766 (19)	0.0727 (19)	0.0011 (15)	0.0115 (16)	0.0111 (15)
C4	0.0697 (19)	0.0777 (19)	0.078 (2)	-0.0072 (14)	0.0136 (16)	0.0097 (16)
C11	0.088 (2)	0.089 (2)	0.091 (2)	0.0041 (17)	-0.0015 (18)	0.0239 (18)

Geometric parameters (Å, °)

01-C9	1.324 (3)	С2—Н2	0.9500
O1—C10	1.455 (3)	C2—C3	1.367 (3)
O2—C9	1.217 (3)	C10—H10A	0.9900
N1—C1	1.368 (3)	C10—H10B	0.9900
N1—C8	1.374 (3)	C10—C11	1.491 (3)
N1—H1	0.84 (3)	С5—Н5	0.9500
C1—C6	1.406 (3)	C5—C4	1.359 (4)
C1—C2	1.394 (3)	С3—Н3	0.9500
C6—C7	1.416 (3)	C3—C4	1.389 (4)
C6—C5	1.404 (3)	C4—H4	0.9500
С9—С8	1.454 (3)	C11—H11A	0.9800
C8—C7	1.366 (3)	C11—H11B	0.9800
С7—Н7	0.9500	C11—H11C	0.9800
C9—O1—C10	117.45 (19)	O1—C10—H10A	110.4
C1—N1—C8	108.9 (2)	O1-C10-H10B	110.4
C1—N1—H1	127 (2)	O1-C10-C11	106.8 (2)
C8—N1—H1	123 (2)	H10A—C10—H10B	108.6
N1—C1—C6	107.6 (2)	C11—C10—H10A	110.4
N1—C1—C2	130.2 (2)	C11—C10—H10B	110.4
C2—C1—C6	122.2 (2)	С6—С5—Н5	120.3
C1—C6—C7	106.9 (2)	C4—C5—C6	119.3 (2)
C5—C6—C1	118.3 (2)	С4—С5—Н5	120.3
C5—C6—C7	134.8 (2)	С2—С3—Н3	119.1
O1—C9—C8	112.1 (2)	C2—C3—C4	121.8 (3)
O2—C9—O1	123.6 (2)	С4—С3—Н3	119.1
O2—C9—C8	124.3 (2)	C5—C4—C3	121.3 (3)
N1—C8—C9	120.5 (2)	C5—C4—H4	119.4
C7—C8—N1	109.2 (2)	C3—C4—H4	119.4
С7—С8—С9	130.3 (2)	C10-C11-H11A	109.5
С6—С7—Н7	126.4	C10—C11—H11B	109.5
C8—C7—C6	107.3 (2)	C10—C11—H11C	109.5
С8—С7—Н7	126.4	H11A—C11—H11B	109.5
С1—С2—Н2	121.4	H11A—C11—H11C	109.5
C3—C2—C1	117.2 (2)	H11B—C11—H11C	109.5
С3—С2—Н2	121.4		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.84 (3)	2.08 (3)	2.877 (3)	158 (3)

Symmetry code: (i) -x+2, -y+1, -z+1.