

IUCrData

ISSN 2414-3146

Received 6 August 2020 Accepted 9 September 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 2-phenylpyridine; pyridine ring.

CCDC reference: 2012681

Structural data: full structural data are available from iucrdata.iucr.org

6-(3,4-Difluorophenyl)-7,8,13,14-tetrahydrodibenzo[c,k]phenanthridine

Yiwen Fang,^{a,b}* Bingbing Liu^{a,b} and Zhixiang Jia^{a,b}

^aDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, People's Republic of China, and ^bDepartment of Chemistry, Yancheng Teachers College, Yancheng, Jiangsu, 224002, People's Republic of China. *Correspondence e-mail: 987372801@qq.com

In the title compound, $C_{27}H_{19}F_2N$, the five-fused-ring system is highly puckered and the dihedral angle between the central pyridine ring and pendant difluorobenzene ring is 45.12 (12)°. In the crystal, inversion dimers linked by pairwise weak $C-H \cdots N$ hydrogen bonds generate $R_2^2(12)$ loops and the dimers are further linked by weak $C-H \cdots F$ interactions to form [101] chains.

Structure description

In recent years, nitrogen-containing heterocyclic molecular materials have found use as optoelectronic materials (Gu *et al.* 2017; Zhang *et al.*, 2019) because of their conjugated structures and photophysical properties. In this work, we describe the synthesis and structure of the title compound (Fig. 1) in which the F atoms should increase solubility and provide strong electron-withdrawing groups.

The crystal structure shows that the dihedral angle between the C1–C6 difluorobenzene ring and the adjacent C7/C8/C17/C18/C27/N1 pyridine ring is 45.12 (12)°. In the crystal, pairwise weak C10–H10B···N1 hydrogen bonds (Table 1) link the molecules into inversion dimers, which are further linked by weak C–H···F interactions (Fig. 2) to form [101] double chains.

Synthesis and crystallization

Ammonium acetate (7.60 g, 0.100 mol) was dissolved in 15 ml glacial acetic acid. Then, 3,4-difluorobenzaldehyde (2.00 g, 0.014 mol) and 1-tetrahydronaphthalone (4.12 g, 0.028 mol) were added and the reaction was heated to reflux at 383 K for 5 h. Upon cooling and recrystallization from ethanol solution, 1.64 g (yield 30%) of the title

Table 1

Hydrogen-bond geometry (Å, °).					
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$		
$\begin{array}{c} \text{C10-H10}\textit{B}{\cdots}\text{N1}^{\text{i}}\\ \text{C19-H19}\textit{A}{\cdots}\text{F2}^{\text{ii}} \end{array}$	0.97 0.97	2.61 2.56	3.552 (4) 3.111 (4)		

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z + 1.

compound was recovered. Crystals for X-ray analysis were obtained from the slow evaporation of an acetonitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award Nos. 21871003 and 51672002).

References

Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1

The molecular structure of the title compound showing 50% displacement ellipsoids.

Table 2	
Experimental deta	ils.

 $D - H \cdot \cdot \cdot A$ 165

116

Crystal data	
Chemical formula	$C_{27}H_{19}F_2N$
Mr	395.43
Crystal system, space group	Triclinic, P1
Temperature (K)	296
a, b, c (Å)	9.394 (5), 9.802 (5), 11.914 (6)
α, β, γ (°)	88.983 (5), 73.144 (5), 69.488 (5)
$V(Å^3)$	979.0 (8)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.03 \times 0.02 \times 0.01$
Data collection	
Diffractometer	Bruker APEXII CCD area
Absorption correction	Multi-scan (SADARS: Bruker
	2013)
T_{\min}, T_{\max}	0.633, 0.746
No. of measured, independent and	7892, 4051, 3053
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.027
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.651
() (),	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.190, 1.06
No. of reflections	4051
No. of parameters	271
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	0.43, -0.25

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Gu, B., Wu, W. B., Xu, G. X., Feng, G. X., Yin, F., Chong, P. H. J., Qu, J. L., Yong, K. T. & Liu, B. (2017). Adv. Mater. 29, 1701076.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Zhang, C., Zhao, Y., Li, D., Liu, J., Han, H., He, D., Tian, X., Li, S., Wu, J. & Tian, Y. (2019). Chem. Commun. 55, 1450-1453.

Figure 2 Partial packing diagram showing hydrogen bonds as dashed lines.

full crystallographic data

IUCrData (2020). **5**, x201241 [https://doi.org/10.1107/S2414314620012419]

6-(3,4-Difluorophenyl)-7,8,13,14-tetrahydrodibenzo[c,k]phenanthridine

Z = 2

F(000) = 412

 $\theta = 2.4 - 27.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.027$

 $h = -12 \rightarrow 12$

 $k = -12 \rightarrow 10$

 $l = -15 \rightarrow 15$

 $D_{\rm x} = 1.341 {\rm Mg m^{-3}}$

Block-shaped, white

 $0.03 \times 0.02 \times 0.01 \text{ mm}$

 $\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$

4051 independent reflections

3053 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2895 reflections

Yiwen Fang, Bingbing Liu and Zhixiang Jia

6-(3,4-Difluorophenyl)-7,8,13,14-tetrahydrodibenzo[c,k]phenanthridine

Crystal data

 $C_{27}H_{19}F_{2N}$ $M_{r} = 395.43$ Triclinic, *P*1 *a* = 9.394 (5) Å *b* = 9.802 (5) Å *c* = 11.914 (6) Å *a* = 88.983 (5)° *β* = 73.144 (5)° *y* = 69.488 (5)° *V* = 979.0 (8) Å³

Data collection

Bruker APEXII CCD area detector diffractometer phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{\min} = 0.633$, $T_{\max} = 0.746$ 7892 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.063$ H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0837P)^2 + 0.5466P]$ $wR(F^2) = 0.190$ S = 1.06where $P = (F_0^2 + 2F_c^2)/3$ 4051 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$ 271 parameters 0 restraints $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.7467 (2)	0.3707 (2)	0.54946 (15)	0.0391 (4)	
F1	1.0054 (3)	0.3247 (2)	0.10698 (15)	0.0904 (6)	
F2	1.1593 (2)	0.5132 (3)	0.08204 (17)	0.1047 (8)	
C18	0.5333 (2)	0.4724 (2)	0.73116 (18)	0.0380 (5)	
C17	0.5140 (2)	0.6141 (2)	0.69776 (18)	0.0381 (5)	
C8	0.6055 (3)	0.6315 (2)	0.58465 (19)	0.0391 (5)	
C7	0.7235 (2)	0.5064 (2)	0.51581 (18)	0.0363 (5)	
C5	0.8364 (2)	0.5126 (2)	0.39951 (18)	0.0386 (5)	
C27	0.6517 (2)	0.3545 (2)	0.65376 (18)	0.0374 (5)	
C16	0.3991 (3)	0.7498 (2)	0.7746 (2)	0.0417 (5)	
C26	0.6825 (3)	0.2019 (2)	0.68702 (19)	0.0410 (5)	
C21	0.5609 (3)	0.1703 (3)	0.7718 (2)	0.0439 (5)	
C6	0.8684 (3)	0.4139 (3)	0.30477 (19)	0.0443 (5)	
H6	0.817554	0.346510	0.313138	0.053*	
C11	0.3292 (3)	0.8721 (3)	0.7200 (2)	0.0456 (6)	
C22	0.5900 (3)	0.0269 (3)	0.8019 (2)	0.0534 (6)	
H22	0.510292	0.005181	0.857526	0.064*	
C4	0.9152 (3)	0.6117 (3)	0.3848 (2)	0.0510 (6)	
H4	0.894687	0.678252	0.447433	0.061*	
C19	0.4315 (3)	0.4353 (3)	0.84374 (19)	0.0462 (6)	
H19A	0.328771	0.514474	0.870742	0.055*	
H19B	0.483188	0.426509	0.904573	0.055*	
C20	0.4060 (3)	0.2928 (3)	0.8250 (2)	0.0508 (6)	
H20A	0.350530	0.267914	0.899957	0.061*	
H20B	0.339713	0.306392	0.773529	0.061*	
C15	0.3651 (3)	0.7608 (3)	0.8972 (2)	0.0517 (6)	
H15	0.416490	0.682039	0.933526	0.062*	
C1	0.9756 (3)	0.4166 (3)	0.1989 (2)	0.0549 (7)	
C25	0.8280 (3)	0.0895 (3)	0.6371 (2)	0.0508 (6)	
H25	0.908948	0.109709	0.581439	0.061*	
C9	0.5619 (3)	0.7816 (3)	0.5415 (2)	0.0480 (6)	
H9A	0.595581	0.772922	0.456085	0.058*	
H9B	0.616434	0.836198	0.568047	0.058*	
C10	0.3802 (3)	0.8638 (3)	0.5889 (2)	0.0510 (6)	
H10A	0.352889	0.961687	0.563338	0.061*	
H10B	0.325601	0.812838	0.558290	0.061*	
C2	1.0529 (3)	0.5146 (3)	0.1853 (2)	0.0615 (8)	
C12	0.2169 (3)	0.9997 (3)	0.7903 (3)	0.0588 (7)	
H12	0.166393	1.080199	0.755108	0.071*	
C3	1.0245 (3)	0.6118 (3)	0.2769 (3)	0.0617 (7)	
H3	1.077498	0.677447	0.267400	0.074*	
C24	0.8549 (3)	-0.0521 (3)	0.6687 (3)	0.0618 (7)	
H24	0.953022	-0.126144	0.634986	0.074*	
C23	0.7334 (4)	-0.0818 (3)	0.7512 (3)	0.0617 (7)	
H23	0.749976	-0.176760	0.772106	0.074*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

C13	0.1814 (3)	1.0058 (3)	0.9111 (3)	0.0670 (8)
H13	0.106587	1.090484	0.956823	0.080*
C14	0.2552 (3)	0.8882 (3)	0.9651 (2)	0.0616 (8)
H14	0.231630	0.894100	1.046662	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
N1	0.0375 (9)	0.0410 (10)	0.0340 (9)	-0.0146 (8)	-0.0032 (7)	0.0015 (7)
F1	0.0965 (14)	0.0996 (14)	0.0468 (9)	-0.0197 (11)	0.0020 (9)	-0.0195 (9)
F2	0.0783 (13)	0.1363 (19)	0.0616 (11)	-0.0315 (13)	0.0245 (10)	0.0223 (11)
C18	0.0354 (11)	0.0462 (12)	0.0301 (10)	-0.0133 (9)	-0.0084 (8)	0.0024 (9)
C17	0.0362 (11)	0.0438 (12)	0.0323 (10)	-0.0126 (9)	-0.0093 (9)	-0.0029 (9)
C8	0.0441 (12)	0.0381 (12)	0.0367 (11)	-0.0150 (9)	-0.0142 (9)	0.0026 (9)
C7	0.0363 (11)	0.0404 (12)	0.0321 (10)	-0.0161 (9)	-0.0073 (9)	0.0031 (8)
C5	0.0335 (10)	0.0440 (12)	0.0359 (11)	-0.0130 (9)	-0.0086 (9)	0.0076 (9)
C27	0.0356 (11)	0.0430 (12)	0.0322 (10)	-0.0146 (9)	-0.0080 (9)	0.0039 (9)
C16	0.0388 (11)	0.0412 (12)	0.0435 (12)	-0.0159 (10)	-0.0079 (10)	-0.0038 (9)
C26	0.0436 (12)	0.0450 (13)	0.0365 (11)	-0.0182 (10)	-0.0126 (9)	0.0065 (9)
C21	0.0465 (13)	0.0485 (13)	0.0405 (12)	-0.0211 (11)	-0.0141 (10)	0.0079 (10)
C6	0.0407 (12)	0.0491 (13)	0.0385 (12)	-0.0128 (10)	-0.0096 (10)	0.0056 (10)
C11	0.0409 (12)	0.0415 (12)	0.0525 (13)	-0.0166 (10)	-0.0086 (10)	-0.0058 (10)
C22	0.0581 (15)	0.0546 (15)	0.0588 (15)	-0.0317 (13)	-0.0212 (13)	0.0177 (12)
C4	0.0481 (14)	0.0571 (15)	0.0507 (14)	-0.0268 (12)	-0.0098 (11)	0.0074 (11)
C19	0.0460 (13)	0.0494 (14)	0.0342 (11)	-0.0139 (11)	-0.0030 (10)	0.0051 (10)
C20	0.0458 (13)	0.0538 (15)	0.0490 (14)	-0.0199 (11)	-0.0068 (11)	0.0125 (11)
C15	0.0518 (14)	0.0596 (16)	0.0416 (12)	-0.0247 (12)	-0.0048 (11)	-0.0093 (11)
C1	0.0470 (14)	0.0653 (16)	0.0347 (12)	-0.0045 (12)	-0.0055 (10)	0.0015 (11)
C25	0.0453 (13)	0.0473 (14)	0.0509 (14)	-0.0126 (11)	-0.0068 (11)	0.0055 (11)
C9	0.0611 (15)	0.0432 (13)	0.0378 (12)	-0.0214 (11)	-0.0088 (11)	0.0036 (10)
C10	0.0601 (15)	0.0402 (13)	0.0547 (14)	-0.0169 (11)	-0.0221 (12)	0.0105 (11)
C2	0.0416 (13)	0.0790 (19)	0.0458 (14)	-0.0149 (13)	0.0038 (11)	0.0188 (13)
C12	0.0491 (14)	0.0445 (14)	0.0769 (19)	-0.0148 (12)	-0.0126 (13)	-0.0036 (13)
C3	0.0443 (14)	0.0709 (18)	0.0691 (18)	-0.0283 (13)	-0.0078 (13)	0.0229 (15)
C24	0.0564 (16)	0.0481 (15)	0.0728 (18)	-0.0126 (12)	-0.0157 (14)	0.0090 (13)
C23	0.0649 (17)	0.0479 (15)	0.0777 (19)	-0.0218 (13)	-0.0285 (15)	0.0190 (13)
C13	0.0520 (15)	0.0613 (18)	0.0717 (19)	-0.0205 (14)	0.0065 (14)	-0.0248 (15)
C14	0.0593 (16)	0.0686 (18)	0.0491 (14)	-0.0277 (14)	0.0024 (12)	-0.0188 (13)

Geometric parameters (Å, °)

N1—C7	1.344 (3)	C4—H4	0.9300	
N1-C27	1.348 (3)	C4—C3	1.394 (3)	
F1—C1	1.330 (3)	C19—H19A	0.9700	
F2—C2	1.338 (3)	C19—H19B	0.9700	
C18—C17	1.401 (3)	C19—C20	1.528 (4)	
C18—C27	1.402 (3)	C20—H20A	0.9700	
C18—C19	1.526 (3)	C20—H20B	0.9700	

С17—С8	1.417 (3)	C15—H15	0.9300
C17—C16	1.495 (3)	C15—C14	1.388 (4)
C8—C7	1.401 (3)	C1—C2	1.376 (4)
C8—C9	1.506 (3)	С25—Н25	0.9300
C7—C5	1.496 (3)	C25—C24	1.386 (4)
C5—C6	1.393 (3)	С9—Н9А	0.9700
C5—C4	1.395 (3)	С9—Н9В	0.9700
C27—C26	1.490 (3)	C9—C10	1.541 (4)
C16—C11	1.399 (4)	C10—H10A	0.9700
C16—C15	1.400 (3)	C10—H10B	0.9700
C26—C21	1.410 (3)	C2—C3	1.363 (4)
C26—C25	1.390 (3)	C12—H12	0.9300
C21—C22	1.396 (3)	C12—C13	1.377 (4)
C21—C20	1.493 (3)	С3—Н3	0.9300
С6—Н6	0.9300	C24—H24	0.9300
C6—C1	1.374 (3)	C24—C23	1.388 (4)
C11—C10	1.490 (4)	С23—Н23	0.9300
C11—C12	1.407 (3)	С13—Н13	0.9300
C22—H22	0.9300	C13—C14	1.377 (4)
C22—C23	1.364 (4)	C14—H14	0.9300
C7—N1—C27	118.46 (18)	С21—С20—Н20А	109.4
C17—C18—C27	117.92 (19)	С21—С20—Н20В	109.4
C17—C18—C19	125.17 (19)	С19—С20—Н20А	109.4
C27—C18—C19	116.9 (2)	С19—С20—Н20В	109.4
C18—C17—C8	118.99 (19)	H20A—C20—H20B	108.0
C18—C17—C16	123.57 (19)	C16—C15—H15	119.7
C8—C17—C16	117.4 (2)	C14—C15—C16	120.6 (3)
С17—С8—С9	118.13 (19)	C14—C15—H15	119.7
C7—C8—C17	118.1 (2)	F1—C1—C6	120.3 (3)
C7—C8—C9	123.6 (2)	F1—C1—C2	118.7 (2)
N1—C7—C8	122.89 (19)	C6—C1—C2	121.0 (2)
N1—C7—C5	114.26 (18)	С26—С25—Н25	119.4
C8—C7—C5	122.84 (19)	C24—C25—C26	121.3 (2)
C6—C5—C7	119.4 (2)	С24—С25—Н25	119.4
C6—C5—C4	119.0 (2)	С8—С9—Н9А	109.7
C4—C5—C7	121.5 (2)	С8—С9—Н9В	109.7
N1—C27—C18	123.3 (2)	C8—C9—C10	110.01 (19)
N1—C27—C26	116.34 (19)	H9A—C9—H9B	108.2
C18—C27—C26	120.27 (19)	С10—С9—Н9А	109.7
C11—C16—C17	118.0 (2)	С10—С9—Н9В	109.7
C11—C16—C15	119.3 (2)	C11—C10—C9	109.1 (2)
C15—C16—C17	122.7 (2)	C11—C10—H10A	109.9
C21—C26—C27	119.1 (2)	C11—C10—H10B	109.9
C25—C26—C27	121.9 (2)	C9—C10—H10A	109.9
C25—C26—C21	119.0 (2)	C9—C10—H10B	109.9
C26—C21—C20	118.1 (2)	H10A—C10—H10B	108.3
C22—C21—C26	118.9 (2)	F2—C2—C1	119.9 (3)

C22—C21—C20	123.0 (2)	F2—C2—C3	119.5 (3)
С5—С6—Н6	120.2	C3—C2—C1	120.6 (2)
C1—C6—C5	119.6 (2)	C11—C12—H12	119.9
С1—С6—Н6	120.2	C13—C12—C11	120.2 (3)
C16—C11—C10	118.6 (2)	C13—C12—H12	119.9
C16—C11—C12	119.2 (2)	С4—С3—Н3	120.3
C12—C11—C10	122.2 (2)	C2—C3—C4	119.4 (3)
C21—C22—H22	119.4	С2—С3—Н3	120.3
C23—C22—C21	121.2 (2)	C25—C24—H24	120.4
С23—С22—Н22	119.4	C25—C24—C23	119.2 (3)
С5—С4—Н4	119.8	С23—С24—Н24	120.4
C3—C4—C5	120.4 (3)	C22—C23—C24	120.6 (3)
С3—С4—Н4	119.8	С22—С23—Н23	119.7
C18—C19—H19A	109.2	С24—С23—Н23	119.7
C18—C19—H19B	109.2	С12—С13—Н13	119.6
C18—C19—C20	111.98 (19)	C14—C13—C12	120.9 (3)
H19A—C19—H19B	107.9	C14—C13—H13	119.6
С20—С19—Н19А	109.2	C15—C14—H14	120.2
С20—С19—Н19В	109.2	C13—C14—C15	119.7 (3)
C21—C20—C19	111.3 (2)	C13—C14—H14	120.2

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10 <i>B</i> ····N1 ⁱ	0.97	2.61	3.552 (4)	165
C19—H19A…F2 ⁱⁱ	0.97	2.56	3.111 (4)	116

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*+1.