

ISSN 2414-3146

Received 18 September 2020 Accepted 23 September 2020

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; trisilane; 3,5-bis-(dimethylamino)phenyl.

CCDC reference: 2033547

Structural data: full structural data are available from iucrdata.iucr.org

2,2-Bis[3,5-bis(dimethylamino)phenyl]-1,1,1,3,3,3-hexamethyltrisilane

Yoshiyuki Mizuhata,* Kento Iwai and Norihiro Tokitoh

Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. *Correspondence e-mail: mizu@boc.kuicr.kyoto-u.ac.jp

The title compound, $C_{26}H_{48}N_4Si_3$, was synthesized by the reaction of 2,2dichlorotrisilane with 3,5-bis(dimethylamino)phenyllithium. In the molecule, the dihedral angle between the benzene rings is 57.57 (7)° and the Si–Si–Si bond angle is 110.08 (2)°. In the crystal, molecules are linked *via* an SiC– $H \cdot \cdot \cdot \pi$ (aryl) interaction, forming a chain along the *c*-axis direction.

Structure description

Trisilane derivatives are often used as a precursor for divalent silicon compounds (silylenes) (Gaspar & West, 1998). Photoirradiation of a trisilane results in the elimination of a disilane derived from the silyl moieties of the both ends and the generation of a silylene from the central one. Silylenes are highly reactive and known to give the dimer, silicon– silicon double–bond compound (disilene) (West *et al.*, 1981), or higher oligomers without trapping reagent. Herein, we describe the synthesis and structural characterization of a novel trisilane bearing two 3,5-bis(dimethylamino)phenyl substituents on the central silicon atom.

In the molecule (Fig. 1), the Si–Si bond lengths are 2.3488 (5) and 2.3465 (5) Å, which are close to the shortest bond lengths among those of the reported 2,2-diaryl-1,1,1,3,3,3-hexamethyltrisilanes (2.347–2.397 Å; Archibald *et al.*, 1993; Lange *et al.*, 1991; Millevolte *et al.*, 1997; Pusztai *et al.*, 2013). The sums of the angles around the nitrogen atoms (N1, N2, N3 and N4) are 353.8, 358.9, 344.6 and 350.5°, respectively, indicating that the geometries around the nitrogen atoms on one aryl substituent with N3/N4 are more pyramidalized than those on the other with N1/N2. In the crystal, molecules are linked by an SiC–H···π(aryl) interaction (Fig. 2 and Table 1).

Table 1
Hydrogen-bond geometry (Å, °).
Cg is the centroid of the C14–C19 ring.

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C2-H4\cdots Cg^{i}$	0.98	2.81	3.7869 (17)	172

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Synthesis and crystallization

To a solution of 1-bromo-3,5-bis(dimethylamino)benzene (194.6 mg, 0.80 mmol) in Et₂O (6.0 ml) was added *t*-BuLi (1.64 M in pentane, 1.07 ml, 1.76 mmol) at -78 °C, and the solution was stirred for 1 h at the same temperature. Then, 2,2dichloro-1,1,1,3,3,3-hexamethyltrisilane (104.2 mg, 0.42 mmol) in Et₂O (4 ml) was added dropwise, and the reaction mixture was gradually warmed up to room temperature over 14 h. After quenching with a saturated aqueous solution of NH₄Cl (10 ml), the water phase was extracted with Et_2O (10 ml \times 2). The combined organic phase was dried over Na₂SO₄ and evaporated in vacuo. Finally, recrystallization from the mixed solvents of hexane/dichloromethane gave the title compound (101.3 mg, 0.21 mmol, 50%) as colorless crystals. ¹H NMR $(300 \text{ Hz}, \text{CDCl}_3) \delta 6.40 (d, J = 1.2 \text{ Hz}, 4\text{H}), 6.11 (t, J = 1.2 \text{ Hz}, 4\text{H})$ 2H), 2.90 (s, 24H), 0.19 (s, 18H); ¹³C NMR (75.5 Hz, CDCl₃) δ 151.1 (CH), 136.7 (C), 110.9 (CH), 98.6 (C), 41.1 (NCH₃), -0.012 (SiCH₃).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

This work was supported by KAKENHI (JP16H04110, JP18H01963, JP19H05528, JP19H05635, JP24109013, and JP25288021) and the Integrated Research Consortium on Chemical Science (IRCCS). KI gratefully acknowledges a Research Fellowship for Young Scientists (JP20J12946) from

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table 2 Eventsiantal dataila	
Experimental details.	
Crystal data	
Chemical formula	$C_{26}H_{48}N_4Si_3$
$M_{ m r}$	500.95
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	103
a, b, c (Å)	20.6543 (3), 8.3650 (1), 17.5215 (3)
β (°)	97.371 (2)
$V(Å^3)$	3002.23 (8)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.18
Crystal size (mm)	$0.20\times0.20\times0.20$
Data collection	
Diffractometer	Rigaku Saturn
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> (Rigaku OD, 2018)
T_{\min}, T_{\max}	0.977, 1.000
No. of measured, independent and	33409, 5581, 4877
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.029
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.086, 1.04
No. of reflections	5581
No. of parameters	312
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.38, -0.18

Computer programs: CrystalClear (Rigaku, 1999), CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), Yadokari-XG (Kabuto et al., 2009) and Mercury (Macrae et al., 2020).

the Japan Society for the Promotion of Science (JSPS). This study was supported by the Joint Usage/Research Center [JURC, Institute for Chemical Research (ICR), Kyoto University] by providing access to a Bruker Avance III 600 NMR spectrometer. The authors are furthermore grateful for

Figure 2

A packing diagram of the title compound, emphasizing the intermolecular SiC-H··· π (aryl) interactions (light-blue dotted lines). [Symmetry code: (i) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$] computation time, which was provided by the Super Computer System (ICR, Kyoto University).

References

- Archibald, R. S., van den Winkel, Y., Powell, D. R. & West, R. (1993). J. Organomet. Chem. 446, 67–72.
- Gaspar, P. P. & West, R. (1998). The Chemistry of Organic Silicon Compounds, Vol. 2, pp. 2463–2568. Chichester, UK: John Wiley & Sons, Ltd.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.
- Lange, L. D., Corey, J. Y. & Rath, N. P. (1991). Organometallics, 10, 3189–3196.

- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Millevolte, A. J., van den Winkel, Y., Powell, D. R. & West, R. (1997). Organometallics, 16, 5375–5376.
- Pusztai, E., Toulokhonova, I. S., Temple, N., Albright, H., Zakai, U. I., Guo, S., Guzei, I. A., Hu, R. & West, R. (2013). Organometallics, 32, 2529–2535.
- Rigaku (1999). Crystal Clear. Rigaku Corporation, Tokyo, Japan.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- West, R., Fink, M. J. & Michl, J. (1981). Science, 214, 1343-1344.

full crystallographic data

IUCrData (2020). **5**, x201299 [https://doi.org/10.1107/S2414314620012997]

2,2-Bis[3,5-bis(dimethylamino)phenyl]-1,1,1,3,3,3-hexamethyltrisilane

F(000) = 1096

 $\theta = 1.8 - 30.3^{\circ}$

 $\mu = 0.18 \text{ mm}^{-1}$

Prism, colorless

 $0.20\times0.20\times0.20~mm$

 $\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$

33409 measured reflections

5581 independent reflections

4877 reflections with $I > 2\sigma(I)$

T = 103 K

 $R_{\rm int} = 0.029$

 $h = -25 \rightarrow 25$

 $k = -10 \rightarrow 10$

 $l = -21 \rightarrow 21$

 $D_{\rm x} = 1.108 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 24488 reflections

Yoshiyuki Mizuhata, Kento Iwai and Norihiro Tokitoh

2,2-Bis[3,5-bis(dimethylamino)phenyl]-1,1,1,3,3,3-hexamethyltrisilane

Crystal data

 $C_{26}H_{48}N_4Si_3$ $M_r = 500.95$ Monoclinic, $P2_1/c$ a = 20.6543 (3) Å b = 8.3650 (1) Å c = 17.5215 (3) Å $\beta = 97.371 (2)^{\circ}$ $V = 3002.23 (8) Å^3$ Z = 4

Data collection

Rigaku Saturn diffractometer Radiation source: fine-focus sealed X-ray tube Graphite monochromator Detector resolution: 28.5714 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro (Rigaku OD, 2018) $T_{\min} = 0.977, T_{\max} = 1.000$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.033$ Hydrogen site location: inferred from $wR(F^2) = 0.086$ neighbouring sites S = 1.04H-atom parameters constrained 5581 reflections $w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 1.4907P]$ 312 parameters where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: dual $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Si1	0.30425 (2)	0.26359 (5)	0.40578 (2)	0.01776 (11)	
Si2	0.25081 (2)	0.23923 (4)	0.27966 (2)	0.01378 (10)	
Si3	0.20713 (2)	-0.01864 (5)	0.26001 (2)	0.01934 (11)	
C1	0.32187 (9)	0.4774 (2)	0.43281 (10)	0.0326 (4)	
H1	0.342782	0.529781	0.392332	0.049*	
H2	0.351105	0.481717	0.481460	0.049*	
H3	0.280943	0.532430	0.438785	0.049*	
C2	0.25745 (8)	0.1727 (2)	0.47983 (9)	0.0338 (4)	
H4	0.282593	0.183946	0.530913	0.051*	
H5	0.249861	0.059114	0.468290	0.051*	
H6	0.215449	0.227615	0.478973	0.051*	
C3	0.38414 (7)	0.1570(2)	0.40627 (9)	0.0278 (4)	
H7	0.409142	0.164627	0.457597	0.042*	
H8	0.408976	0.206399	0.368441	0.042*	
H9	0.376058	0.044327	0.393031	0.042*	
C4	0.17831 (7)	0.37787 (16)	0.26124 (8)	0.0157 (3)	
C5	0.15255 (7)	0.42232 (16)	0.18664 (8)	0.0166 (3)	
H10	0.174097	0.391031	0.144264	0.020*	
C6	0.09489 (7)	0.51314 (16)	0.17395 (8)	0.0164 (3)	
C7	0.06416 (7)	0.55949 (17)	0.23737 (8)	0.0175 (3)	
H11	0.025674	0.622675	0.229263	0.021*	
C8	0.08913 (7)	0.51440 (17)	0.31244 (8)	0.0189 (3)	
C9	0.14687 (7)	0.42416 (17)	0.32341 (8)	0.0181 (3)	
H12	0.164780	0.394190	0.374040	0.022*	
N1	0.06746 (6)	0.55413 (15)	0.09955 (7)	0.0211 (3)	
C10	0.10803 (8)	0.5412 (2)	0.03772 (8)	0.0247 (3)	
H13	0.120610	0.429339	0.031923	0.037*	
H14	0.147335	0.606661	0.050088	0.037*	
H15	0.083461	0.578969	-0.010478	0.037*	
C11	0.01575 (7)	0.6719 (2)	0.08958 (9)	0.0252 (3)	
H16	0.032046	0.773793	0.112060	0.038*	
H17	-0.020940	0.635214	0.115365	0.038*	
H18	0.001115	0.686560	0.034579	0.038*	
N2	0.05745 (7)	0.55862 (18)	0.37463 (7)	0.0305 (3)	
C12	0.00044 (7)	0.65851 (19)	0.36342 (9)	0.0235 (3)	
H19	-0.032513	0.609127	0.325453	0.035*	
H20	0.012242	0.763704	0.344817	0.035*	
H21	-0.017287	0.670837	0.412357	0.035*	
C13	0.08889 (8)	0.5299 (2)	0.45176 (8)	0.0253 (3)	
H22	0.131207	0.584552	0.459169	0.038*	
H23	0.095511	0.414821	0.459639	0.038*	
H24	0.061305	0.570997	0.488874	0.038*	
C14	0.31425 (7)	0.28489 (17)	0.21410 (8)	0.0151 (3)	
C15	0.35872 (7)	0.16651 (17)	0.19910 (8)	0.0170 (3)	
H25	0.353827	0.060958	0.217532	0.020*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C16	0.41035 (7)	0.20138 (17)	0.15730 (8)	0.0169 (3)
C17	0.41619 (7)	0.35685 (17)	0.12925 (8)	0.0167 (3)
H26	0.450754	0.381126	0.100236	0.020*
C18	0.37191 (7)	0.47750 (17)	0.14323 (8)	0.0162 (3)
C19	0.32122 (7)	0.43937 (17)	0.18636 (8)	0.0160 (3)
H27	0.291203	0.520064	0.196795	0.019*
N3	0.45454 (6)	0.07908 (15)	0.14290 (7)	0.0215 (3)
N4	0.37992 (6)	0.63483 (15)	0.11844 (7)	0.0219 (3)
C20	0.47693 (9)	-0.0230 (2)	0.20856 (10)	0.0358 (4)
H28	0.439219	-0.073086	0.227626	0.054*
H29	0.500814	0.041608	0.249542	0.054*
H30	0.505801	-0.106202	0.192602	0.054*
C21	0.50722 (8)	0.1230 (2)	0.09949 (11)	0.0366 (4)
H31	0.536208	0.199436	0.129305	0.055*
H32	0.488974	0.171889	0.050608	0.055*
H33	0.532024	0.027143	0.089272	0.055*
C22	0.43019 (8)	0.6685 (2)	0.07004 (10)	0.0313 (4)
H34	0.419445	0.614702	0.020332	0.047*
H35	0.472326	0.629362	0.095198	0.047*
H36	0.432763	0.784068	0.061867	0.047*
C23	0.32265 (9)	0.7339 (2)	0.10043 (12)	0.0361 (4)
H37	0.294343	0.722489	0.140908	0.054*
H38	0.298835	0.700536	0.051007	0.054*
H39	0.335941	0.845920	0.097152	0.054*
C24	0.18019 (8)	-0.0508 (2)	0.15471 (10)	0.0310 (4)
H40	0.146709	0.028127	0.136380	0.047*
H41	0.162104	-0.158697	0.146642	0.047*
H42	0.217687	-0.038664	0.126137	0.047*
C25	0.13399 (8)	-0.0289 (2)	0.31312 (10)	0.0332 (4)
H43	0.148027	-0.019567	0.368531	0.050*
H44	0.111634	-0.131258	0.302292	0.050*
H45	0.104091	0.058891	0.296305	0.050*
C26	0.26437 (9)	-0.18132 (19)	0.29957 (11)	0.0340 (4)
H46	0.242957	-0.285333	0.290345	0.051*
H47	0.276191	-0.165481	0.355026	0.051*
H48	0.303862	-0.178120	0.274009	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0165 (2)	0.0216 (2)	0.0150 (2)	-0.00027 (16)	0.00150 (15)	0.00142 (15)
Si2	0.01451 (19)	0.01279 (19)	0.0143 (2)	0.00137 (14)	0.00278 (15)	0.00109 (14)
Si3	0.0186 (2)	0.0153 (2)	0.0246 (2)	-0.00180 (15)	0.00459 (16)	-0.00247 (16)
C1	0.0323 (9)	0.0292 (9)	0.0344 (9)	-0.0007 (7)	-0.0026 (7)	-0.0108 (7)
C2	0.0262 (9)	0.0523 (11)	0.0230 (8)	0.0001 (8)	0.0038 (7)	0.0145 (8)
C3	0.0216 (8)	0.0364 (9)	0.0241 (8)	0.0064 (7)	-0.0022 (6)	0.0008 (7)
C4	0.0161 (7)	0.0121 (7)	0.0191 (7)	-0.0007 (5)	0.0024 (5)	0.0003 (5)
C5	0.0185 (7)	0.0161 (7)	0.0161 (7)	0.0002 (6)	0.0055 (5)	-0.0011 (5)

C6	0.0174 (7)	0.0141 (7)	0.0174 (7)	-0.0013 (5)	0.0017 (5)	0.0016 (5)
C7	0.0161 (7)	0.0160 (7)	0.0205 (7)	0.0026 (5)	0.0031 (6)	0.0010 (6)
C8	0.0213 (7)	0.0179 (7)	0.0184 (7)	0.0018 (6)	0.0058 (6)	-0.0005 (6)
C9	0.0215 (7)	0.0187 (7)	0.0142 (7)	0.0025 (6)	0.0022 (6)	0.0020 (6)
N1	0.0211 (6)	0.0263 (7)	0.0160 (6)	0.0063 (5)	0.0023 (5)	0.0031 (5)
C10	0.0269 (8)	0.0313 (9)	0.0160 (7)	0.0049 (7)	0.0036 (6)	0.0021 (6)
C11	0.0208 (8)	0.0324 (9)	0.0221 (8)	0.0058 (7)	0.0017 (6)	0.0082 (7)
N2	0.0318 (8)	0.0440 (9)	0.0167 (7)	0.0209 (7)	0.0063 (6)	0.0012 (6)
C12	0.0197 (7)	0.0287 (8)	0.0234 (8)	0.0037 (6)	0.0076 (6)	-0.0035 (6)
C13	0.0286 (8)	0.0308 (9)	0.0174 (7)	0.0046 (7)	0.0065 (6)	-0.0015 (6)
C14	0.0162 (7)	0.0170 (7)	0.0120 (6)	-0.0003 (5)	0.0009 (5)	-0.0009 (5)
C15	0.0205 (7)	0.0139 (7)	0.0168 (7)	0.0003 (6)	0.0029 (6)	0.0012 (5)
C16	0.0165 (7)	0.0186 (7)	0.0151 (7)	0.0019 (6)	-0.0001 (5)	-0.0027 (6)
C17	0.0147 (7)	0.0210 (7)	0.0145 (7)	-0.0017 (6)	0.0026 (5)	-0.0009 (6)
C18	0.0179 (7)	0.0160 (7)	0.0143 (7)	-0.0020 (6)	0.0000 (5)	-0.0009 (5)
C19	0.0167 (7)	0.0150 (7)	0.0162 (7)	0.0017 (5)	0.0020 (5)	-0.0013 (5)
N3	0.0209 (6)	0.0216 (6)	0.0235 (7)	0.0063 (5)	0.0081 (5)	0.0010 (5)
N4	0.0241 (7)	0.0167 (6)	0.0263 (7)	-0.0010 (5)	0.0091 (5)	0.0041 (5)
C20	0.0400 (10)	0.0374 (10)	0.0298 (9)	0.0231 (8)	0.0042 (7)	0.0039 (8)
C21	0.0317 (9)	0.0311 (9)	0.0515 (11)	0.0105 (8)	0.0228 (8)	0.0035 (8)
C22	0.0336 (9)	0.0212 (8)	0.0424 (10)	-0.0047 (7)	0.0176 (8)	0.0052 (7)
C23	0.0356 (10)	0.0219 (8)	0.0543 (12)	0.0070 (7)	0.0190 (9)	0.0157 (8)
C24	0.0274 (9)	0.0335 (9)	0.0315 (9)	0.0003 (7)	0.0012 (7)	-0.0130 (7)
C25	0.0278 (9)	0.0335 (9)	0.0405 (10)	-0.0119 (7)	0.0129 (7)	-0.0069 (8)
C26	0.0376 (10)	0.0169 (8)	0.0474 (11)	0.0013 (7)	0.0056 (8)	0.0039 (7)

Geometric parameters (Å, °)

Sil—Cl	1.8737 (17)	C12—H20	0.9800
Si1—C3	1.8744 (16)	C12—H21	0.9800
Si1—C2	1.8755 (16)	C13—H22	0.9800
Si1—Si2	2.3488 (5)	C13—H23	0.9800
Si2—C4	1.8887 (14)	C13—H24	0.9800
Si2-C14	1.8890 (14)	C14—C19	1.395 (2)
Si2—Si3	2.3465 (5)	C14—C15	1.398 (2)
Si3—C25	1.8751 (17)	C15—C16	1.400 (2)
Si3—C26	1.8762 (17)	C15—H25	0.9500
Si3—C24	1.8767 (17)	C16—C17	1.401 (2)
C1—H1	0.9800	C16—N3	1.4151 (18)
С1—Н2	0.9800	C17—C18	1.404 (2)
С1—Н3	0.9800	C17—H26	0.9500
С2—Н4	0.9800	C18—N4	1.4023 (18)
С2—Н5	0.9800	C18—C19	1.404 (2)
С2—Н6	0.9800	C19—H27	0.9500
С3—Н7	0.9800	N3—C21	1.452 (2)
С3—Н8	0.9800	N3—C20	1.460 (2)
С3—Н9	0.9800	N4—C23	1.446 (2)
C4—C9	1.393 (2)	N4—C22	1.4499 (19)

C4—C5	1.3971 (19)	C20—H28	0.9800
C5—C6	1.406 (2)	С20—Н29	0.9800
C5—H10	0.9500	С20—Н30	0.9800
C6—N1	1.3959 (18)	C21—H31	0.9800
C6—C7	1.403 (2)	C21—H32	0.9800
C7—C8	1.402 (2)	С21—Н33	0.9800
C7—H11	0.9500	С22—Н34	0.9800
C8—N2	1.3911 (19)	С22—Н35	0.9800
C8—C9	1.404 (2)	С22—Н36	0.9800
C9—H12	0.9500	С23—Н37	0.9800
N1-C11	1 4473 (19)	C23—H38	0.9800
N1—C10	1.4562 (19)	C23—H39	0.9800
C10—H13	0.9800	C24—H40	0.9800
C10—H14	0.9800	C24—H41	0.9800
C10—H15	0.9800	C24—H42	0.9800
C11—H16	0.9800	C25—H43	0.9800
C11—H17	0.9800	C25—H44	0.9800
C11_H18	0.9800	C25_H45	0.9800
N2C12	1,4365(19)	C26—H46	0.9800
N2 C13	1.4503(19) 1.4423(10)	C26 H47	0.9800
C12_H19	0.9800	C26—H48	0.9800
	0.9000	C20 1140	0.9000
C1 = Si1 = C3	108 08 (8)	N2—C12—H21	109 5
C1 = Si1 = C2	108.21(9)	H19 - C12 - H21	109.5
C_3 —Si1—C2	100.21 (9)	H_{20} C_{12} H_{21}	109.5
C1 = Si1 = Si2	111 92 (6)	N_{2} C_{12} H_{21}	109.5
C_3 —Si1—Si2	105 68 (5)	N2H23	109.5
C_2 _Si1_Si2	113 20 (6)	H_{22} C_{13} H_{23}	109.5
C_{4} Si2 C_{14}	111.62 (6)	$N_2 = C_{13} = H_{23}$	109.5
$C_4 = S_{12} = C_{14}$	111.02(0) 104.95(4)	$H_{22} = C_{13} = H_{24}$	109.5
$C_{4} = S_{12} = S_{13}$	104.95(4) 112.35(5)	$H_{22} = C_{13} = H_{24}$	109.5
$C_{14} = S_{12} = S_{13}$	112.33(3)	1125 - C13 - 1124	109.3
$C_{4} = S_{12} = S_{11}$	111.97(3) 106.00(4)	$C_{19} = C_{14} = C_{15}$	119.40(13)
C14—S12—S11 S:2 S:2 S:1	100.00(4)	C15 - C14 - S12	120.00(10)
S15 - S12 - S11	110.06(2) 107.05(8)	C13 - C14 - S12	119.03(10) 120.01(12)
$C_{23} = S_{13} = C_{20}$	107.03(8) 108.08(8)	C14 - C15 - C10	120.91 (15)
C_{23} C_{23} C_{24} C_{26} C_{23} C_{24}	106.96 (8)	C14 - C15 - H25	119.5
$C_{20} = S_{13} = C_{24}$	110.04(6) 106.75(6)	C10 - C13 - H23	119.3
C_{23} S_{13} S_{12} S_{12} S_{12} S_{12} S_{13}	100.73(0) 112.60(6)	C15 - C16 - C17	110.00(13)
$C_{20} = S_{12} = S_{12}$	113.00(0)	C13 - C10 - N3	119.00(13)
C_{24}	109.03 (0)	C1/-C10-N3	121.47(13)
SII—CI—HI	109.5	C16 - C17 - C18	121.24 (13)
S11—C1—H2	109.5	C10 - C17 - H26	119.4
HI - CI - HZ	109.5	U18 - U1 / - H26	119.4
S11—C1—H3	109.5	N4	120.37 (13)
H1 - C1 - H3	109.5	N4-U18-U17	121.00 (13)
H2	109.5	C19—C18—C17	118.54 (13)
S11—C2—H4	109.5	C14—C19—C18	121.03 (13)
S11—C2—H5	109.5	C14—C19—H27	119.5

H4—C2—H5	109.5	C18—C19—H27	119.5
Si1—C2—H6	109.5	C16—N3—C21	117.02 (12)
H4—C2—H6	109.5	C16—N3—C20	115.40 (12)
Н5—С2—Н6	109.5	C21—N3—C20	112.20 (13)
Sil—C3—H7	109.5	C18—N4—C23	118.68 (12)
Si1—C3—H8	109.5	C18—N4—C22	119.02 (12)
H7—C3—H8	109.5	C23—N4—C22	112.84 (13)
Si1—C3—H9	109.5	N3—C20—H28	109.5
Н7—С3—Н9	109.5	N3—C20—H29	109.5
Н8—С3—Н9	109.5	H28—C20—H29	109.5
C9—C4—C5	119.86 (13)	N3—C20—H30	109.5
C9—C4—Si2	118.43 (10)	H28—C20—H30	109.5
C5—C4—Si2	121.45 (11)	H29—C20—H30	109.5
C4—C5—C6	120.33 (13)	N3—C21—H31	109.5
C4—C5—H10	119.8	N3—C21—H32	109.5
C6—C5—H10	119.8	H31—C21—H32	109.5
N1—C6—C7	120.08 (13)	N3—C21—H33	109.5
N1—C6—C5	120.96 (13)	H31—C21—H33	109.5
C7—C6—C5	118.95 (13)	Н32—С21—Н33	109.5
C8—C7—C6	121.30 (13)	N4—C22—H34	109.5
C8—C7—H11	119.4	N4—C22—H35	109.5
C6—C7—H11	119.4	H34—C22—H35	109.5
N2—C8—C7	120.67 (13)	N4—C22—H36	109.5
N2—C8—C9	120.83 (13)	Н34—С22—Н36	109.5
C7—C8—C9	118.50 (13)	Н35—С22—Н36	109.5
C4—C9—C8	121.05 (13)	N4—C23—H37	109.5
C4—C9—H12	119.5	N4—C23—H38	109.5
C8—C9—H12	119.5	Н37—С23—Н38	109.5
C6—N1—C11	118.99 (12)	N4—C23—H39	109.5
C6—N1—C10	118.25 (12)	Н37—С23—Н39	109.5
C11—N1—C10	116.55 (12)	Н38—С23—Н39	109.5
N1—C10—H13	109.5	Si3—C24—H40	109.5
N1—C10—H14	109.5	Si3—C24—H41	109.5
H13—C10—H14	109.5	H40—C24—H41	109.5
N1—C10—H15	109.5	Si3—C24—H42	109.5
H13—C10—H15	109.5	H40—C24—H42	109.5
H14—C10—H15	109.5	H41—C24—H42	109.5
N1—C11—H16	109.5	Si3—C25—H43	109.5
N1—C11—H17	109.5	Si3—C25—H44	109.5
H16—C11—H17	109.5	H43—C25—H44	109.5
N1—C11—H18	109.5	Si3—C25—H45	109.5
H16—C11—H18	109.5	H43—C25—H45	109.5
H17—C11—H18	109.5	H44—C25—H45	109.5
C8—N2—C12	120.48 (12)	Si3—C26—H46	109.5
C8—N2—C13	119.29 (12)	Si3—C26—H47	109.5
C12—N2—C13	119.17 (12)	H46—C26—H47	109.5
N2—C12—H19	109.5	Si3—C26—H48	109.5
N2—C12—H20	109.5	H46—C26—H48	109.5

data reports

H19—C12—H20	109.5	H47—C26—H48	109.5
C14—Si2—C4—C9	-145.45 (11)	C4—Si2—C14—C19	28.69 (13)
Si3—Si2—C4—C9	92.60 (11)	Si3—Si2—C14—C19	146.27 (10)
Si1—Si2—C4—C9	-26.80 (12)	Si1—Si2—C14—C19	-93.46 (11)
C14—Si2—C4—C5	40.35 (13)	C4—Si2—C14—C15	-157.41 (11)
Si3—Si2—C4—C5	-81.60 (12)	Si3—Si2—C14—C15	-39.83 (12)
Si1—Si2—C4—C5	159.00 (10)	Si1—Si2—C14—C15	80.44 (11)
C9—C4—C5—C6	-0.2 (2)	C19—C14—C15—C16	0.6 (2)
Si2—C4—C5—C6	173.90 (10)	Si2-C14-C15-C16	-173.39 (10)
C4—C5—C6—N1	-177.96 (13)	C14—C15—C16—C17	-1.2 (2)
C4—C5—C6—C7	0.6 (2)	C14—C15—C16—N3	-179.91 (12)
N1—C6—C7—C8	177.34 (13)	C15-C16-C17-C18	0.8 (2)
C5—C6—C7—C8	-1.3 (2)	N3-C16-C17-C18	179.53 (12)
C6—C7—C8—N2	-178.75 (14)	C16—C17—C18—N4	176.69 (13)
C6—C7—C8—C9	1.4 (2)	C16—C17—C18—C19	0.1 (2)
C5—C4—C9—C8	0.4 (2)	C15-C14-C19-C18	0.4 (2)
Si2—C4—C9—C8	-173.87 (11)	Si2—C14—C19—C18	174.32 (10)
N2—C8—C9—C4	179.17 (14)	N4-C18-C19-C14	-177.34 (13)
C7—C8—C9—C4	-1.0 (2)	C17—C18—C19—C14	-0.7 (2)
C7—C6—N1—C11	13.1 (2)	C15-C16-N3-C21	-179.75 (14)
C5-C6-N1-C11	-168.37 (13)	C17—C16—N3—C21	1.6 (2)
C7—C6—N1—C10	164.45 (13)	C15-C16-N3-C20	-44.38 (19)
C5-C6-N1-C10	-17.0 (2)	C17—C16—N3—C20	136.94 (15)
C7—C8—N2—C12	-3.3 (2)	C19—C18—N4—C23	-32.2 (2)
C9—C8—N2—C12	176.48 (14)	C17—C18—N4—C23	151.30 (15)
C7—C8—N2—C13	-171.42 (14)	C19—C18—N4—C22	-176.24 (13)
C9—C8—N2—C13	8.4 (2)	C17—C18—N4—C22	7.3 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C14–C19 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H4···Cg ⁱ	0.98	2.81	3.7869 (17)	172

Symmetry code: (i) x, -y+1/2, z+1/2.