Received 9 September 2020
Accepted 5 October 2020

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; N-oxide; oxime; hydrogen bonding; supramolecular structure.

CCDC reference: 2035503
Structural data: full structural data are available from iucrdata.iucr.org

Pyridine-4-carboxamidoxime N -oxide

Clifford W. Padgett,* Kirkland Sheriff and Will E. Lynch

Georgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA. *Correspondence e-mail: cpadgett@georgiasouthern.edu

Our work in the area of synthesis of metal-organic frameworks (MOFs) based on organic N-oxides led to the crystallization of pyridine-4-carboxamidoxime N-oxide. Herein we report the first crystal structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$ [systematic name: (Z)-4-(N^{\prime}-hydroxycarbamimidoyl)pyridine N-oxide]. The hydroxycarbamimidoyl group is essentially coplanar with the aromatic ring, r.m.s.d. $=0.112 \AA$. The compound crystallizes in hydrogenbonding layers built from the formation of strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the oxime oxygen atom and the oxygen atom of the N-oxide, and the formation of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between one amine nitrogen atom and the N-oxide oxygen atom. These combined build $R_{4}^{3}(24)$ ring motifs in the crystal. The crystal structure has no $\pi-\pi$ interactions.

Chemical scheme

Structure description

Since their first reported syntheses (Meisenheimer et al., 1926), pyridine N-oxide and related compounds have garnered much interest in chemistry. We are particularly interested in their uses in coordination polymers and as potential catalysts. The utility of these aromatic N-oxides to facilitate organic oxotransfer reactions has been well documented over the years (see, for example: Espenson, 2003). Many of these reactions are actually catalyzed by transition-metal interactions with the N-oxide ligands (see, for example: Moustafa et al., 2014). Others have reported their use as coordination polymers (Ren et al., 2018). We have also previously reported N-oxides used in coordination polymers of Mn (Kang et al., 2017 and Lynch et al., 2018). In this work, the syntheses of metal complexes of the title compound were attempted $(\mathrm{Mn}, \mathrm{Cu}, \mathrm{Ce}, \mathrm{Nd}, \mathrm{Er}$, and Pr$)$ by mixing the halide or nitrate salts of the metals with the title compound in methanol; unfortunately, all resulting crystals were of the uncomplexed ligand.

Herein we report the first crystal structure of pyridine-4-carboxamidoxime N-oxide (Fig. 1), which crystallizes in the monoclinic space group $P 2_{1} / c$. The molecule is nearly

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.91(3)$	$1.77(3)$	$2.6747(19)$	$172(2)$
N3-H3A ${ }^{\text {1i }}$	$0.91(2)$	$2.00(2)$	$2.899(2)$	$167(2)$

Symmetry codes: (i) $x, y+1, z$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.
planar with a r.m.s.d. of $0.112 \AA$ for all non-hydrogen atoms, with the carbamimidoyl group slightly rotated by 15.09 (8) ${ }^{\circ}$ with respect to the pyridine ring plane. $\mathrm{N} 1-\mathrm{O} 1$ has a distance of $1.3226(18) \AA$ and is consistent with normal N-oxide distances. The crystal structure contains a strong intermolecular hydrogen bond between $\mathrm{O} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$ which forms a chain running parallel to the b axis; the $\mathrm{O} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$ separation is 2.6747 (19) A. Another hydrogen bond is formed between N3...O1 $1^{\text {ii }}$ which links neighboring chains together; the $\mathrm{N} 3 \ldots \mathrm{O} 1^{\mathrm{ii}}$ separation is 2.899 (2) \AA [symmetry codes: (i) x, $y+1, z$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$, see Table 1].

These hydrogen bonds link four molecules together and form an $R_{4}^{3}(24)$ ring motif in the crystal. Each molecule is also part of four different $R(24)$ synthons, generating sheets of hydrogen-bonding molecules parallel to the (100) face of the unit cell (Fig. 2). There are no other short contacts or $\pi-\pi$ interactions observed in the crystal.

Synthesis and crystallization

An amount of 0.025 g of pyridine-4-carboxamidoxime N-oxide (Alfa Aesar) was weighed and dissolved in a 25 ml beaker in enough methanol to form a solution that allowed to slowly evaporate at room temperature. The clear crystals were analyzed on a Rigaku Xtal Miniflex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1
A view of the molecular structure of the title compound, with the atomlabeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
M_{r}	153.15
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	170
$a, b, c(\AA)$	$7.4130(8), 9.2858(7), 10.1238(10)$
$\beta\left({ }^{\circ}\right)$	$102.841(10)$
$V\left(\AA^{3}\right)$	$679.45(11)$
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.12
Crystal size (mm)	$0.35 \times 0.2 \times 0.2$
Data collection	Rigaku XtaLAB mini
Diffractometer	Multi-scan $(C r y s A l i s ~ P R O ;$ Rigaku
Absorption correction	OD, 2018)
	$0.940,1.000$
$T_{\text {min }}, T_{\text {max }}$	$5858,1238,961$
No. of measured, independent and	
observed $[I>2 \sigma(I)]$ reflections	0.034
$R_{\text {int }}$	0.602
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.039,0.101,1.04$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	1238
No. of reflections	113
No. of parameters	3
No. of restraints	H atoms treated by a mixture of
H-atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.17,-0.15$

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Acknowledgements

The authors wish to thank Georgia Southern University and the Department of Chemistry and Biochemistry for financial support of the department X-ray facility.

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Espenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.

Figure 2
Crystal packing diagram of title compound viewed along [100]. Hydrogen bonds are colored red.

Kang, L., Lynch, G., Lynch, W. \& Padgett, C. (2017). Acta Cryst. E73, 1434-1438.
Lynch, W., Lynch, G., Sheriff, K. \& Padgett, C. (2018). Acta Cryst. E74, 1405-1410.
Meisenheimer, J. (1926). Ber. Dtsch. Chem. Ges. 59, 1848-1853.
Moustafa, M. E., Boyle, P. D. \& Puddephatt, R. J. (2014). Organometallics, 33, 5402-5413.

Ren, X.-H., Wang, P., Cheng, J.-Y. \& Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145-151.
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2020). 5, x201335 [https://doi.org/10.1107/S2414314620013358]

Pyridine-4-carboxamidoxime N-oxide

Clifford W. Padgett, Kirkland Sheriff and Will E. Lynch

(Z)-4-(N^{\prime}-Hydroxycarbamimidoyl)pyridine N-oxide

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=153.15$
Monoclinic, $P 2{ }_{1} / c$
$a=7.4130$ (8) Å
$b=9.2858(7) \AA$
$c=10.1238(10) \AA$
$\beta=102.841(10)^{\circ}$
$V=679.45(11) \AA^{3}$
$Z=4$

Data collection

Rigaku XtaLAB mini diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite Monochromator monochromator
Detector resolution: 13.6612 pixels mm^{-1}
ω-scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.101$
$S=1.04$
1238 reflections
113 parameters
3 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
$F(000)=320$
$D_{\mathrm{x}}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3017 reflections
$\theta=2.1-32.6^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=170 \mathrm{~K}$
Block, clear dark colourless
$0.35 \times 0.2 \times 0.2 \mathrm{~mm}$
$T_{\min }=0.940, T_{\max }=1.000$
5858 measured reflections
1238 independent reflections
961 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-8 \rightarrow 8$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 12$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0443 P)^{2}+0.2172 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.14$ e \AA^{-3}
Extinction correction: SHELXL-2018/1
(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.007 (2)

Special details

Refinement. All carbon-bound H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}) . \mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ hydrogen atoms were refined with free coordinates and isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.7185(2)$	$0.20253(15)$	$0.40257(15)$	$0.0361(4)$
C1	$0.6365(3)$	$0.31255(19)$	$0.32458(18)$	$0.0392(5)$
H1	0.565809	0.293556	0.235921	0.047^{*}
O1	$0.6953(2)$	$0.06920(13)$	$0.35596(13)$	$0.0498(4)$
C2	$0.6543(2)$	$0.45181(18)$	$0.37200(17)$	$0.0371(5)$
H2	0.596971	0.528186	0.315518	0.044^{*}
N2	$0.7210(2)$	$0.73345(15)$	$0.47364(16)$	$0.0434(4)$
O2	$0.7388(2)$	$0.86472(14)$	$0.54650(15)$	$0.0628(5)$
H2A	$0.713(3)$	$0.933(3)$	$0.481(2)$	$0.084(8)^{*}$
C3	$0.7554(2)$	$0.48156(17)$	$0.50187(16)$	$0.0311(4)$
N3	$0.8319(3)$	$0.64526(18)$	$0.69433(16)$	$0.0450(5)$
H3A	$0.807(3)$	$0.572(2)$	$0.748(2)$	$0.066(7)^{*}$
H3B	$0.805(3)$	$0.7337(18)$	$0.722(2)$	$0.059(7)^{*}$
C4	$0.8403(3)$	$0.36626(19)$	$0.57809(18)$	$0.0382(5)$
H4	0.912748	0.382572	0.666750	0.046^{*}
C5	$0.8210(3)$	$0.22887(19)$	$0.52697(19)$	$0.0407(5)$
H5	0.881159	0.151356	0.580441	0.049^{*}
C6	$0.7673(2)$	$0.62923(18)$	$0.55763(17)$	$0.0337(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0481(9)$	$0.0226(7)$	$0.0376(8)$	$0.0000(7)$	$0.0092(7)$	$-0.0035(6)$
C1	$0.0496(11)$	$0.0309(10)$	$0.0334(9)$	$0.0011(8)$	$0.0016(8)$	$-0.0018(8)$
O 1	$0.0790(10)$	$0.0213(7)$	$0.0470(8)$	$-0.0002(6)$	$0.0098(7)$	$-0.0077(6)$
C 2	$0.0468(11)$	$0.0263(9)$	$0.0359(10)$	$0.0036(8)$	$0.0044(8)$	$0.0038(7)$
N 2	$0.0670(11)$	$0.0213(8)$	$0.0419(9)$	$-0.0020(7)$	$0.0119(8)$	$-0.0021(7)$
O2	$0.1140(14)$	$0.0213(7)$	$0.0520(9)$	$-0.0023(8)$	$0.0158(9)$	$-0.0038(7)$
C3	$0.0334(9)$	$0.0255(9)$	$0.0348(9)$	$-0.0015(7)$	$0.0083(8)$	$-0.0008(7)$
N 3	$0.0656(11)$	$0.0286(9)$	$0.0387(9)$	$-0.0060(8)$	$0.0068(8)$	$-0.0042(7)$
C4	$0.0446(11)$	$0.0299(9)$	$0.0360(10)$	$0.0018(8)$	$0.0002(8)$	$-0.0005(8)$
C5	$0.0517(11)$	$0.0288(10)$	$0.0377(10)$	$0.0064(8)$	$0.0018(9)$	$0.0036(8)$
C6	$0.0382(10)$	$0.0265(9)$	$0.0365(10)$	$-0.0046(7)$	$0.0088(8)$	$-0.0013(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 1$	$1.350(2)$	$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	$0.91(3)$
$\mathrm{N} 1-\mathrm{O} 1$	$1.3226(18)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.386(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.341(2)$	$\mathrm{C} 3-\mathrm{C} 6$	$1.478(2)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{~N} 3-\mathrm{H} 3 \mathrm{~A}$	$0.912(16)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.376(2)$	$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	$0.903(15)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{~N} 3-\mathrm{C} 6$	$1.368(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.389(2)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{~N} 2-\mathrm{O} 2$	$1.4156(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.372(2)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.284(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500

O1-N1-C1	119.59 (15)	C4-C3-C6	121.51 (15)
O1-N1-C5	120.50 (15)	H3A-N3-H3B	114 (2)
C5-N1-C1	119.91 (15)	C6-N3-H3A	116.5 (14)
N1-C1-H1	119.6	C6-N3-H3B	111.1 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	120.77 (16)	C3-C4-H4	119.6
C2-C1-H1	119.6	C5-C4-C3	120.77 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.8	C5-C4-H4	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.47 (16)	N1-C5-C4	120.90 (16)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.8	N1-C5-H5	119.5
C6-N2-O2	108.89 (15)	C4-C5-H5	119.5
$\mathrm{N} 2-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	103.8 (16)	N2-C6-C3	117.52 (15)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	121.33 (15)	N2-C6-N3	124.75 (16)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	117.14 (16)	N3-C6-C3	117.71 (15)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.7 (3)	C2-C3-C6-N3	165.27 (17)
C1-N1-C5-C4	1.7 (3)	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 3$	179.01 (15)
C1-C2-C3-C4	1.8 (3)	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 3$	-3.0 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	-176.45 (16)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	-0.5 (3)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	178.21 (17)	C4-C3-C6-N2	165.18 (17)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	-177.58 (17)	C4-C3-C6-N3	-13.0 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-1.2 (3)	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-1.1 (3)
C2-C3-C6-N2	-16.6 (3)	C6-C3-C4-C5	177.05 (17)

Hydrogen-bond geometry $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.91(3)$	$1.77(3)$	$2.6747(19)$	$172(2)$
$\mathrm{N} 3 — \mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.91(2)$	$2.00(2)$	$2.899(2)$	$167(2)$

Symmetry codes: (i) $x, y+1, z$; (ii) $x,-y+1 / 2, z+1 / 2$.

