ISSN 2414-3146

Received 8 October 2020 Accepted 26 October 2020

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; 1,3-thiazolidine-2thione; cadmium centre; hydrogen bonding.

CCDC reference: 2040604

Structural data: full structural data are available from iucrdata.iucr.org

catena-Poly[[chloridotris(1,3-thiazolidine-2-thione*κS*)cadmium(II)]-*μ*-chlorido]

Aboubacar Diop,^a* Tidiane Diop,^a Antoine Blaise Kama,^a Cheikh Abdou Khadre Diop^a and Nikolay Tumanov^b

^aLaboratoire de Chimie Minérale et Analytique (LA.CHI.MI.A), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and ^bDepartement de Chimie, Université de Namur, Rue de Bruxelles 61-5000, Namur, Belgium. *Correspondence e-mail: aboubacar.diop@ucad.edu.sn

The synthesis and characterization of poly[dichloridotri(1,3-thiazolidine-2-thione)cadmium(II)], $[CdCl_2(C_3H_5NS_2)_3]_n$, prepared from $CdCl_2 \cdot H_2O$ and $C_3H_5NS_2$ (tzdSH) in a 1:3 ratio, are described. The Cd^{II} cation is coordinated by three 1,3-thiazolidine-2-thione molecules and three Cl^- anions in a distorted octahedral environment. The Cd metal centres are connected *via* Cl^- ligands, creating polymeric chains running along the *a*-axis direction. The conformation of the chains is stabilized by $N-H \cdots Cl$ hydrogen bonds.

Structure description

1,3-Thiazolidine-2-thione (tzdSH: $C_3H_5NS_2$), is a well-known heterocyclic thione/thiol ligand. Crystallographic studies and investigations of its modes of coordination have been reported (Saithong *et al.*, 2007). We are interested in the coordination behaviour and structure of tzdSH complexes with Cd^{II} chloride. The synthesis is accompanied by a transformation of the tzdSH (tzdSH: $C_3H_5NS_2$, thiol form) into a tzdt ligand (tzdt: $C_3H_5NS_2$, thion form). A similar transformation was described previously by Saithong *et al.* (2014). Metal complexes of thiones and thionates were reviewed by Raper (1997).

Cadmium (II) is known to form a wide variety of 1:1 to 1:4 complexes with thiones, where the structural arrangements are generally tetrahedral and octahedral coordination environments (Mahmood *et al.*, 2018). The 1:1 complexes, for example [Cd(Melmt)-(S_eCN)] (Melmt = *N*-methylimidazolidine-2-thione; Fettouhi *et al.*, 2008) usually exist in the polymeric form. The 1:2 complexes such as [Cd(Dmtu)₂X₂] (Dmtu = N,N'-dimethylthiourea- κS ; X = Cl, Br, I; Ahmad *et al.*, 2011) are the most common and often consist of discrete monomeric molecules with a terahedrally (Moloto *et al.*, 2003) or octahedrally (Mahmood *et al.*, 2012) coordinated Cd^{II} ion. The 1:3 compounds are rare:

Table	1	
Hydrog	gen-bond geometry (Å, °)	•

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots Cl1^i$	0.86	2.43	3.260 (4)	163
$N2-H2\cdots Cl1^i$	0.86	2.47	3.314 (4)	168
N3-H3···Cl2	0.86	2.41	3.165 (4)	147
$C8-H8B\cdots Cl1^{ii}$	0.97	2.82	3.781 (6)	171

Symmetry codes: (i) -x - 1, -y - 1, $z + \frac{1}{2}$; (ii) x - 1, y, z.

the structure of $[Cd(Tu)_3(SO_4)]$ shows that the complex is a dimer, and the coordination around the metal atom is intermediate between square pyramidal and trigonal bipyramidal (Corao & Baggio, 1969). The 1:4 complexes may be ionic or non-ionic (Mahmood *et al.*, 2018).

The above structural studies show that thiones coordinate to cadmium (II) *via* the sulfur atom. To further investigate the structural aspects of such complexes, we report in this work a complex with a Cd^{II}:thione ratio of 1:23. The asymmetric unit consists of a cadmium (II) ion bonded to three 1,3-thia-zolidine-2-thione moieties *via* the exocyclic sulfur atom and two Cl atoms (Fig. 1). The Cd–S and Cd–Cl bond lengths are in the range 2.7004 (11)–2.7347 (13) and 2.5430 (12)–2.7258 (16) Å, respectively. The bond lengths are slightly different from those reported in the literature [Cd–S = 2.604 Å and Cd–Cl = 2.7105 Å; Bell *et al.*, 2004]. This may be due to the intramolecular hydrogen bonds observed in the crystal structure.

In the crystal, one of Cl^- anions connects two neighbouring Cd^{II} centers leading to polymeric chains. No hydrogen bonds are observed between the chains. The structure of the compound can be described as parallel chains running along the *a*-axis direction. The conformation of the chains is stabilized by $N-H\cdots Cl$ hydrogen bonds (Table 1, Fig. 2).

Table 2Experimental details.

Crystal data	
Chemical formula	$[CdCl_2(C_3H_5NS_2)_3]$
M _r	540.90
Crystal system, space group	Orthorhombic, <i>Pna</i> 2 ₁
Temperature (K)	295
a, b, c (Å)	9.2014 (3), 19.3472 (6), 10.5827 (3)
$V(Å^3)$	1883.94 (9)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.10
Crystal size (mm)	$0.76 \times 0.50 \times 0.14$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur, Ruby, Gemini Ultra
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.242, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12033, 5594, 4781
R _{int}	0.026
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.069, 1.01
No. of reflections	5594
No. of parameters	190
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.40, -0.79
Absolute structure	Flack <i>x</i> determined using 1872 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.010 (19)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a) and SHELXL2018/3 (Sheldrick, 2015b).

Synthesis and crystallization

Figure 1

The asymmetric unit of title compound with displacement ellipsoids drawn at the 50% probability level.

In a round-bottom flask, to the ligand (tzdSH: $C_3H_5NS_2$) (15 mmol, 1.79 g) in 5 mL of 1,4-dioxan, a solution of $CdCl_2 \cdot H_2O$ (5 mmol, 1.01 g) in 5 mL of distilled water was added. The mixture was refluxed for 4 h. Light-yellow crystals

Figure 2 Packing diagram of the title compound. $N-H\cdots$ Cl hydrogen bonds are show as light blue dashed lines.

appeared after the light yellow filtrate had been kept at room temperature for two days (yield 75%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the crystallographic service of Chemistry Department of Namur University (Belgium) for the data collection.

Funding information

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.

References

Ahmad, S., Altaf, M., Stoeckli-Evans, H., Isab, M. R., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. **41**, 1099–1104.

- Bell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). *Inorg. Chim. Acta*, **357**, 2091–2099.
- Corao, E. & Baggio, S. (1969). Inorg. Chim. Acta, 3, 617-622.
- Fettouhi, M., Wazeer, M. I. M. & Isab, A. A. (2008). Inorg. Chem. Commun. 11, 252–255.
- Mahmood, R., Ahmad, S., Fettouhi, M., Roisnel, T., Gilani, M. A., Mehmood, K., Murtaza, G. & Isab, A. A. (2018). J. Mol. Struct. 1156, 235–242.
- Mahmood, R., Ghulam Hussain, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2012). Acta Cryst. E68, m1352-m1353.
- Moloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). *Polyhedron*, 22, 595–603.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Saithong, S., Klongkleaw, P., Pakawatchai, C. & Mokakul, J. (2014). *Acta Cryst.* E70, 90–93.
- Saithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857–m858.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2020). **5**, x201423 [https://doi.org/10.1107/S2414314620014236]

catena-Poly[[chloridotris(1,3-thiazolidine-2-thione-*kS*)cadmium(II)]-*µ*-chlorido]

Aboubacar Diop, Tidiane Diop, Antoine Blaise Kama, Cheikh Abdou Khadre Diop and Nikolay Tumanov

catena-Poly[[chloridotris(1,3-thiazolidine-2-thione-ĸS)cadmium(II)]-µ-chlorido]

Crystal data

 $\begin{bmatrix} CdCl_2(C_3H_5NS_2)_3 \end{bmatrix} M_r = 540.90 \\ Orthorhombic, Pna2_1 \\ a = 9.2014 (3) Å \\ b = 19.3472 (6) Å \\ c = 10.5827 (3) Å \\ V = 1883.94 (9) Å^3 \\ Z = 4 \\ F(000) = 1072 \end{bmatrix}$

Data collection

Oxford Diffraction Xcalibur, Ruby, Gemini Ultra diffractometer Graphite monochromator Detector resolution: 10.3712 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2018) $T_{\min} = 0.242, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.069$ S = 1.015594 reflections 190 parameters 1 restraint Primary atom site location: dual Secondary atom site location: dual Hydrogen site location: mixed $D_x = 1.907 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4396 reflections $\theta = 3.1-32.5^{\circ}$ $\mu = 2.10 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.76 \times 0.50 \times 0.14 \text{ mm}$

12033 measured reflections 5594 independent reflections 4781 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 30.5^\circ$, $\theta_{min} = 2.1^\circ$ $h = -12 \rightarrow 13$ $k = -27 \rightarrow 27$ $l = -14 \rightarrow 15$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0275P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.40 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.78 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1872 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.010 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were refined using a riding model with N—H = 0.86 Å or C—H = 0.97 Å and U(H)=1.2 U_{eq} (C,N).

	X	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	-0.51629 (3)	-0.49641 (2)	-0.38259 (5)	0.03293 (9)
Cl1	-0.46306 (13)	-0.51075 (6)	-0.63461 (14)	0.0402 (3)
Cl2	-0.66097 (13)	-0.38657 (6)	-0.42258 (12)	0.0459 (3)
S4	-0.17107 (15)	-0.28169 (7)	-0.32587 (13)	0.0514 (3)
S5	-0.26212 (12)	-0.42407 (7)	-0.39534 (14)	0.0470 (3)
S6	-0.4464 (3)	-0.76006 (9)	-0.31381 (18)	0.0922 (7)
S7	-0.36450 (15)	-0.61793 (7)	-0.38167 (16)	0.0594 (4)
S8	-1.01474 (16)	-0.59987 (9)	-0.54807 (18)	0.0592 (4)
S9	-0.75414 (11)	-0.57811 (6)	-0.38890 (14)	0.0401 (2)
N1	-0.3576 (4)	-0.3483 (2)	-0.1994 (3)	0.0415 (9)
H1	-0.420149	-0.379411	-0.179291	0.050*
N2	-0.5236 (5)	-0.6583 (2)	-0.1835 (4)	0.0483 (11)
H2	-0.532251	-0.616145	-0.158878	0.058*
N3	-0.8589 (5)	-0.4936 (2)	-0.5693 (4)	0.0515 (12)
Н3	-0.786934	-0.465732	-0.559655	0.062*
C1	-0.3397 (6)	-0.2853 (3)	-0.1234 (5)	0.0504 (13)
H1A	-0.282523	-0.295177	-0.048554	0.061*
H1B	-0.433815	-0.267960	-0.097001	0.061*
C2	-0.2647 (6)	-0.2334 (3)	-0.2030 (5)	0.0574 (14)
H2A	-0.195748	-0.207054	-0.153008	0.069*
H2B	-0.334355	-0.201629	-0.239964	0.069*
C3	-0.2750 (5)	-0.3550 (2)	-0.2982 (4)	0.0352 (10)
C4	-0.5903 (8)	-0.7138 (3)	-0.1123 (6)	0.0678 (18)
H4A	-0.695161	-0.708523	-0.112475	0.081*
H4B	-0.556857	-0.712710	-0.025382	0.081*
C5	-0.5487 (8)	-0.7815 (3)	-0.1731 (6)	0.075 (2)
H5A	-0.634932	-0.807737	-0.194980	0.090*
H5B	-0.489916	-0.808860	-0.115812	0.090*
C6	-0.4508 (5)	-0.6730 (3)	-0.2845 (4)	0.0403 (11)
C7	-0.9747 (5)	-0.4783 (3)	-0.6584 (6)	0.0509 (14)
H7A	-0.934127	-0.462911	-0.738207	0.061*
H7B	-1.036634	-0.441940	-0.625452	0.061*
C8	-1.0607 (6)	-0.5430 (3)	-0.6772 (6)	0.0596 (16)
H8A	-1.035978	-0.564345	-0.757395	0.072*
H8B	-1.163928	-0.532937	-0.676816	0.072*
C9	-0.8670 (5)	-0.5509 (3)	-0.5041 (4)	0.0356 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.04166 (16)	0.03310 (15)	0.02402 (13)	-0.00411 (12)	0.0009 (2)	-0.00111 (16)
Cl1	0.0570 (9)	0.0418 (7)	0.0218 (4)	-0.0097 (5)	0.0013 (7)	-0.0008 (6)
Cl2	0.0537 (6)	0.0311 (6)	0.0529 (7)	0.0001 (5)	0.0046 (5)	-0.0039 (5)
S4	0.0563 (7)	0.0483 (8)	0.0496 (6)	-0.0205 (7)	0.0097 (6)	-0.0042 (7)
S5	0.0468 (6)	0.0463 (7)	0.0478 (7)	-0.0101 (5)	0.0080 (6)	-0.0116 (7)
S6	0.175 (2)	0.0366 (8)	0.0653 (9)	0.0215 (12)	0.0102 (13)	-0.0082 (8)
S7	0.0625 (7)	0.0549 (8)	0.0609 (8)	0.0190 (7)	0.0232 (9)	0.0123 (9)
S 8	0.0489 (8)	0.0566 (10)	0.0720 (9)	-0.0200 (7)	-0.0169 (7)	0.0102 (8)
S9	0.0440 (5)	0.0367 (5)	0.0396 (5)	-0.0068 (4)	-0.0045 (6)	0.0030 (7)
N1	0.049 (2)	0.037 (2)	0.038 (2)	-0.012 (2)	0.0054 (18)	-0.0005 (18)
N2	0.070 (3)	0.034 (2)	0.041 (2)	-0.005 (2)	0.006 (2)	-0.0051 (19)
N3	0.048 (3)	0.045 (3)	0.062 (3)	-0.014 (2)	-0.018 (2)	0.011 (2)
C1	0.068 (3)	0.039 (3)	0.044 (3)	-0.002 (3)	0.003 (3)	-0.003 (3)
C2	0.075 (4)	0.042 (3)	0.056 (3)	-0.011 (3)	0.007 (3)	-0.010 (3)
C3	0.037 (2)	0.036 (2)	0.033 (2)	-0.005 (2)	-0.0081 (18)	0.0030 (19)
C4	0.085 (5)	0.058 (4)	0.060 (4)	-0.021 (4)	0.005 (3)	0.006 (3)
C5	0.092 (5)	0.047 (4)	0.087 (5)	-0.011 (4)	-0.014 (4)	0.010 (4)
C6	0.044 (2)	0.036 (3)	0.041 (3)	0.007 (2)	-0.008 (2)	-0.001 (2)
C7	0.047 (3)	0.049 (3)	0.057 (4)	0.009 (3)	-0.013 (3)	0.005 (3)
C8	0.044 (3)	0.064 (4)	0.071 (4)	-0.003 (3)	-0.021 (3)	0.002 (3)
C9	0.034 (2)	0.037 (3)	0.036 (2)	0.001 (2)	0.0045 (17)	-0.0071 (19)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cd1—Cl2	2.5430 (12)	N2—H2	0.8600
Cd1—Cl1 ⁱ	2.6348 (16)	N3—C9	1.307 (6)
Cd1—S9	2.7004 (11)	N3—C7	1.454 (7)
Cd1—Cl1	2.7258 (16)	N3—H3	0.8600
Cd1—S5	2.7289 (12)	C1—C2	1.482 (7)
Cd1—S7	2.7347 (13)	C1—H1A	0.9700
S4—C3	1.736 (5)	C1—H1B	0.9700
S4—C2	1.818 (5)	C2—H2A	0.9700
S5—C3	1.690 (5)	C2—H2B	0.9700
S6—C6	1.714 (5)	C4—C5	1.509 (9)
S6—C5	1.810(7)	C4—H4A	0.9700
S7—C6	1.679 (5)	C4—H4B	0.9700
S8—C9	1.721 (5)	С5—Н5А	0.9700
S8—C8	1.804 (6)	С5—Н5В	0.9700
S9—C9	1.686 (5)	C7—C8	1.495 (9)
N1—C3	1.299 (5)	C7—H7A	0.9700
N1-C1	1.469 (6)	C7—H7B	0.9700
N1—H1	0.8600	C8—H8A	0.9700
N2-C6	1.293 (6)	C8—H8B	0.9700
N2—C4	1.448 (7)		

Cl2—Cd1—Cl1 ⁱ	94.82 (4)	C1—C2—H2A	110.5
Cl2—Cd1—S9	93.48 (4)	S4—C2—H2A	110.5
Cl1 ⁱ —Cd1—S9	89.83 (4)	C1—C2—H2B	110.5
Cl2—Cd1—Cl1	90.94 (4)	S4—C2—H2B	110.5
Cl1 ⁱ —Cd1—Cl1	173.143 (17)	H2A—C2—H2B	108.7
S9—Cd1—Cl1	93.55 (4)	N1—C3—S5	127.6 (4)
Cl2—Cd1—S5	90.68 (4)	N1—C3—S4	112.1 (4)
Cl1 ⁱ —Cd1—S5	94.82 (4)	S5—C3—S4	120.3 (3)
S9—Cd1—S5	173.48 (5)	N2—C4—C5	108.3 (5)
Cl1—Cd1—S5	81.36 (4)	N2—C4—H4A	110.0
Cl2—Cd1—S7	170.53 (6)	C5—C4—H4A	110.0
$Cl1^{i}$ — $Cd1$ — $S7$	94.51 (5)	N2—C4—H4B	110.0
S9—Cd1—S7	84 88 (4)	C5-C4-H4B	110.0
Cl1—Cd1—\$7	79 87 (5)	H4A - C4 - H4B	108.4
S5-Cd1-S7	90 19 (4)	C4-C5-S6	106.5 (4)
$Cd1^{ii}$ $Cd1$ $Cd1$	162.98 (5)	C4 - C5 - H5A	110.4
$C_3 = S_4 = C_2$	922(2)	86-C5-H5A	110.1
C_{3} S_{5} C_{41}	108.37(16)	C4-C5-H5B	110.4
C6 S6 C5	108.37(10) 03.7(3)	86 C5 H5B	110.4
C6 S7 Cd1	93.7 (5) 107.80 (17)	H5A C5 H5B	108.6
$C_0 = S_1 = C_1$	107.80(17) 02.1(2)	$\frac{113}{113} = \frac{113}{113} = $	108.0 127.7(4)
$C_{2} = 58 = C_{3}$	100.53(18)	$N_2 = C_0 = S_7$	127.7(4) 112.2(4)
C_{3} N1 C_{1}	109.33(10) 117.3(4)	N2-C0-50 87 C6 86	112.2(4) 1201(3)
$C_3 = N_1 = C_1$	117.3 (4)	37 - 60 - 30	120.1(3)
CI NI III	121.4	$N_{3} = C_{7} = U_{7}$	107.7 (3)
CI-NI-HI	121.4	$N_3 - C / - H / A$	110.2
C6 N2 C4	119.2 (5)	C_{A}	110.2
$C_0 - N_2 - H_2$	120.4	$N_3 - C_1 - H_1 B$	110.2
C4—N2—H2	120.4	C8 - C - H/B	110.2
C9 N3 C7	118.2 (5)	H/A - C/ - H/B	108.5
C9—N3—H3	120.9	C/C8S8	106.6 (4)
C/—N3—H3	120.9	С/—С8—Н8А	110.4
N1—C1—C2	107.7 (4)	S8—C8—H8A	110.4
N1—C1—H1A	110.2	С7—С8—Н8В	110.4
C2—C1—H1A	110.2	S8—C8—H8B	110.4
N1—C1—H1B	110.2	H8A—C8—H8B	108.6
C2—C1—H1B	110.2	N3—C9—S9	127.7 (4)
H1A—C1—H1B	108.5	N3—C9—S8	111.7 (4)
C1—C2—S4	106.1 (4)	S9—C9—S8	120.7 (3)
C3—N1—C1—C2	18.9 (6)	Cd1—S7—C6—N2	-32.2 (5)
N1—C1—C2—S4	-21.9 (5)	Cd1—S7—C6—S6	148.6 (2)
C3—S4—C2—C1	17.1 (4)	C5—S6—C6—N2	-1.8 (4)
C1—N1—C3—S5	174.6 (4)	C5—S6—C6—S7	177.5 (3)
C1—N1—C3—S4	-5.7 (5)	C9—N3—C7—C8	-14.1 (7)
Cd1—S5—C3—N1	25.0 (4)	N3—C7—C8—S8	16.8 (6)
Cd1—S5—C3—S4	-154.7 (2)	C9—S8—C8—C7	-13.4 (4)
C2—S4—C3—N1	-7.2 (4)	C7—N3—C9—S9	-175.6 (4)
C2—S4—C3—S5	172.5 (3)	C7—N3—C9—S8	3.8 (6)

data reports

C6—N2—C4—C5	3.6 (7)	Cd1—S9—C9—N3	-10.5 (5)
N2-C4-C5-S6	-4.4 (7)	Cd1—S9—C9—S8	170.1 (2)
C6—S6—C5—C4	3.6 (5)	C8—S8—C9—N3	6.1 (4)
C4—N2—C6—S7	-180.0 (4)	C8—S8—C9—S9	-174.4 (3)
C4—N2—C6—S6	-0.8 (6)		

Symmetry codes: (i) -*x*-1, -*y*-1, *z*+1/2; (ii) -*x*-1, -*y*-1, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···Cl1 ⁱ	0.86	2.43	3.260 (4)	163
N2—H2···Cl1 ⁱ	0.86	2.47	3.314 (4)	168
N3—H3…Cl2	0.86	2.41	3.165 (4)	147
C8—H8 <i>B</i> ···Cl1 ⁱⁱⁱ	0.97	2.82	3.781 (6)	171

Symmetry codes: (i) -*x*-1, -*y*-1, *z*+1/2; (iii) *x*-1, *y*, *z*.