

IUCrData

ISSN 2414-3146

Received 19 November 2020 Accepted 2 December 2020

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; natural product; ircinianin.

CCDC reference: 2047802

Structural data: full structural data are available from iucrdata.iucr.org

(2*S*,3'*S*,3a'*R*,5'*R*,7a'*R*)-5'-[(*E*)-5-(Furan-3-yl)-2methylpent-1-en-1-yl]-3-hydroxy-3',4,7'-trimethyl-1',2',3',3a',5',7a'-hexahydro-5*H*-spiro[furan-2,4'inden]-5-one

Thomas Majer,^a Dieter Schollmeyer,^b Pierre Koch^c and Harald Gross^a*

^aInstitute of Pharmaceutical Sciences, Department of Pharmaceutical Biology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, ^bDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and ^cInstitute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany. *Correspondence e-mail: harald.gross@uni-tuebingen.de

The title compound, ircinianin, $C_{25}H_{32}O_4$, belongs to the sesterterpene tetronic acid compound family and was isolated from the marine sponge *Ircinia wistarii*. These chemical scaffolds are pharmacologically relevant, since they represent a new class of glycine receptor modulators. The furan ring makes a dihedral angle of $35.14 (12)^\circ$ to the 4-hydroxy-3-methylfuran-2(5H)-one ring. The crystal packing is characterized by intermolecular $O-H \cdots O$ hydrogen bonds, which generate [010] chains.

Structure description

The genus *Ircinia* of the sea sponge family Irciniidae is a prolific source of natural products with a huge variety of different natural product classes like macrolides, alkaloids, steroids, peptides and terpenes (Coll *et al.*, 1997; Kondo *et al.*, 1992; Kobayashi *et al.*, 1995; Mau *et al.*, 1996; Chevallier *et al.*, 2006). Particularly, regarding the latter compound class, *Ircinia* spp. are known to produce unusual and rare terpenoids, especially sester-terpene tetronic acids in a linear and cyclic form, like ircinianin and its structural congeners (Hofheinz & Schönholzer, 1977; Barrow *et al.*, 1988; Coll *et al.*, 1997; Höller *et al.*, 1997; Balansa *et al.*, 2013; Balansa *et al.*, 2010).

Balansa *et al.* (2013) showed that these analogues exhibit a significant isoform-selective potentiation of glycine-gated chloride channel receptors (GlyRs). The compounds have

data reports

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathrm{H} \cdots $
$O29-H29\cdots O27^i$	0.84 (3)	1.80 (3)	2.6207 (18)	166 (3)

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

therefore the potential to be developed either as molecular tools to probe GlyR function or can serve as lead structures to treat GlyR-mediated neural disorders.

The title compound (Fig. 1) is a polycyclic sesterterpene tetronic acid with a furan moiety. The furan ring makes a dihedral angle of 35.14 (12)° to the 4-hydroxy-3-methylfuran-2(5H)-one ring. In the crystal, the molecules are linked by O-H···O hydrogen bonds (Table 1, Fig. 2), forming chains parallel to the *b* axis. The crystal structure of the title compound has already been reported in 1977 by researchers from the pharmaceutical company Hoffmann La Roche (Hofheinz & Schönholzer, 1977; CCDC reference: 1180878). However, in this study the hydrogen atoms were not refined, and only the relative stereochemistry could be deduced. The absolute structure was so far solely determined by asymmetric total synthesis in 1997 (Uenishi *et al.*, 1997).

Synthesis and crystallization

The title compound $C_{25}H_{32}O_4$ was isolated from the marine sponge *Ircinia wistarii*. The sample (voucher number HER6) was collected from Wistarii Reef, Heron Island, Great Barrier Reef, Australia in July 1998 from a depth of 20 m. After collection, the material was stored in EtOH and kept frozen at 253 K until use.

The sponge material (800 g, wet weight) was cut into smaller pieces (2 × 2 cm) and was extracted with a solvent mixture of CHCl₃/MeOH (1:1, ν/ν ; 2 l of volume per extraction step) for three times (after 4, 8 and 20 h). The extraction

Figure 1

Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

solvent of each step was collected and combined. After filtration and evaporation to drvness. 25.46 g crude extract was obtained. The crude extract was redissolved in MeOH and fractioned by preparative reversed phase open column chromatography [Polygoprep 60-50 C₁₈ (Macherey-Nagel) as stationary phase] using gravity and stepwise MeOH/H2O gradients with increasing lipophilicity and DCM. In total, eleven fractions were gained, and the ircinianin-enriched fraction (MeOH/H₂O - 90:10) was identified by LC-MS. This fraction was then purified by reversed phase HPLC [Luna Omega 5 μ m Polar C18 100 Å column, 250 \times 4.6 mm, at 1.2 ml min^{-1} and UV detection at 215 nm with a 3 min gradient elution, from 20:80 to 55:45 ACN/H₂O + 0.1% TFA, followed by ramping over 27 min to 90:10], yielding 140 mg of ircinianin, judged as pure based on total ion current profiles, ESI-MS and NMR spectrometry. Suitable crystals were prepared by slow evaporation at room temperature from a ACN/H₂O (65:35) solution under atmospheric pressure.

Spectroscopic data of the title compound were in accordance with literature data (Balansa *et al.*, 2013). For ease of comparison with related compounds, the title compound was given in the NMR section the same numbering scheme as previously used in the literature (Balansa *et al.*, 2013):

¹H NMR (400 MHz, MeOH- d_4): δ 7.38 (H-1, t, 1.6), 7.26 (H-4, m), 6.30 (H-2, m), 5.11 (H-10, dd, 10.3, 1.1), 5.03 (H-12, m), 3.08 (H-11, dm, 10.3), 2.42 (H-15, m)^A, 2.41 (H-5 br t, 7.5)^A, 2.04 (H-7, m), 2.00 (H-17a, m), 1.89 (H-16a, m), 1.71 (H-14, m), 1.68 (H-6, m), 1.65 (H-18, m), 1.64 (H-25, s), 1.60 (H-20, m), 1.57 (H-9, d, 1.3), 1.33 (H-16b, m), 1.31 (H-17b, m), 0.92 (H-19, d, 6.3).

¹³C NMR (100 MHz, MeOH- d_4): δ 179.2 (C-22, s^{C})^B, 177.7 (C-24, s^{B} , 144.0 (C-1, d), 140.3 (C-4, d), 137.1 (C-13, s), 136.6 (C-8, s), 126.5 (C-3, s), 125.0 (C-10, d), 123.6 (C-12, d), 112.1

Figure 2 Partial packing diagram of the title compound. View along the *a*-axis.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{25}H_{32}O_4$
$M_{ m r}$	396.50
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.8217 (2), 11.1644 (2), 18.2804 (5)
$V(Å^3)$	2208.60 (8)
Z	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	0.63
Crystal size (mm)	$0.91 \times 0.08 \times 0.08$
Data collection	
Diffractometer	Stoe IPDS 2T
Absorption correction	Integration
T_{\min}, T_{\max}	0.914, 0.990
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18913, 3945, 3849
R _{int}	0.018
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.600
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.086, 1.08
No. of reflections	3945
No. of parameters	377
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.19, -0.20
Absolute structure	Flack x determined using 1639 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.03 (9)

Computer programs: X-RED32 and X-AREA (Stoe & Cie, 2019), SIR2004 (Burla et al., 2005), SHELXL2018/3 (Sheldrick, 2015) and PLATON (Spek, 2020).

(C-2, d), 97.5 (C-23, s), 86.9 (C-21, s), 52.0 (C-20, d), 48.7 (C-11, d), 46.2 (C-15, d), 40.5 (C-7, t), 33.6 (C-17, t), 33.2 (C-18, d), 29.5 (C-6, t), 27.3 (C-16, t), 25.3 (C-5, t), 20.8 (C-14, q), 20.7 (C-19, q), 16.3 (C-9, q), 6.1 (C-25, q). [^A Overlapping signals; ^B assignments interchangeable; ^C implied multiplicities determined by DEPT (qC = s; CH = d; CH₂ = t; CH₃ = q).]

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were located in difference Fourier maps and were refined with isotropic displacement parameters.

Acknowledgements

We gratefully thank Anthony D. Wright for collecting the animal material by SCUBA diving and for providing the sponge sample to the Department of Pharmaceutical Biology, Eberhard Karls University, Tübingen.

References

- Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2010). *Bioorg. Med. Chem.* 18, 2912–2919.
- Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Xiao, X., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2013). *Org. Biomol. Chem.* **11**, 4695–4701.
- Barrow, C. J., Blunt, J. W., Munro, M. H. G. & Perry, N. B. (1988). J. Nat. Prod. 51, 1294–1298.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Chevallier, C., Bugni, T. S., Feng, X., Harper, M. K., Orendt, A. M. & Ireland, C. M. (2006). J. Org. Chem. 71, 2510–2513.
- Coll, J. C., Kearns, P. S., Rideout, J. A. & Hooper, J. (1997). J. Nat. Prod. 60, 1178–1179.
- Hofheinz, W. & Schönholzer, P. (1977). *Helv. Chim. Acta*, **60**, 1367–1370.
- Höller, U., König, G. M. & Wright, A. D. (1997). J. Nat. Prod. 60, 832– 835.
- Kobayashi, J., Shinonaga, H., Shigemori, H., Umeyama, A., Shoji, N. & Arihara, S. (1995). J. Nat. Prod. 58, 312–318.
- Kondo, K., Shigemori, H., Kikuchi, Y., Ishibashi, M., Sasaki, T. & Kobayashi, J. (1992). J. Org. Chem. 57, 2480–2483.
- Mau, C. M. S., Nakao, Y., Yoshida, W. Y., Scheuer, P. J. & Kelly-Borges, M. (1996). J. Org. Chem. 61, 6302–6304.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Stoe & Cie (2019). *X-RED32* and *X-AREA*. Stoe & Cie, Darmstadt, Germany.
- Uenishi, J., Kawahama, R. & Yonemitsu, O. (1997). J. Org. Chem. 62, 1691–1701.

full crystallographic data

IUCrData (2020). **5**, x201578 [https://doi.org/10.1107/S2414314620015783]

(2*S*,3'*S*,3a'*R*,5'*R*,7a'*R*)-5'-[(*E*)-5-(Furan-3-yl)-2-methylpent-1-en-1-yl]-3-hydroxy-3',4,7'-trimethyl-1',2',3',3a',5',7a'-hexahydro-5*H*-spiro[furan-2,4'inden]-5-one

Thomas Majer, Dieter Schollmeyer, Pierre Koch and Harald Gross

(2*S*,3'*S*,3a'*R*,5'*R*,7a'*R*)-5'-[(*E*)-5-(Furan-3-yl)-2-methylpent-1-en-1-yl]-3-hydroxy-3',4,7'trimethyl-1',2',3',3a',5',7a'-hexahydro-5*H*-spiro[furan-2,4'-inden]-5-one

Crystal data

 $C_{25}H_{32}O_4$ $M_r = 396.50$ Orthorhombic, $P2_12_12_1$ a = 10.8217 (2) Å b = 11.1644 (2) Å c = 18.2804 (5) Å $V = 2208.60 (8) \text{ Å}^3$ Z = 4 F(000) = 856

Data collection

Stoe IPDS 2T diffractometer Radiation source: Incoatec microSource Cu Detector resolution: 6.67 pixels mm⁻¹ rotation method, ω scans Absorption correction: integration $T_{\min} = 0.914$, $T_{\max} = 0.990$ 18913 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.086$ S = 1.083945 reflections 377 parameters 0 restraints Primary atom site location: dual Hydrogen site location: dual $D_x = 1.192 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54186 \text{ Å}$ Cell parameters from 58680 reflections $\theta = 2.4-68.0^{\circ}$ $\mu = 0.63 \text{ mm}^{-1}$ T = 120 KColoumn, colourless $0.91 \times 0.08 \times 0.08 \text{ mm}$

3945 independent reflections 3849 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 67.8^{\circ}, \ \theta_{min} = 4.6^{\circ}$ $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -19 \rightarrow 21$

All H-atom parameters refined $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0583P)^{2} + 0.3312P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1639 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.03 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.49694 (18)	0.41060 (15)	0.47235 (10)	0.0219 (4)	
H1	0.428 (2)	0.357 (2)	0.4651 (13)	0.030 (6)*	
C2	0.56472 (18)	0.37841 (17)	0.54252 (10)	0.0253 (4)	
H2	0.513 (2)	0.368 (2)	0.5861 (13)	0.025 (5)*	
C3	0.68627 (19)	0.36830 (17)	0.55010 (10)	0.0259 (4)	
C4	0.76937 (17)	0.38055 (17)	0.48472 (10)	0.0236 (4)	
H4	0.786 (2)	0.301 (2)	0.4652 (13)	0.030 (6)*	
C5	0.89455 (18)	0.4432 (2)	0.49168 (11)	0.0301 (4)	
H5A	0.954 (2)	0.393 (2)	0.5169 (13)	0.029 (4)*	
H5AB	0.883 (2)	0.521 (2)	0.5200 (13)	0.029 (4)*	
C6	0.9310 (2)	0.4654 (2)	0.41093 (12)	0.0380 (5)	
H6A	0.993 (3)	0.406 (3)	0.3941 (16)	0.052 (5)*	
H6AB	0.967 (3)	0.552 (3)	0.4041 (16)	0.052 (5)*	
C7	0.81215 (17)	0.45092 (17)	0.36372 (10)	0.0259 (4)	
H7	0.815 (3)	0.373 (2)	0.3362 (15)	0.042 (7)*	
C8	0.70955 (17)	0.44944 (16)	0.42160 (10)	0.0214 (4)	
H8	0.694 (2)	0.535 (2)	0.4385 (12)	0.024 (5)*	
С9	0.58241 (17)	0.39703 (15)	0.40444 (10)	0.0205 (4)	
C10	0.44429 (17)	0.53607 (16)	0.48011 (10)	0.0235 (4)	
H10	0.500(2)	0.602 (2)	0.4651 (13)	0.030 (6)*	
C11	0.33472 (19)	0.56473 (18)	0.50782 (10)	0.0284 (4)	
C12	0.2416 (2)	0.4744 (2)	0.53387 (18)	0.0485 (6)	
H12A	0.181 (4)	0.508 (5)	0.553 (3)	0.111 (9)*	
H12B	0.277 (5)	0.402 (4)	0.551 (3)	0.111 (9)*	
H12C	0.208 (5)	0.437 (4)	0.482 (3)	0.111 (9)*	
C13	0.2955 (2)	0.69443 (19)	0.51459 (12)	0.0333 (5)	
H13A	0.368 (3)	0.746 (3)	0.5061 (17)	0.053 (6)*	
H13B	0.260 (3)	0.702 (3)	0.5669 (18)	0.053 (6)*	
C14	0.1950 (2)	0.7288 (2)	0.45910 (12)	0.0347 (5)	
H14A	0.122 (3)	0.665 (3)	0.4642 (16)	0.054 (6)*	
H14B	0.158 (3)	0.819 (3)	0.4699 (17)	0.054 (6)*	
C15	0.2427 (2)	0.7328 (2)	0.38087 (13)	0.0426 (5)	
H15A	0.304 (3)	0.814 (3)	0.3804 (18)	0.066 (6)*	
H15B	0.280 (3)	0.652 (3)	0.3716 (18)	0.066 (6)*	
C16	0.1423 (2)	0.7499 (2)	0.32518 (12)	0.0363 (5)	
C17	0.1271 (2)	0.6877 (2)	0.26257 (13)	0.0422 (5)	
H17	0.169 (2)	0.617 (2)	0.2377 (13)	0.033 (6)*	
O18	0.02589 (17)	0.72790 (16)	0.22460 (9)	0.0467 (4)	
C19	-0.0236(2)	0.8178 (2)	0.26580 (14)	0.0444 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H19	-0.103 (3)	0.863 (3)	0.2478 (16)	0.049 (8)*
C20	0.0435 (2)	0.8351 (2)	0.32708 (13)	0.0404 (5)
H20	0.029 (3)	0.894 (3)	0.3654 (16)	0.044 (7)*
C21	0.7463 (2)	0.3359 (2)	0.62195 (12)	0.0371 (5)
H21A	0.810 (3)	0.393 (3)	0.6351 (16)	0.052 (5)*
H21B	0.791 (3)	0.266 (3)	0.6173 (16)	0.052 (5)*
H21C	0.686 (3)	0.331 (3)	0.6612 (17)	0.052 (5)*
C22	0.8012 (2)	0.5468 (2)	0.30527 (13)	0.0395 (5)
H22A	0.727 (3)	0.533 (3)	0.2718 (17)	0.053 (4)*
H22B	0.881 (3)	0.544 (3)	0.2759 (17)	0.053 (4)*
H22C	0.792 (3)	0.626 (3)	0.3312 (17)	0.053 (4)*
O23	0.59733 (12)	0.26878 (10)	0.39111 (7)	0.0211 (3)
C24	0.55392 (17)	0.24167 (15)	0.32376 (9)	0.0217 (4)
C25	0.50545 (18)	0.34673 (15)	0.28756 (9)	0.0228 (4)
C26	0.52443 (16)	0.43886 (16)	0.33396 (9)	0.0209 (4)
O27	0.56032 (13)	0.13752 (11)	0.30220 (7)	0.0271 (3)
C28	0.4465 (2)	0.34514 (19)	0.21335 (11)	0.0321 (5)
H28A	0.434 (4)	0.417 (4)	0.195 (2)	0.077 (6)*
H28B	0.375 (4)	0.296 (3)	0.215 (2)	0.077 (6)*
H28C	0.499 (4)	0.307 (3)	0.178 (2)	0.077 (6)*
O29	0.50180 (13)	0.55511 (11)	0.32690 (7)	0.0258 (3)
H29	0.481 (3)	0.569 (3)	0.2837 (18)	0.048 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0240 (8)	0.0201 (8)	0.0215 (9)	-0.0012 (7)	0.0001 (7)	-0.0006 (6)
C2	0.0310 (10)	0.0253 (9)	0.0196 (8)	0.0011 (8)	0.0014 (8)	-0.0005 (7)
C3	0.0316 (10)	0.0257 (9)	0.0205 (9)	0.0010 (8)	-0.0017 (8)	-0.0013 (7)
C4	0.0266 (9)	0.0231 (9)	0.0212 (9)	0.0005 (7)	-0.0032 (7)	-0.0007 (7)
C5	0.0255 (10)	0.0339 (10)	0.0310 (10)	-0.0016 (8)	-0.0049 (8)	-0.0019 (9)
C6	0.0274 (11)	0.0511 (14)	0.0356 (11)	-0.0073 (10)	0.0008 (9)	0.0015 (10)
C7	0.0269 (9)	0.0252 (9)	0.0255 (9)	-0.0016 (7)	0.0036 (7)	-0.0008 (7)
C8	0.0256 (9)	0.0180 (8)	0.0206 (8)	-0.0008 (7)	-0.0006 (7)	-0.0005 (7)
C9	0.0273 (9)	0.0147 (8)	0.0195 (8)	0.0010 (6)	-0.0015 (7)	-0.0012 (6)
C10	0.0263 (9)	0.0218 (8)	0.0224 (8)	-0.0006 (7)	-0.0033 (7)	-0.0026 (7)
C11	0.0295 (10)	0.0281 (9)	0.0276 (9)	0.0021 (8)	-0.0004 (7)	-0.0030 (8)
C12	0.0376 (12)	0.0383 (13)	0.0695 (18)	0.0016 (10)	0.0184 (12)	0.0015 (12)
C13	0.0331 (10)	0.0309 (11)	0.0358 (11)	0.0066 (9)	-0.0017 (9)	-0.0085 (8)
C14	0.0321 (10)	0.0346 (11)	0.0374 (11)	0.0067 (9)	-0.0001 (9)	-0.0071 (9)
C15	0.0372 (12)	0.0515 (14)	0.0393 (12)	0.0121 (11)	0.0019 (10)	0.0029 (11)
C16	0.0388 (12)	0.0351 (10)	0.0351 (11)	-0.0006 (9)	0.0030 (9)	0.0030 (9)
C17	0.0490 (13)	0.0400 (12)	0.0377 (12)	-0.0029 (11)	0.0054 (10)	0.0032 (10)
O18	0.0504 (10)	0.0526 (10)	0.0371 (8)	-0.0140 (8)	-0.0016 (7)	0.0023 (7)
C19	0.0394 (13)	0.0498 (14)	0.0439 (13)	-0.0018 (10)	-0.0021 (10)	0.0103 (11)
C20	0.0414 (12)	0.0399 (12)	0.0398 (12)	0.0038 (10)	-0.0014 (10)	0.0006 (10)
C21	0.0370 (12)	0.0530 (14)	0.0214 (10)	0.0089 (11)	-0.0025 (9)	0.0007 (9)
C22	0.0391 (12)	0.0416 (12)	0.0378 (12)	-0.0005 (10)	0.0090 (9)	0.0124 (10)

data reports

O23	0.0291 (7)	0.0148 (6)	0.0192 (6)	0.0009 (5)	-0.0029 (5)	-0.0005 (4)
C24	0.0255 (9)	0.0200 (8)	0.0196 (8)	-0.0018 (7)	0.0004 (7)	-0.0013 (6)
C25	0.0275 (9)	0.0202 (9)	0.0207 (8)	0.0004 (7)	-0.0027 (7)	0.0003 (7)
C26	0.0240 (8)	0.0180 (8)	0.0208 (8)	0.0007 (7)	0.0008 (7)	0.0011 (7)
O27	0.0388 (7)	0.0178 (6)	0.0247 (6)	0.0005 (5)	-0.0051 (6)	-0.0038 (5)
C28	0.0453 (12)	0.0258 (10)	0.0251 (9)	0.0035 (9)	-0.0114 (9)	-0.0027 (8)
O29	0.0379 (7)	0.0177 (6)	0.0217 (6)	0.0035 (5)	-0.0040 (6)	0.0013 (5)

Geometric parameters (Å, °)

C1—C10	1.519 (2)	C13—H13A	0.98 (3)
C1—C2	1.521 (2)	C13—H13B	1.03 (3)
C1—C9	1.555 (2)	C14—C15	1.521 (3)
C1—H1	0.96 (2)	C14—H14A	1.07 (3)
C2—C3	1.327 (3)	C14—H14B	1.10 (3)
С2—Н2	0.98 (2)	C15—C16	1.502 (3)
C3—C4	1.502 (3)	C15—H15A	1.12 (3)
C3—C21	1.509 (3)	C15—H15B	1.01 (3)
C4—C5	1.530 (3)	C16—C17	1.349 (3)
C4—C8	1.530 (2)	C16—C20	1.431 (3)
C4—H4	0.97 (2)	C17—O18	1.372 (3)
C5—C6	1.548 (3)	C17—H17	1.01 (3)
C5—H5A	0.97 (2)	O18—C19	1.365 (3)
C5—H5AB	1.02 (3)	C19—C20	1.349 (3)
C6—C7	1.557 (3)	С19—Н19	1.05 (3)
С6—Н6А	0.99 (3)	С20—Н20	0.98 (3)
C6—H6AB	1.05 (3)	C21—H21A	0.97 (3)
C7—C22	1.517 (3)	C21—H21B	0.92 (3)
C7—C8	1.534 (2)	C21—H21C	0.97 (3)
С7—Н7	1.00 (3)	C22—H22A	1.02 (3)
C8—C9	1.528 (3)	C22—H22B	1.02 (3)
C8—H8	1.02 (2)	С22—Н22С	1.01 (3)
C9—O23	1.4613 (19)	O23—C24	1.352 (2)
C9—C26	1.507 (2)	C24—O27	1.230 (2)
C10—C11	1.329 (3)	C24—C25	1.445 (2)
C10—H10	0.99 (3)	C25—C26	1.349 (3)
C11—C12	1.503 (3)	C25—C28	1.499 (2)
C11—C13	1.514 (3)	C26—O29	1.327 (2)
C12—H12A	0.83 (5)	C28—H28A	0.88 (4)
C12—H12B	0.95 (5)	C28—H28B	0.95 (4)
C12—H12C	1.10 (5)	C28—H28C	0.96 (4)
C13—C14	1.536 (3)	O29—H29	0.84 (3)
C10—C1—C2	108.67 (15)	C11—C13—C14	112.56 (17)
C10—C1—C9	112.79 (14)	C11—C13—H13A	108.7 (19)
C2—C1—C9	111.31 (15)	C14—C13—H13A	108.3 (19)
C10—C1—H1	107.0 (14)	C11—C13—H13B	105.1 (17)
C2-C1-H1	110.1 (14)	C14—C13—H13B	108.9 (17)

C9—C1—H1	106.9 (14)	H13A—C13—H13B	113 (3)
C3—C2—C1	125.88 (17)	C15—C14—C13	112.82 (19)
С3—С2—Н2	117.9 (14)	C15—C14—H14A	110.7 (16)
C1—C2—H2	116.2 (14)	C13—C14—H14A	107.4 (17)
C2—C3—C4	120.16 (17)	C15—C14—H14B	105.3 (16)
C2—C3—C21	122.54 (19)	C13—C14—H14B	111.4 (16)
C4—C3—C21	117.16(17)	H14A—C14—H14B	109 (2)
C_{3} C_{4} C_{5}	120 37 (16)	C_{16} C_{15} C_{14}	1133(2)
C_{3} C_{4} C_{8}	113 11 (16)	C16—C15—H15A	108.9(17)
$C_{5} - C_{4} - C_{8}$	101.99 (15)	C14— $C15$ — $H15A$	103.4(17)
$C_3 - C_4 - H_4$	108.6(14)	C16_C15_H15B	107(2)
C5-C4-H4	106.0(14) 106.4(14)	C14— $C15$ — $H15B$	107(2) 1056(19)
C_{8} C_{4} H_{4}	105.4(14)	H15A C15 H15B	105.0(17)
C_{4} C_{5} C_{6}	103.2(14) 102.69(16)	C_{17} C_{16} C_{20}	115(3) 1058(2)
$C_{4} = C_{5} = C_{6}$	102.09(10) 111.2(14)	C17 - C16 - C15	105.8(2) 126.7(2)
C4 - C5 - H5A	111.3(14) 112.2(14)	C17 - C10 - C15	120.7(2) 127.5(2)
$C_0 = C_5 = H_5 A D$	112.2(14)	$C_{20} - C_{10} - C_{13}$	127.3(2)
C4—C5—H5AB	108.8 (13)	C16-C17-O18	111.0(2)
C6—C5—H5AB	112.4 (13)	C16C17H17	136.5 (14)
Н5А—С5—Н5АВ	109.3 (19)	018—C17—H17	112.5 (14)
C5—C6—C7	107.52 (16)	C19—O18—C17	105.96 (18)
С5—С6—Н6А	111.3 (17)	C20—C19—O18	110.6 (2)
С7—С6—Н6А	108.5 (18)	C20—C19—H19	129.1 (17)
C5—C6—H6AB	110.9 (16)	O18—C19—H19	120.3 (16)
С7—С6—Н6АВ	109.8 (16)	C19—C20—C16	106.7 (2)
Н6А—С6—Н6АВ	109 (2)	C19—C20—H20	127.2 (17)
C22—C7—C8	115.92 (17)	C16—C20—H20	126.1 (17)
С22—С7—С6	112.42 (18)	C3—C21—H21A	111.3 (18)
C8—C7—C6	102.52 (15)	C3—C21—H21B	110.5 (19)
С22—С7—Н7	104.9 (16)	H21A—C21—H21B	102 (3)
С8—С7—Н7	111.4 (16)	C3—C21—H21C	111.6 (18)
С6—С7—Н7	109.8 (16)	H21A—C21—H21C	109 (2)
C9—C8—C4	110.08 (15)	H21B—C21—H21C	112 (3)
C9—C8—C7	120.96 (15)	C7—C22—H22A	111.9 (17)
C4—C8—C7	102.67 (15)	C7—C22—H22B	106.6 (17)
С9—С8—Н8	105.9 (12)	H22A—C22—H22B	110 (2)
C4—C8—H8	108.2 (12)	C7—C22—H22C	107.2 (18)
С7—С8—Н8	108.6 (12)	H22A—C22—H22C	110 (2)
Q23—C9—C26	101.95 (13)	H22B—C22—H22C	111 (3)
023-09-08	108.06 (14)	C24—O23—C9	109.44 (13)
C26—C9—C8	115.58 (15)	027 - C24 - 023	118.94 (16)
023 - C9 - C1	107 11 (13)	027 - C24 - C25	129.87(17)
$C_{26}^{}C_{26}^{}C_{16}^{-$	113 87 (14)	023 - C24 - C25	11119(14)
C8-C9-C1	109 53 (14)	$C_{26} = C_{25} = C_{24}$	$106\ 00\ (15)$
$C_{11} - C_{10} - C_{1}$	126 34 (18)	$C_{26} = C_{25} = C_{24}$	130.00(13)
$C_{11} = C_{10} = H_{10}$	$120.3 \pm (10)$ 118 1 (14)	C_{24} C_{25} C_{26}	124 01 (16)
C1 - C10 - H10	115.1(17) 115.5(14)	029 - 025 - 025	131 03 (16)
C10-C11-C12	173.88 (10)	029 - C26 - C23	117 58 (15)
$C_{10} = C_{11} = C_{12}$	123.00 (17)	$C_{29} = C_{20} = C_{9}$	117.30(13) 111.28(15)
010-011-013	120.70(17)	020-020-07	111.30(13)

C12—C11—C13 C11—C12—H12A C11—C12—H12B H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C	115.36 (19) 111 (3) 114 (3) 125 (4) 102 (3) 106 (4) 95 (3)	C25—C28—H28A C25—C28—H28B H28A—C28—H28B C25—C28—H28C H28A—C28—H28C H28B—C28—H28C C26—O29—H29	114 (3) 109 (2) 114 (3) 111 (2) 104 (3) 103 (3) 109 (2)
C10—C1—C2—C3	-109.2 (2)	C1—C10—C11—C12	-2.5 (3)
C9—C1—C2—C3	15.6 (3)	C1—C10—C11—C13	177.95 (18)
C1—C2—C3—C4	-4.4 (3)	C10-C11-C13-C14	107.9 (2)
C1—C2—C3—C21	180.00 (19)	C12-C11-C13-C14	-71.7 (3)
C2—C3—C4—C5	142.7 (2)	C11—C13—C14—C15	-69.9 (3)
C21—C3—C4—C5	-41.5 (3)	C13—C14—C15—C16	172.2 (2)
C2—C3—C4—C8	21.9 (3)	C14—C15—C16—C17	-133.3 (2)
C21—C3—C4—C8	-162.28 (18)	C14—C15—C16—C20	46.9 (3)
C3—C4—C5—C6	-165.52 (18)	C20-C16-C17-O18	0.3 (3)
C8—C4—C5—C6	-39.4 (2)	C15-C16-C17-O18	-179.6 (2)
C4—C5—C6—C7	16.7 (2)	C16—C17—O18—C19	-0.5 (3)
C5—C6—C7—C22	137.51 (19)	C17—O18—C19—C20	0.5 (3)
C5—C6—C7—C8	12.3 (2)	O18—C19—C20—C16	-0.4 (3)
C3—C4—C8—C9	-50.8 (2)	C17—C16—C20—C19	0.1 (3)
C5—C4—C8—C9	178.42 (14)	C15—C16—C20—C19	179.9 (2)
C3—C4—C8—C7	179.09 (15)	C26—C9—O23—C24	-0.34 (18)
C5—C4—C8—C7	48.36 (17)	C8—C9—O23—C24	-122.55 (15)
C22—C7—C8—C9	77.3 (2)	C1—C9—O23—C24	119.52 (15)
C6—C7—C8—C9	-159.85 (17)	C9—O23—C24—O27	178.94 (16)
C22—C7—C8—C4	-159.65 (18)	C9—O23—C24—C25	-0.9 (2)
C6—C7—C8—C4	-36.81 (18)	O27—C24—C25—C26	-177.91 (19)
C4—C8—C9—O23	-54.40 (18)	O23—C24—C25—C26	2.0 (2)
C7—C8—C9—O23	65.0 (2)	O27—C24—C25—C28	2.5 (3)
C4—C8—C9—C26	-167.82 (14)	O23—C24—C25—C28	-177.65 (18)
C7—C8—C9—C26	-48.4 (2)	C24—C25—C26—O29	177.21 (18)
C4—C8—C9—C1	61.96 (18)	C28—C25—C26—O29	-3.2 (4)
C7—C8—C9—C1	-178.59 (15)	C24—C25—C26—C9	-2.2 (2)
C10—C1—C9—O23	-163.92 (14)	C28—C25—C26—C9	177.4 (2)
C2—C1—C9—O23	73.62 (17)	O23—C9—C26—O29	-177.86 (14)
C10—C1—C9—C26	-52.0 (2)	C8—C9—C26—O29	-61.0 (2)
C2-C1-C9-C26	-174.48 (14)	C1—C9—C26—O29	67.2 (2)
C10—C1—C9—C8	79.12 (18)	O23—C9—C26—C25	1.60 (19)
C2—C1—C9—C8	-43.34 (18)	C8—C9—C26—C25	118.51 (17)
C2-C1-C10-C11	-88.2 (2)	C1-C9-C26-C25	-113.39 (17)
C9—C1—C10—C11	147.88 (19)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H… <i>A</i>

O29—H29····O27 ⁱ	0.84 (3)	1.80 (3)	2.6207 (18)	166 (3)	

Symmetry code: (i) -x+1, y+1/2, -z+1/2.