

ISSN 2414-3146

Received 17 December 2020 Accepted 22 December 2020

Edited by R. J. Butcher, Howard University, USA

Keywords: crystal structure; β -diketone; naphthyl; camphor.

CCDC reference: 2052026

Structural data: full structural data are available from iucrdata.iucr.org

1,7,7-Trimethyl-3-(naphthalen-2-ylcarbonyl)bicyclo[2.2.1]heptan-2-one

Sabrina Bendia,^a Kamel Ouari,^a Mustapha Ait Ali,^b Larbi el Firdousi^b and Alexander Y. Nazarenko^c*

^aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Rédox (LEIMCR), Faculté de Technologie, Université Ferhat Abbas-Sétif-1, Sétif, 19000, Algeria, ^bUniversité Cadi Ayyad Faculté des Sciences Semlalia, Departement de Chimie, BP 2390, 40001, Marrakech, Morocco, and ^cChemistry Department, State University of New York, College at Buffalo, 1300 Elmwood Ave, Buffalo, NY 14222-1095, USA. *Correspondence e-mail: nazareay@buffalostate.edu

The title compound, $C_{21}H_{22}O_2$, crystallizes in its keto form. The molecules are connected *via* weak C-H···O interactions, forming infinite chains perpendicular to the [001] axis.

Structure description

Chiral β -diketonato ligands are used in catalysis and spectroscopy; chiral naphthyl derivatives have recently been prepared (Clark *et al.*, 2013). However, no naphthyl-substituted β -diketones were found in the Cambridge Structure Database (Groom *et al.*, 2016) in November 2020.

The title compound, $C_{21}H_{22}O_2$, crystallizes in its keto-form (Fig. 1). The shape of both the camphor and naphthyl fragments is essentially the same as in their parent molecules.

There are no strong intermolecular interactions in this structure. The molecules are connected *via* weak $C-H\cdots O$ bonds (Table 1), forming infinite chains perpendicular to the [001] axis (Fig. 2). The hydrogen atoms of the naphthyl ring system and atoms H9*B*, H9*C*, and H10*B* of the methyl groups of the camphor fragment help to assemble these chains in the crystal *via* van der Waals interactions.

Synthesis and crystallization

The title compound was prepared by a procedure reported earlier (Clark *et al.*, 2013) and was purified by recrystallization from hexane solution (m.p. 399 K). Elemental analysis for C₂₁H₂₂O₂, calculated C 82.30, H 7.24; found C 82.23, H 7.15. ¹H NMR: (DMSO- d_6 , δ p.p.m.): 12.50 (*s*, OH), 9.00–7.40 (*m*, H_{Ar}), 2.80–0.80 (*m*, H_{Camphor}); ¹³C NMR: (DMSO- d_6 ,

Figure 1

Numbering scheme of the title compound with 50% probability displacement ellipsoids.

δ p.p.m.): 212–194 (C=O), 135–115 (C_{Ar}), 64–9 (C_{Camphor}). UV-vis in acetonitrile (λ_{max} (nm), [ε] ($l \text{ mol}^{-1} \text{ cm}^{-1}$)): 272 [10197], 283 [12668], 292 [10352], 325 [8294]. Single crystals were grown by slow evaporation of a methanol solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

Packing diagram of the title compound showing C-H···O hydrogen bonding; the view along the [001] vector, which is parallel to the 4_1 screw axis. Only one layer of molecules is shown; the screw-axis symmetry operation rotates each subsequent layer by 90° and moves by c/4.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C13-H13\cdots O1^{i}\\ C16-H16\cdots O2^{ii}\end{array}$	0.95	2.57	3.296 (3)	134
	0.95	2.57	3.458 (3)	156

Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{5}{4}$; (ii) x, y - 1, z.

Table 2

Experimental	det	tai	Ŀ
--------------	-----	-----	---

Crystal data	
Chemical formula	$C_{21}H_{22}O_2$
M _r	306.38
Crystal system, space group	Tetragonal, $P4_12_12$
Temperature (K)	173
a, c (Å)	9.5637 (3), 36.3395 (10)
$V(Å^3)$	3323.8 (2)
Ζ	8
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	0.60
Crystal size (mm)	$0.41\times0.33\times0.17$
Data collection	
Diffractometer	Bruker PHOTON-100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.922, 1.000
No. of measured, independent and	27362, 3363, 3123
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.034
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.627
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.110, 1.05
No. of reflections	3363
No. of parameters	211
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.33, -0.16
Absolute structure	Flack x determined using 1176
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
Absolute structure parameter	-0.04 (10)

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and VESTA (Momma & Izumi, 2011).

Acknowledgements

Help from the CLAC Laboratory at Chemistry Institute of the University of Strasbourg is gratefully acknowledged.

References

- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clark, I. R., Wenzel, B. T. & Wenzel, T. J. (2013). Tetrahedron Asymmetry, 24, 297-304.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
- Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2020). **5**, x201662 [https://doi.org/10.1107/S2414314620016624]

1,7,7-Trimethyl-3-(naphthalen-2-ylcarbonyl)bicyclo[2.2.1]heptan-2-one

Sabrina Bendia, Kamel Ouari, Mustapha Ait Ali, Larbi el Firdousi and Alexander Y. Nazarenko

(1R,3S,4R)-1,7,7-Trimethyl-3-(naphthalen-2-ylcarbonyl)bicyclo[2.2.1]heptan-2-one

Crystal data

 $C_{21}H_{22}O_2$ $M_r = 306.38$ Tetragonal, $P4_12_12$ a = 9.5637 (3) Å c = 36.3395 (10) Å V = 3323.8 (2) Å³ Z = 8 F(000) = 1312 $D_x = 1.225$ Mg m⁻³

Data collection

Bruker PHOTON-100 CMOS diffractometer Radiation source: sealedtube Detector resolution: 10.8 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.922, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.110$ S = 1.053363 reflections 211 parameters 0 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map Melting point: 399 K Cu *Ka* radiation, $\lambda = 1.54178$ Å Cell parameters from 9853 reflections $\theta = 4.6-74.7^{\circ}$ $\mu = 0.60$ mm⁻¹ T = 173 K Block, colourless $0.41 \times 0.33 \times 0.17$ mm

27362 measured reflections 3363 independent reflections 3123 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 75.2^{\circ}, \theta_{min} = 4.8^{\circ}$ $h = -11 \rightarrow 9$ $k = -11 \rightarrow 10$ $l = -43 \rightarrow 45$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0568P)^2 + 0.9139P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³ Absolute structure: Flack *x* determined using 1176 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) Absolute structure parameter: -0.04 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.70347 (19)	0.6575 (2)	0.64361 (5)	0.0464 (4)	
02	0.5159 (2)	0.51669 (19)	0.69923 (4)	0.0496 (5)	
C1	0.6066 (2)	0.5955 (2)	0.62993 (5)	0.0332 (5)	
C12	0.5164 (2)	0.2695 (3)	0.69118 (6)	0.0365 (5)	
C20	0.4639 (2)	0.1076 (3)	0.74128 (6)	0.0352 (5)	
C2	0.5645 (2)	0.4436 (2)	0.63805 (6)	0.0322 (5)	
H2	0.641392	0.379430	0.630123	0.039*	
C11	0.5318 (2)	0.4187 (2)	0.67846 (6)	0.0361 (5)	
C4	0.4804 (2)	0.5150 (2)	0.57811 (6)	0.0353 (5)	
C21	0.4779 (2)	0.2461 (3)	0.72708 (6)	0.0377 (5)	
H21	0.460193	0.323627	0.742761	0.045*	
C5	0.5053 (2)	0.6502 (2)	0.60124 (6)	0.0367 (5)	
C3	0.4366 (2)	0.4255 (2)	0.61188 (6)	0.0332 (5)	
H3	0.413105	0.326134	0.605939	0.040*	
C7	0.3144 (2)	0.5104 (3)	0.62806 (6)	0.0409 (5)	
H7A	0.299828	0.488296	0.654394	0.049*	
H7B	0.226558	0.492847	0.614409	0.049*	
C15	0.4932 (2)	-0.0064 (3)	0.71753 (6)	0.0394 (5)	
C13	0.5416 (2)	0.1533 (3)	0.66742 (6)	0.0387 (5)	
H13	0.565984	0.168661	0.642397	0.046*	
C14	0.5307 (2)	0.0201 (3)	0.68070 (7)	0.0408 (5)	
H14	0.548878	-0.056467	0.664725	0.049*	
C8	0.3638 (3)	0.5307 (3)	0.54932 (7)	0.0499 (6)	
H8A	0.282051	0.574768	0.560714	0.075*	
H8B	0.337812	0.438197	0.539925	0.075*	
H8C	0.397117	0.589021	0.528961	0.075*	
C9	0.6120 (3)	0.4631 (3)	0.55838 (6)	0.0426 (6)	
H9A	0.640885	0.532133	0.539957	0.064*	
H9B	0.591951	0.373884	0.546203	0.064*	
H9C	0.687276	0.450052	0.576340	0.064*	
C19	0.4206 (3)	0.0829 (3)	0.77769 (7)	0.0438 (6)	
H19	0.400420	0.159300	0.793543	0.053*	
C16	0.4805 (3)	-0.1453 (3)	0.73169 (8)	0.0496 (6)	
H16	0.501686	-0.223071	0.716425	0.060*	
C6	0.3646 (3)	0.6628 (3)	0.62289 (7)	0.0442 (6)	
H6A	0.379542	0.708616	0.647000	0.053*	
H6B	0.295274	0.717616	0.608703	0.053*	
C10	0.5525 (3)	0.7813 (3)	0.58164 (7)	0.0523 (7)	
H10A	0.565896	0.856496	0.599628	0.078*	
H10B	0.481338	0.809412	0.563703	0.078*	
H10C	0.640935	0.763122	0.568879	0.078*	
C17	0.4383 (3)	-0.1660 (3)	0.76687 (8)	0.0537 (7)	
H17	0.429241	-0.258625	0.776009	0.064*	
C18	0.4076 (3)	-0.0513 (3)	0.79021 (7)	0.0513 (7)	
H18	0.377741	-0.067775	0.814759	0.062*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0456 (10)	0.0561 (11)	0.0375 (8)	-0.0160 (8)	-0.0059 (7)	0.0023 (8)
O2	0.0678 (12)	0.0467 (10)	0.0343 (8)	0.0024 (8)	0.0081 (8)	0.0006 (7)
C1	0.0344 (11)	0.0380 (12)	0.0273 (9)	-0.0036 (9)	0.0034 (8)	0.0012 (8)
C12	0.0288 (11)	0.0459 (13)	0.0350 (10)	0.0010 (9)	-0.0009 (9)	0.0071 (9)
C20	0.0255 (10)	0.0455 (13)	0.0345 (10)	-0.0012 (9)	-0.0056 (8)	0.0008 (9)
C2	0.0295 (10)	0.0364 (11)	0.0308 (10)	0.0007 (9)	0.0018 (8)	0.0020 (8)
C11	0.0370 (12)	0.0401 (12)	0.0311 (10)	0.0025 (9)	0.0002 (9)	0.0040 (9)
C4	0.0310 (11)	0.0442 (13)	0.0306 (10)	-0.0031 (9)	-0.0019 (8)	0.0020 (9)
C21	0.0352 (11)	0.0427 (13)	0.0353 (10)	0.0021 (10)	-0.0015 (9)	0.0014 (10)
C5	0.0369 (12)	0.0385 (12)	0.0347 (10)	0.0005 (10)	-0.0007 (9)	0.0052 (9)
C3	0.0290 (11)	0.0370 (11)	0.0337 (10)	-0.0032 (9)	0.0015 (8)	-0.0005 (9)
C7	0.0301 (11)	0.0519 (15)	0.0406 (11)	0.0001 (10)	0.0035 (9)	0.0008 (10)
C15	0.0283 (11)	0.0460 (13)	0.0439 (11)	0.0014 (9)	-0.0072 (9)	0.0020 (10)
C13	0.0353 (12)	0.0439 (13)	0.0370 (11)	0.0023 (10)	0.0012 (9)	0.0007 (10)
C14	0.0351 (12)	0.0441 (13)	0.0432 (11)	0.0052 (10)	-0.0010 (10)	-0.0066 (10)
C8	0.0410 (14)	0.0705 (18)	0.0381 (12)	-0.0032 (13)	-0.0088 (10)	0.0036 (12)
C9	0.0380 (12)	0.0572 (15)	0.0324 (10)	-0.0050 (11)	0.0045 (9)	-0.0035 (10)
C19	0.0396 (13)	0.0527 (15)	0.0390 (11)	-0.0023 (11)	-0.0045 (10)	0.0055 (11)
C16	0.0442 (14)	0.0422 (14)	0.0625 (16)	-0.0025 (11)	-0.0117 (12)	0.0047 (12)
C6	0.0416 (13)	0.0442 (13)	0.0467 (13)	0.0101 (11)	0.0013 (11)	0.0008 (11)
C10	0.0639 (18)	0.0459 (15)	0.0471 (13)	-0.0080 (13)	-0.0071 (12)	0.0129 (11)
C17	0.0502 (16)	0.0447 (14)	0.0662 (16)	-0.0085 (12)	-0.0135 (13)	0.0198 (13)
C18	0.0438 (14)	0.0618 (17)	0.0482 (13)	-0.0051 (12)	-0.0043 (11)	0.0181 (12)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C1	1.207 (3)	С7—С6	1.545 (4)
O2—C11	1.213 (3)	C15—C14	1.409 (3)
C1—C2	1.535 (3)	C15—C16	1.430 (4)
C1—C5	1.516 (3)	C13—H13	0.9500
C12—C11	1.507 (3)	C13—C14	1.367 (4)
C12—C21	1.374 (3)	C14—H14	0.9500
C12—C13	1.428 (3)	C8—H8A	0.9800
C20—C21	1.428 (3)	C8—H8B	0.9800
C20—C15	1.418 (3)	C8—H8C	0.9800
C20—C19	1.406 (3)	С9—Н9А	0.9800
С2—Н2	1.0000	С9—Н9В	0.9800
C2-C11	1.521 (3)	С9—Н9С	0.9800
C2—C3	1.559 (3)	C19—H19	0.9500
C4—C5	1.560 (3)	C19—C18	1.367 (4)
C4—C3	1.554 (3)	C16—H16	0.9500
C4—C8	1.537 (3)	C16—C17	1.355 (4)
C4—C9	1.531 (3)	С6—Н6А	0.9900
C21—H21	0.9500	C6—H6B	0.9900
C5—C6	1.564 (3)	C10—H10A	0.9800

C5—C10	1.511 (3)	C10—H10B	0.9800
С3—Н3	1.0000	C10—H10C	0.9800
C3—C7	1.540 (3)	С17—Н17	0.9500
C7—H7A	0.9900	C17—C18	1.418 (4)
С7—Н7В	0.9900	C18—H18	0.9500
01—C1—C2	125.9 (2)	C20—C15—C16	118.6 (2)
01—C1—C5	127.1 (2)	C14—C15—C20	119.4 (2)
C5—C1—C2	106.96 (18)	C14—C15—C16	122.0 (2)
C21—C12—C11	118.1 (2)	C12—C13—H13	120.0
C21—C12—C13	119.5 (2)	C14—C13—C12	120.0 (2)
C13—C12—C11	122.31 (19)	C14—C13—H13	120.0
C15—C20—C21	118.3 (2)	C15—C14—H14	119.3
C19—C20—C21	121.5 (2)	C13—C14—C15	121.5 (2)
C19—C20—C15	120.1 (2)	C13—C14—H14	119.3
С1—С2—Н2	109.5	C4—C8—H8A	109.5
C1—C2—C3	101.15 (16)	C4—C8—H8B	109.5
C11—C2—C1	112.83 (18)	C4—C8—H8C	109.5
С11—С2—Н2	109.5	H8A—C8—H8B	109.5
C11—C2—C3	114.20 (17)	H8A—C8—H8C	109.5
С3—С2—Н2	109.5	H8B—C8—H8C	109.5
O2—C11—C12	121.90 (19)	С4—С9—Н9А	109.5
O2—C11—C2	120.4 (2)	С4—С9—Н9В	109.5
C12—C11—C2	117.72 (19)	С4—С9—Н9С	109.5
C3—C4—C5	94.14 (16)	H9A—C9—H9B	109.5
C8—C4—C5	113.4 (2)	Н9А—С9—Н9С	109.5
C8—C4—C3	113.29 (19)	H9B—C9—H9C	109.5
C9—C4—C5	113.31 (19)	С20—С19—Н19	120.1
C9—C4—C3	114.39 (19)	C18—C19—C20	119.8 (3)
C9—C4—C8	108.02 (19)	C18—C19—H19	120.1
C12—C21—C20	121.3 (2)	C15—C16—H16	120.0
C12—C21—H21	119.4	C17—C16—C15	120.1 (3)
C20—C21—H21	119.4	C17—C16—H16	120.0
C1—C5—C4	100.46 (18)	С5—С6—Н6А	110.8
C1—C5—C6	103.31 (18)	С5—С6—Н6В	110.8
C4—C5—C6	101.74 (18)	C7—C6—C5	104.83 (19)
C10—C5—C1	114.8 (2)	С7—С6—Н6А	110.8
C10—C5—C4	118.64 (19)	С7—С6—Н6В	110.8
C10—C5—C6	115.5 (2)	H6A—C6—H6B	108.9
С2—С3—Н3	114.4	C5-C10-H10A	109.5
C4—C3—C2	102.03 (16)	C5-C10-H10B	109.5
С4—С3—Н3	114.4	C5—C10—H10C	109.5
C7—C3—C2	107.70 (17)	H10A—C10—H10B	109.5
C7—C3—C4	102.45 (18)	H10A—C10—H10C	109.5
С7—С3—Н3	114.4	H10B—C10—H10C	109.5
С3—С7—Н7А	111.3	С16—С17—Н17	119.6
С3—С7—Н7В	111.3	C16—C17—C18	120.8 (3)
C3—C7—C6	102.44 (18)	C18—C17—H17	119.6

H7A—C7—H7B	109.2	C19—C18—C17	120.6 (2)
С6—С7—Н7А	111.3	C19—C18—H18	119.7
С6—С7—Н7В	111.3	C17—C18—H18	119.7
O1-C1-C2-C11	58.5 (3)	C5—C4—C3—C2	-55.30 (19)
O1—C1—C2—C3	-179.1 (2)	C5—C4—C3—C7	56.14 (19)
O1—C1—C5—C4	144.2 (2)	C3—C2—C11—O2	-101.7 (3)
O1—C1—C5—C6	-110.9 (3)	C3—C2—C11—C12	76.7 (3)
O1—C1—C5—C10	15.7 (3)	C3—C4—C5—C1	54.17 (19)
C1—C2—C11—O2	13.1 (3)	C3—C4—C5—C6	-51.94 (19)
C1—C2—C11—C12	-168.51 (19)	C3—C4—C5—C10	-179.9 (2)
C1—C2—C3—C4	35.2 (2)	C3—C7—C6—C5	4.6 (2)
C1—C2—C3—C7	-72.2 (2)	C15—C20—C21—C12	1.1 (3)
C1C5C7	-73.3 (2)	C15—C20—C19—C18	0.4 (3)
C12—C13—C14—C15	0.8 (4)	C15—C16—C17—C18	-0.6 (4)
C20-C15-C14-C13	1.0 (3)	C13—C12—C11—O2	-176.8 (2)
C20-C15-C16-C17	1.4 (4)	C13—C12—C11—C2	4.8 (3)
C20-C19-C18-C17	0.4 (4)	C13—C12—C21—C20	0.6 (3)
C2-C1-C5-C4	-34.7 (2)	C14—C15—C16—C17	-177.2 (2)
C2-C1-C5-C6	70.1 (2)	C8—C4—C5—C1	171.77 (19)
C2-C1-C5-C10	-163.2 (2)	C8—C4—C5—C6	65.7 (2)
C2—C3—C7—C6	68.6 (2)	C8-C4-C5-C10	-62.3 (3)
C11—C12—C21—C20	-178.8 (2)	C8—C4—C3—C2	-172.96 (19)
C11—C12—C13—C14	177.8 (2)	C8—C4—C3—C7	-61.5 (2)
C11—C2—C3—C4	156.71 (18)	C9—C4—C5—C1	-64.6 (2)
C11—C2—C3—C7	49.3 (2)	C9—C4—C5—C6	-170.76 (18)
C4—C5—C6—C7	30.5 (2)	C9—C4—C5—C10	61.3 (3)
C4—C3—C7—C6	-38.6 (2)	C9—C4—C3—C2	62.6 (2)
C21—C12—C11—O2	2.6 (3)	C9—C4—C3—C7	174.07 (19)
C21—C12—C11—C2	-175.8 (2)	C19—C20—C21—C12	-178.1 (2)
C21—C12—C13—C14	-1.6 (3)	C19—C20—C15—C14	177.3 (2)
C21—C20—C15—C14	-1.9 (3)	C19—C20—C15—C16	-1.3 (3)
C21—C20—C15—C16	179.5 (2)	C16—C15—C14—C13	179.6 (2)
C21—C20—C19—C18	179.6 (2)	C16—C17—C18—C19	-0.3 (4)
C5-C1-C2-C11	-122.51 (19)	C10—C5—C6—C7	160.4 (2)
C5—C1—C2—C3	-0.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>	
C13—H13…O1 ⁱ	0.95	2.57	3.296 (3)	134	
C16—H16…O2 ⁱⁱ	0.95	2.57	3.458 (3)	156	

Symmetry codes: (i) -x+3/2, y-1/2, -z+5/4; (ii) x, y-1, z.