Received 6 November 2020 Accepted 2 December 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; Schiff base; tridentate ligand; chiral molecule.

CCDC reference: 1970566

Structural data: full structural data are available from iucrdata.iucr.org

4-Fluoro-2-({[(2*R*)-1-hydroxy-1,1,3-triphenylpropan-2-yl]imino}methyl)phenol

Fanrui Sha and Adam R. Johnson*

Department of Chemistry, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711, USA. *Correspondence e-mail: adam_johnson@hmc.edu

The title compound, $C_{28}H_{24}FNO_2$, crystallizes in the orthorhombic space group $P2_12_12_1$. A hydrogen-bonding network between the tertiary alcohol group and the fluoro substituent results in [010] chains in the solid state.

Structure description

We have synthesized a number of chiral imine diols by Schiff-base condensation of the corresponding salicylaldehydes with (S)- or (R)-2-amino-1,1,3-triphenylpropanol (Kang *et al.*, 2004; Liu *et al.* 2004). These compounds serve as ligands for titanium for the asymmetric intramolecular hydroamination of aminoallenes (Sha *et al.*, 2019). We routinely prepare both enantiomers of the ligands, and a number of them were examined by single-crystal X-ray diffraction, including the L-enantiomer of the title compound, in order to compare the structures of the free and bound ligand.

2-Hydroxy-5-fluoro-benzaldehyde 2S-(1,1,3-triphenylpropanol) imine, $C_{28}H_{24}FNO_2$, crystallizes in the orthorhombic space group $P2_12_12_1$ as shown in Fig. 1. The major structural features of the two enantiomers are similar, as expected. The L-enantiomer structure was collected at 100 K while the D-enantiomer was collected at 293 K. The unit-cell parameters in the current room-temperature structure are slightly larger (average 1.3%), presumably due to the higher temperature of the data collection. The absolute structure parameter of -0.1 (3) has a large uncertainty but the absolute configuration was verified by synthesis and polarimetry.

The compound has the expected imine–phenol structure as opposed to the iminium– phenoxide tautomer seen in derivatives with less steric bulk. The C23–C28 phenol aromatic ring is close to co-planar with atoms O2 [deviation from the ring plane = 0.040 (2) Å], C22 [-0.061 (2) Å], N1 [-0.034 (2) Å] and C2 [-0.039 (2) Å]. These four atoms exhibit less deviation from the plane than the enantiomer. The C22–N1–C2–C1 torsion angle is 110.2 (2)°, which places atom O1 1.555 (2) Å above the plane of the ring.

© ♥ OPEN ∂ ACCESS

Table 1Hydrogen-bond g	geometry (Å, °)).	
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots N1$	0.82	1.86	2.583 (3)	147
$O1-H1\cdots F1^{i}$	0.82	2.94	3.720 (3)	160
$C9-H9\cdots F1^{ii}$	0.93	2.54	3.467 (3)	175
$C14-H14\cdots O2^{iii}$	0.93	2.58	3.369 (3)	142

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

This deviation is 0.166 Å larger than that for the enantiomer at 100 K, although the torsion angle is almost identical.

The bonds between C27–C28, C23–C28 and C23–C24 are long at 1.39–1.41 Å while those between C24–C25, C25–C26 and C26–C27 are shorter at 1.36–1.37 Å. In contrast, the aromatic rings on the benzyl and phenyl substituents have typical C–C bond distances ranging from 1.37–1.39 Å. The aromatic C28–O2 bond at 1.349 (3) Å is substantially shorter than the aliphatic C1–O1 bond [1.439 (3) Å]. This bonding motif has been seen in related structures (Sha *et al.*, 2019).

There is an intramolecular O2-H2···N1 hydrogen bond (Table 1) between the salicylaldehyde alcohol group and the imine nitrogen atom, which closes an S(6) ring and a longrange intermolecular hydrogen bond between the tertiary alcohol O1-H1 and the F1 atom of an adjacent molecule as shown in Fig. 2: the H···F and O···F distances are 2.94 and 3.720 (3) Å, respectively. Weak intermolecular C-H···F and C-H···O contacts are also observed.

Synthesis and crystallization

Preparative details of the material have been reported previously (Sha *et al.*, 2019). Crystals in the form of light-yellow blocks were obtained by slow evaporation from the mixed solvents of hexane/ethyl acetate.

Figure 1

The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level. Hydrogen atoms besides H1, H2 and H2A have been omitted for clarity.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{28}H_{24}FNO_2$
$M_{ m r}$	425.48
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	293
a, b, c (Å)	6.0147 (2), 18.8172 (4), 20.4530 (5)
$V(Å^3)$	2314.87 (11)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.08
Crystal size (mm)	$0.29 \times 0.27 \times 0.23$
Data collection	
Diffractometer	Rigaku XtaLAB Mini II
Absorption correction	Analytical [CrysAlis PRO (Rigaku
	OD, 2019); ABSPACK (Rigaku
	OD, 2017)]
T_{\min}, T_{\max}	0.995, 0.996
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	73250, 5721, 4529
R _{int}	0.044
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.098, 1.03
No. of reflections	5721
No. of parameters	291
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.14, -0.15
Absolute structure	Flack x determined using 1550 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.1 (3)

Computer programs: *CrysAlis PRO* (Rigaku OD, 2019), *SHELXS* (Sheldrick, 2008), *SHELXL* (Sheldrick, 2015), *OLEX2* (Dolomanov *et al.*, 2009) and *CrystalMaker* (Palmer, 2020).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors wish to thank Eric W. Reinheimer for technical support.

Funding information

Funding for this research was provided by: Harvey Mudd College.

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Kang, Y.-F., Liu, L., Wang, R., Yan, W.-J. & Zhou, Y.-F. (2004). *Tetrahedron Asymmetry*, **15**, 3155–3159.
- Liu, L., Kang, Y.-F., Wang, R., Zhou, Y.-F., Chen, C., Ni, M. & Gong, M.-Z. (2004). Tetrahedron Asymmetry, 15, 3757–3761.

- Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku OD (2017). SCALE3 ABSPACK. Rigaku Oxford Diffraction, Yarnton, England.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sha, F., Mitchell, B. S., Ye, C. Z., Abelson, C. S., Reinheimer, E. W., LeMagueres, P., Ferrara, J. D., Takase, M. K. & Johnson, A. R. (2019). *Dalton Trans.* 48, 9603–9616.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2020). **5**, x201580 [https://doi.org/10.1107/S2414314620015801]

4-Fluoro-2-({[(2R)-1-hydroxy-1,1,3-triphenylpropan-2-yl]imino}methyl)phenol

Fanrui Sha and Adam R. Johnson

4-Fluoro-2-({[(2R)-1-hydroxy-1,1,3-triphenylpropan-2-yl]imino}methyl)phenol

Crystal data

C₂₈H₂₄FNO₂ $M_r = 425.48$ Orthorhombic, P2₁2₁2₁ a = 6.0147 (2) Å b = 18.8172 (4) Å c = 20.4530 (5) Å V = 2314.87 (11) Å³ Z = 4F(000) = 896

Data collection

Rigaku XtaLAB Mini II diffractometer Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source Graphite monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2019); *ABSPACK* (Rigaku OD, 2017)]

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.098$ S = 1.035721 reflections 291 parameters 0 restraints Primary atom site location: structure-invariant direct methods $D_x = 1.221 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 20629 reflections $\theta = 2.0-22.8^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, clear light yellow $0.29 \times 0.27 \times 0.23 \text{ mm}$

 $T_{\min} = 0.995, T_{\max} = 0.996$ 73250 measured reflections
5721 independent reflections
4529 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$ $\theta_{\text{max}} = 28.3^{\circ}, \theta_{\text{min}} = 2.0^{\circ}$ $h = -8 \rightarrow 8$ $k = -25 \rightarrow 25$ $l = -27 \rightarrow 27$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0408P)^2 + 0.2813P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³ Absolute structure: Flack *x* determined using 1550 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.1 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.9178 (3)	0.82714 (9)	0.12710 (9)	0.0962 (6)	
01	0.2298 (2)	0.51725 (9)	0.34826 (8)	0.0552 (4)	
H1	0.203611	0.474846	0.343181	0.083*	
O2	0.2834 (3)	0.62611 (10)	0.17459 (9)	0.0684 (5)	
H2	0.328661	0.596034	0.200364	0.103*	
N1	0.5550 (3)	0.56695 (9)	0.25587 (8)	0.0413 (4)	
C1	0.4599 (3)	0.52649 (11)	0.36563 (10)	0.0398 (4)	
C2	0.6059 (3)	0.51204 (10)	0.30374 (9)	0.0386 (4)	
H2A	0.763405	0.515018	0.315703	0.046*	
C3	0.5589 (4)	0.43882 (11)	0.27290 (10)	0.0505 (5)	
H3A	0.581351	0.402322	0.305740	0.061*	
H3B	0.404359	0.436968	0.259445	0.061*	
C4	0.7040 (4)	0.42272 (10)	0.21473 (10)	0.0488 (5)	
C5	0.6403 (5)	0.44232 (13)	0.15197 (12)	0.0639 (7)	
H5	0.505460	0.465438	0.145449	0.077*	
C6	0.7771 (7)	0.42755 (14)	0.09884 (13)	0.0835 (10)	
H6	0.733148	0.441041	0.057053	0.100*	
C7	0.9761 (7)	0.39330 (17)	0.10751 (18)	0.0886 (11)	
H7	1.067032	0.383652	0.071824	0.106*	
C8	1.0393 (6)	0.37362 (18)	0.1685 (2)	0.0909 (10)	
H8	1.173814	0.350153	0.174553	0.109*	
C9	0.9049 (5)	0.38825 (15)	0.22170 (14)	0.0712 (7)	
H9	0.951195	0.374498	0.263194	0.085*	
C10	0.5143 (3)	0.47796 (10)	0.42366 (9)	0.0402 (4)	
C11	0.7181 (4)	0.44477 (12)	0.43239 (11)	0.0495 (5)	
H11	0.827905	0.449448	0.400675	0.059*	
C12	0.7598 (5)	0.40449 (12)	0.48822 (11)	0.0594 (6)	
H12	0.896877	0.382316	0.493428	0.071*	
C13	0.5999 (5)	0.39739 (13)	0.53549 (12)	0.0657 (7)	
H13	0.628493	0.370747	0.572854	0.079*	
C14	0.3965 (5)	0.42993 (14)	0.52737 (11)	0.0652 (7)	
H14	0.287022	0.424937	0.559155	0.078*	
C15	0.3550 (4)	0.46988 (12)	0.47220 (11)	0.0520 (6)	
H15	0.217525	0.491873	0.467401	0.062*	
C16	0.4910 (4)	0.60386 (11)	0.38657 (10)	0.0450 (5)	
C17	0.6909 (5)	0.62610 (12)	0.41351 (12)	0.0576 (6)	
H17	0.803348	0.593111	0.420758	0.069*	
C18	0.7254 (6)	0.69653 (14)	0.42975 (14)	0.0764 (8)	
H18	0.860574	0.710554	0.447662	0.092*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C19	0.5618 (7)	0.74562 (15)	0.41960 (19)	0.0930 (11)	
H19	0.584347	0.792885	0.431100	0.112*	
C20	0.3641 (7)	0.72472 (17)	0.3923 (2)	0.1065 (13)	
H20	0.253617	0.758201	0.384393	0.128*	
C21	0.3279 (5)	0.65428 (15)	0.37652 (17)	0.0797 (9)	
H21	0.191920	0.640668	0.358886	0.096*	
C22	0.6980 (4)	0.61408 (10)	0.24233 (9)	0.0405 (4)	
H22	0.837032	0.612055	0.262127	0.049*	
C23	0.6501 (4)	0.67165 (10)	0.19634 (10)	0.0415 (5)	
C24	0.8092 (4)	0.72373 (12)	0.18420 (11)	0.0534 (6)	
H24	0.944724	0.723285	0.206112	0.064*	
C25	0.7621 (5)	0.77581 (12)	0.13918 (11)	0.0600 (6)	
C26	0.5670 (5)	0.77790 (13)	0.10519 (12)	0.0649 (7)	
H26	0.542130	0.813151	0.074170	0.078*	
C27	0.4081 (5)	0.72738 (13)	0.11734 (12)	0.0643 (7)	
H27	0.274328	0.728610	0.094574	0.077*	
C28	0.4451 (4)	0.67427 (11)	0.16341 (11)	0.0494 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.1196 (15)	0.0738 (10)	0.0954 (12)	-0.0342 (10)	-0.0053 (12)	0.0365 (9)
01	0.0371 (8)	0.0709 (10)	0.0577 (9)	-0.0053 (8)	-0.0042 (7)	0.0022 (8)
O2	0.0602 (11)	0.0715 (11)	0.0735 (12)	-0.0102 (9)	-0.0239 (9)	0.0191 (9)
N1	0.0450 (10)	0.0434 (9)	0.0355 (8)	-0.0008 (8)	-0.0026 (7)	0.0031 (7)
C1	0.0344 (10)	0.0472 (11)	0.0379 (10)	-0.0011 (9)	-0.0006 (9)	0.0030 (8)
C2	0.0407 (11)	0.0398 (10)	0.0354 (9)	-0.0013 (8)	0.0003 (9)	0.0055 (8)
C3	0.0633 (15)	0.0433 (11)	0.0447 (11)	-0.0084 (11)	0.0065 (11)	0.0011 (9)
C4	0.0647 (15)	0.0364 (10)	0.0451 (12)	-0.0073 (10)	0.0022 (11)	-0.0033 (8)
C5	0.0920 (19)	0.0495 (12)	0.0503 (14)	0.0007 (14)	0.0024 (14)	0.0016 (11)
C6	0.144 (3)	0.0599 (15)	0.0463 (14)	-0.013 (2)	0.0211 (18)	0.0026 (11)
C7	0.108 (3)	0.0727 (19)	0.085 (2)	-0.018 (2)	0.041 (2)	-0.0203 (17)
C8	0.073 (2)	0.090 (2)	0.109 (3)	0.0033 (18)	0.013 (2)	-0.035 (2)
C9	0.0765 (19)	0.0720 (16)	0.0652 (16)	0.0083 (15)	-0.0036 (15)	-0.0167 (13)
C10	0.0460 (12)	0.0388 (10)	0.0358 (10)	-0.0093 (9)	-0.0003 (9)	0.0010 (8)
C11	0.0504 (13)	0.0506 (11)	0.0476 (12)	-0.0049 (11)	-0.0025 (10)	0.0081 (9)
C12	0.0697 (17)	0.0526 (13)	0.0557 (14)	-0.0031 (12)	-0.0173 (14)	0.0105 (11)
C13	0.099 (2)	0.0578 (14)	0.0406 (12)	-0.0197 (15)	-0.0153 (14)	0.0125 (11)
C14	0.089 (2)	0.0683 (15)	0.0383 (12)	-0.0223 (15)	0.0110 (13)	0.0044 (11)
C15	0.0564 (14)	0.0538 (12)	0.0458 (12)	-0.0077 (11)	0.0086 (11)	-0.0009 (10)
C16	0.0505 (13)	0.0439 (11)	0.0408 (10)	0.0046 (10)	0.0119 (10)	0.0044 (9)
C17	0.0706 (17)	0.0487 (12)	0.0537 (13)	-0.0050 (12)	-0.0038 (12)	-0.0010 (10)
C18	0.098 (2)	0.0607 (15)	0.0702 (17)	-0.0204 (17)	0.0091 (17)	-0.0113 (13)
C19	0.122 (3)	0.0468 (15)	0.110 (3)	-0.0052 (19)	0.050 (2)	-0.0141 (16)
C20	0.103 (3)	0.0553 (17)	0.162 (4)	0.0271 (19)	0.033 (3)	0.001 (2)
C21	0.0665 (19)	0.0636 (16)	0.109 (2)	0.0174 (15)	0.0101 (17)	-0.0004 (16)
C22	0.0433 (11)	0.0440 (10)	0.0342 (9)	-0.0007 (9)	-0.0013 (9)	0.0033 (8)
C23	0.0537 (13)	0.0385 (10)	0.0323 (9)	0.0028 (9)	0.0016 (9)	0.0003 (8)

data reports

C24	0.0629 (15)	0.0514 (12)	0.0458 (12)	-0.0055(11) -0.0071(12)	-0.0026(11)	0.0075 (10)
C25 C26	0.0844 (18) 0.096 (2)	0.0432 (12) 0.0462 (12)	0.0522 (13) 0.0527 (14)	0.0142 (14)	-0.0048(15)	0.0087 (10) 0.0117 (10)
C27	0.0745 (18)	0.0602 (14)	0.0581 (14)	0.0113 (14)	-0.0164 (14)	0.0101 (12)
C28	0.0578 (14)	0.0465 (11)	0.0439 (11)	0.0045 (11)	-0.0071 (11)	0.0011 (9)

Geometric parameters (Å, °)

F1—C25	1.368 (3)	C12—H12	0.9300	
01—H1	0.8200	C12—C13	1.370 (4)	
01—C1	1.439 (3)	C13—H13	0.9300	
O2—H2	0.8200	C13—C14	1.378 (4)	
O2—C28	1.349 (3)	C14—H14	0.9300	
N1C2	1.456 (2)	C14—C15	1.379 (3)	
N1-C22	1.266 (3)	C15—H15	0.9300	
C1—C2	1.564 (3)	C16—C17	1.387 (3)	
C1—C10	1.533 (3)	C16—C21	1.380 (3)	
C1C16	1.529 (3)	C17—H17	0.9300	
C2—H2A	0.9800	C17—C18	1.382 (3)	
C2—C3	1.541 (3)	C18—H18	0.9300	
С3—Н3А	0.9700	C18—C19	1.365 (5)	
С3—Н3В	0.9700	C19—H19	0.9300	
C3—C4	1.506 (3)	C19—C20	1.371 (5)	
C4—C5	1.389 (3)	C20—H20	0.9300	
C4—C9	1.379 (4)	C20—C21	1.382 (5)	
С5—Н5	0.9300	C21—H21	0.9300	
С5—С6	1.391 (4)	C22—H22	0.9300	
С6—Н6	0.9300	C22—C23	1.463 (3)	
С6—С7	1.371 (5)	C23—C24	1.392 (3)	
С7—Н7	0.9300	C23—C28	1.406 (3)	
С7—С8	1.355 (5)	C24—H24	0.9300	
С8—Н8	0.9300	C24—C25	1.374 (3)	
С8—С9	1.384 (4)	C25—C26	1.364 (4)	
С9—Н9	0.9300	C26—H26	0.9300	
C10-C11	1.387 (3)	C26—C27	1.371 (4)	
C10—C15	1.388 (3)	C27—H27	0.9300	
C11—H11	0.9300	C27—C28	1.391 (3)	
C11—C12	1.393 (3)			
C1	109.5	C12—C13—H13	120.2	
C28—O2—H2	109.5	C12—C13—C14	119.7 (2)	
C22—N1—C2	120.07 (17)	C14—C13—H13	120.2	
01—C1—C2	108.61 (16)	C13—C14—H14	120.0	
O1—C1—C10	108.93 (16)	C13—C14—C15	120.1 (2)	
O1-C1-C16	107.55 (17)	C15—C14—H14	120.0	
C10—C1—C2	113.77 (16)	C10-C15-H15	119.3	
C16—C1—C2	108.88 (15)	C14—C15—C10	121.4 (2)	
C16-C1-C10	108.92 (16)	C14—C15—H15	119.3	

N1—C2—C1	107.61 (15)	C17—C16—C1	120.29 (19)
N1—C2—H2A	109.3	C21—C16—C1	121.7 (2)
N1—C2—C3	108.70 (16)	C21—C16—C17	117.9 (2)
C1—C2—H2A	109.3	C16—C17—H17	119.5
C3—C2—C1	112.55 (16)	C18—C17—C16	121.0 (3)
C3—C2—H2A	109.3	C18—C17—H17	119.5
С2—С3—НЗА	108.9	C17—C18—H18	119.9
С2—С3—Н3В	108.9	C19—C18—C17	120.3 (3)
НЗА—СЗ—НЗВ	107.7	C19—C18—H18	119.9
C4—C3—C2	113.37 (18)	C18—C19—H19	120.2
С4—С3—НЗА	108.9	C18—C19—C20	119.5 (3)
C4—C3—H3B	108.9	С20—С19—Н19	120.2
C5—C4—C3	121.1 (2)	C19—C20—H20	119.8
C9—C4—C3	121.4 (2)	C19—C20—C21	120.5 (3)
C9—C4—C5	117.5 (2)	C21—C20—H20	119.8
С4—С5—Н5	119.8	C16—C21—C20	120.9 (3)
C4—C5—C6	120.4 (3)	C16—C21—H21	119.6
С6—С5—Н5	119.8	C20—C21—H21	119.6
С5—С6—Н6	119.7	N1—C22—H22	119.2
C7—C6—C5	120.6 (3)	N1—C22—C23	121.70 (19)
С7—С6—Н6	119.7	C23—C22—H22	119.2
С6—С7—Н7	120.2	C24—C23—C22	120.0 (2)
C8—C7—C6	119.5 (3)	C24—C23—C28	119.53 (19)
С8—С7—Н7	120.2	C28—C23—C22	120.43 (19)
С7—С8—Н8	119.8	C23—C24—H24	120.7
С7—С8—С9	120.4 (3)	C25—C24—C23	118.6 (2)
С9—С8—Н8	119.8	C25—C24—H24	120.7
C4—C9—C8	121.6 (3)	F1-C25-C24	118.9 (3)
С4—С9—Н9	119.2	C26—C25—F1	118.5 (2)
С8—С9—Н9	119.2	C26—C25—C24	122.6 (2)
C11—C10—C1	123.82 (18)	C25—C26—H26	120.4
C11—C10—C15	117.93 (19)	C25—C26—C27	119.2 (2)
C15—C10—C1	118.15 (19)	C27—C26—H26	120.4
C10—C11—H11	119.7	С26—С27—Н27	119.7
C10—C11—C12	120.6 (2)	C26—C27—C28	120.6 (2)
C12—C11—H11	119.7	C28—C27—H27	119.7
C11—C12—H12	119.8	O2—C28—C23	121.85 (19)
C13—C12—C11	120.3 (3)	O2—C28—C27	118.8 (2)
C13—C12—H12	119.8	C27—C28—C23	119.3 (2)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
02—H2…N1	0.82	1.86	2.583 (3)	147
O1—H1…F1 ⁱ	0.82	2.94	3.720 (3)	160

				data reports
С9—Н9…F1 ^{іі}	0.93	2.54	3.467 (3)	175
C14—H14…O2 ⁱⁱⁱ	0.93	2.58	3.369 (3)	142

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+2, y-1/2, -z+1/2; (iii) -x+1/2, -y+1, z+1/2.