Received 20 January 2021 Accepted 27 January 2021

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; pyrazolines; C— $H \cdots O$ hydrogen bonds.

CCDC reference: 2058998

Structural data: full structural data are available from iucrdata.iucr.org

1-[5-(3,5-Dimethoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1*H*-pyrazol-1-yl]ethanone

Miri Yoo and Dongsoo Koh*

Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea. *Correspondence e-mail: dskoh@dongduk.ac.kr

In the title compound, $C_{20}H_{22}N_2O_4$, two benzene rings bearing methoxy substituents are connected by a central acetylpyrazoline ring: the dihedral angle between the benzene rings is 83.7 (1)°. In the crystal, pairwise $C-H\cdots O$ hydrogen bonds generate inversion dimers and additional weak $C-H\cdots O$ interactions link the dimers into chains propagating along the *c*-axis direction.

Structure description

Pyrazolines show a broad spectrum of biological activities including anticancer (Matiadis & Sagnou, 2020), Alzheimer drugs (Neudorfer *et al.*, 2014) and the dual function of antimalarial and antimicrobial activities (Mishra, *et al.*, 2017). According to a recent review, pyrazolines have also demonstrated versatile applications in bio-imaging and sensing (Varghese *et al.*, 2017). In a continuation of our studies of pyrazolines that show a broad range of biological activities (Jung *et al.* 2015), the title compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. Atom C10 has an *S* configuration in the arbitrarily chosen asymmetric unit but crystal symmetry generates a racemic mixture. The central pyrazoline ring (N1/N2/C8–C10) connects the two benzene rings (C1–C6 and C11–C16) at carbon atoms 8 and 10, respectively. The dihedral angle between the pyrazoline ring and the C1–C6 benzene ring is 6.25 (2)°, indicating that the rings are close to coplanar. On the other hand, the dihedral angle formed by the pyrazoline ring and the C11–C16 benzene ring is 83.9 (3)°, which indicates that these two rings are almost orthogonal to each other. The dihedral angle between the benzene rings is 83.7 (1)°. There are three methoxy groups, which are attached to carbon-atom C1 of the first benzene ring and C13 and C15 of the second. The C18 atom of the methoxy group at C15 is essentially co-planar with the benzene ring [C18–O3–C15–C16 = 0.5 (2)°], whereas the C7 and C17 atoms of the methoxy groups at C1 and C13 are slightly twisted

The molecular structure of the title compound, showing the atomlabelling scheme, with displacement ellipsoids drawn at the 30% probability level.

from the corresponding ring plane with torsion angles C6– C1–O1–C7 = 6.1 (2)° and C14–C13–O2–C17 = -2.7 (3)°, respectively. The acetyl group attached to the pyrazoline ring lies in almost the same plane as the ring [C20–C19–N1–N2 = 0.9 (2)°].

In the crystal, pairs of C10-H10···O4 hydrogen bonds generate inversion dimers (Table 1, Fig. 2) featuring $R_2^2(10)$ loops and another pair of C-H···O hydrogen bonds links the dimers into chains propagating along the *c*-axis direction (Fig. 3).

Synthesis and crystallization

To a solution of 2-methoxyacetophenone (600 mg, 4 mmol) in 50 ml of ethanol was added 3,5-dimethoxybenzaldehyde (830 mg, 5 mmol) and the temperature was adjusted to around 277 K in an ice-bath. To the cooled reaction mixture were

Figure 2

A view of the dimer formed by pairwise $C-H\cdots O$ hydrogen bonds (dashed lines) in the crystal structure of the title compound. For clarity, only those H atoms involved in hydrogen bonding are shown.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C10−H10····O4 ⁱ	0.99	2.46	3.4340 (18)	167
C5−H5···O4 ⁱⁱ	0.94	2.59	3.309 (2)	134

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y, z + 1.

Table 2Experimental details.

Crystal data Chemical formula $C_{20}H_{22}N_2O_4$ 354.39 М. Triclinic, $P\overline{1}$ Crystal system, space group Temperature (K) 223 a, b, c (Å) 8.7181 (2), 10.7230 (3), 11.2096 (3) *α*, *β*, *γ* (°) 113.0348 (10), 91.4395 (12), 107.4022 (11) $V(Å^3)$ 908.09 (4) Ζ 2 Radiation type Μο Κα μ (mm⁻¹) 0.09 Crystal size (mm) $0.17 \times 0.16 \times 0.12$ Data collection Diffractometer PHOTON 100 CMOS Absorption correction Multi-scan (SADABS; Bruker, 2012) 0.643. 0.746 T_{\min}, T_{\max} No. of measured, independent and 39068, 4541, 3338 observed $[I > 2\sigma(I)]$ reflections 0.045 Rint $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.669 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.046, 0.126, 1.05 No. of reflections 4541 No. of parameters 239 H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.31. - 0.21

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXTL (Sheldrick, 2008) and SHELXL2014/7 (Sheldrick, 2015).

Figure 3

Part of the crystal structure with hydrogen bonds shown as dashed lines. For clarity, only those H atoms involved in hydrogen bonding are shown.

added 5 ml of 40% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 5 h. This mixture was poured into iced water (100 ml) and was acidified (pH = 3) with 2 N HCl solution to give a precipitate. Filtration and washing with water afforded a crude solid of a chalcone compound, which was recrystallized from ethanol solution. To a solution of the chalcone compound (2 mmol, 596 mg) in 20 ml of anhydrous ethanol was added excess hydrazine monohydrate (0.6 ml of 64–65% solution, 7 mmol) and the solution was refluxed at 362 K for 3 h. The reaction mixture was cooled to room temperature to produce a solid. This solid was recrystallized from an ethanol solution to obtain single crystals of the title compound (m.p. 436–437 K, yield; 62%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

The authors acknowledge financial support from the Basic Science Research Program (award No. NRF-2019R1F1A1058747).

References

- Bruker (2012). *APEX2*, *SAINT* and *SADABS*, Bruker AXS Inc. Madison, Wisconsin, USA.
- Jung, H., Ahn, S., Park, M., Yoon, H., Noh, H. J., Kim, S. Y., Yoo, J. S., Koh, D. & Lim, Y. (2015). *Magn. Reson. Chem.* 53, 383–390.
- Matiadis, D. & Sagnou, M. (2020). Int. J. Mol. Sci. 21, 5507.
- Mishra, V. K., Mishra, M., Kashaw, V. & Kashaw, S. K. (2017). Bioorg. Med. Chem. 25, 1949–1962.
- Neudorfer, C., Shanab, K., Jurik, A., Schreiber, V., Neudorfer, C., Vraka, C., Schirmer, E., Holzer, W., Ecker, G., Mitterhauser, M., Wadsak, W. & Spreitzer, H. (2014). *Bioorg. Med. Chem. Lett.* 24, 4490–4495.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Varghese, B., Al-Busafi, S. N., Suliman, F. O. & Al-Kindy, S. M. Z. (2017). RSC Adv. 7, 46999–47016.

full crystallographic data

IUCrData (2021). **6**, x210096 [https://doi.org/10.1107/S2414314621000961]

1-[5-(3,5-Dimethoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1*H*-pyrazol-1-yl]ethanone

Miri Yoo and Dongsoo Koh

1-[5-(3,5-Dimethoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone

Crystal data

 $\begin{array}{l} C_{20}H_{22}N_2O_4\\ M_r = 354.39\\ Triclinic, P\overline{1}\\ a = 8.7181 \ (2) \ \text{\AA}\\ b = 10.7230 \ (3) \ \text{\AA}\\ c = 11.2096 \ (3) \ \text{\AA}\\ a = 113.0348 \ (10)^{\circ}\\ \beta = 91.4395 \ (12)^{\circ}\\ \gamma = 107.4022 \ (11)^{\circ}\\ V = 908.09 \ (4) \ \text{\AA}^3 \end{array}$

Data collection

PHOTON 100 CMOS diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{\min} = 0.643$, $T_{\max} = 0.746$ 39068 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.126$ S = 1.054541 reflections 239 parameters 0 restraints Z = 2 F(000) = 376 $D_x = 1.296 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9964 reflections $\theta = 2.3-28.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 223 K Block, colourless $0.17 \times 0.16 \times 0.12 \text{ mm}$

4541 independent reflections 3338 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 14$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 0.3528P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.33313 (18)	0.31123 (16)	0.49923 (14)	0.0328 (3)	
C2	0.28231 (17)	0.40413 (15)	0.46044 (13)	0.0290 (3)	
C3	0.20042 (19)	0.48741 (17)	0.54478 (14)	0.0349 (3)	
Н3	0.1650	0.5503	0.5209	0.042*	
C4	0.1704 (2)	0.47940 (19)	0.66259 (16)	0.0423 (4)	
H4	0.1143	0.5357	0.7174	0.051*	
C5	0.2233 (2)	0.38832 (19)	0.69949 (16)	0.0439 (4)	
H5	0.2041	0.3837	0.7800	0.053*	
C6	0.3037 (2)	0.30458 (18)	0.61869 (15)	0.0391 (4)	
H6	0.3390	0.2426	0.6441	0.047*	
01	0.41126 (15)	0.23045 (13)	0.41477 (11)	0.0445 (3)	
C7	0.4509 (3)	0.1255 (2)	0.4431 (2)	0.0658 (6)	
H7A	0.5253	0.1720	0.5256	0.099*	
H7B	0.5023	0.0745	0.3733	0.099*	
H7C	0.3525	0.0580	0.4498	0.099*	
C8	0.30805 (17)	0.41521 (15)	0.33494 (13)	0.0274 (3)	
C9	0.38469 (18)	0.32990 (16)	0.22753 (13)	0.0304 (3)	
H9A	0.3314	0.2262	0.1994	0.037*	
H9B	0.5013	0.3553	0.2562	0.037*	
C10	0.35565 (17)	0.37553 (15)	0.11689 (13)	0.0285 (3)	
H10	0.4592	0.4092	0.0863	0.034*	
N1	0.29693 (15)	0.49645 (12)	0.18619 (11)	0.0297 (3)	
N2	0.26272 (15)	0.50766 (13)	0.31007 (11)	0.0298 (3)	
C11	0.22958 (17)	0.25555 (14)	0.00294 (13)	0.0277 (3)	
C12	0.27974 (18)	0.17696 (15)	-0.10909 (14)	0.0304 (3)	
H12	0.3907	0.2019	-0.1172	0.036*	
C13	0.16453 (19)	0.06023 (16)	-0.21028 (14)	0.0339 (3)	
C14	0.00146 (19)	0.02227 (16)	-0.20007 (15)	0.0358 (3)	
H14	-0.0754	-0.0568	-0.2686	0.043*	
C15	-0.04762 (18)	0.10307 (15)	-0.08643 (15)	0.0325 (3)	
C16	0.06497 (18)	0.21904 (15)	0.01496 (14)	0.0312 (3)	
H16	0.0309	0.2729	0.0914	0.037*	
O2	0.22721 (16)	-0.01188 (13)	-0.31699 (11)	0.0514 (3)	
C17	0.1152 (3)	-0.1365 (3)	-0.4194 (2)	0.0962 (10)	
H17A	0.0575	-0.2030	-0.3836	0.144*	
H17B	0.1739	-0.1825	-0.4857	0.144*	
H17C	0.0378	-0.1091	-0.4586	0.144*	
03	-0.21162 (13)	0.05856 (12)	-0.08562 (12)	0.0446 (3)	
C18	-0.2693 (2)	0.1386 (2)	0.0275 (2)	0.0499 (4)	
H18A	-0.2214	0.1346	0.1043	0.075*	
H18B	-0.3870	0.0978	0.0156	0.075*	
H18C	-0.2387	0.2380	0.0394	0.075*	
C19	0.26834 (19)	0.58262 (16)	0.13306 (14)	0.0332 (3)	
04	0.29910 (15)	0.56660 (13)	0.02318 (11)	0.0439 (3)	
C20	0.1993 (3)	0.6953 (2)	0.21300 (18)	0.0534 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

H20A	0.2756	0.7898	0.2308	0.080*
H20B	0.1805	0.6879	0.2953	0.080*
H20C	0.0971	0.6813	0.1647	0.080*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0332 (8)	0.0326 (7)	0.0298 (7)	0.0082 (6)	0.0000 (6)	0.0126 (6)
C2	0.0282 (7)	0.0294 (7)	0.0249 (7)	0.0047 (6)	0.0007 (5)	0.0106 (6)
C3	0.0377 (8)	0.0367 (8)	0.0295 (7)	0.0119 (7)	0.0055 (6)	0.0134 (6)
C4	0.0450 (9)	0.0474 (9)	0.0305 (8)	0.0142 (8)	0.0106 (7)	0.0130 (7)
C5	0.0472 (10)	0.0525 (10)	0.0286 (8)	0.0071 (8)	0.0045 (7)	0.0209 (7)
C6	0.0423 (9)	0.0426 (9)	0.0341 (8)	0.0087 (7)	-0.0006 (7)	0.0222 (7)
01	0.0607 (8)	0.0464 (7)	0.0405 (6)	0.0301 (6)	0.0114 (6)	0.0233 (5)
C7	0.0888 (16)	0.0660 (13)	0.0723 (14)	0.0512 (13)	0.0194 (12)	0.0398 (12)
C8	0.0274 (7)	0.0261 (7)	0.0240 (6)	0.0057 (5)	0.0009 (5)	0.0083 (5)
C9	0.0329 (7)	0.0315 (7)	0.0267 (7)	0.0121 (6)	0.0036 (6)	0.0110 (6)
C10	0.0314 (7)	0.0281 (7)	0.0246 (7)	0.0100 (6)	0.0060 (6)	0.0095 (6)
N1	0.0396 (7)	0.0269 (6)	0.0228 (6)	0.0113 (5)	0.0067 (5)	0.0104 (5)
N2	0.0375 (7)	0.0291 (6)	0.0229 (6)	0.0112 (5)	0.0062 (5)	0.0109 (5)
C11	0.0334 (7)	0.0258 (7)	0.0256 (7)	0.0097 (6)	0.0042 (6)	0.0126 (6)
C12	0.0330 (7)	0.0290 (7)	0.0279 (7)	0.0088 (6)	0.0060 (6)	0.0118 (6)
C13	0.0429 (9)	0.0284 (7)	0.0270 (7)	0.0105 (6)	0.0058 (6)	0.0093 (6)
C14	0.0397 (8)	0.0266 (7)	0.0341 (8)	0.0055 (6)	-0.0026 (6)	0.0105 (6)
C15	0.0310 (7)	0.0285 (7)	0.0403 (8)	0.0074 (6)	0.0028 (6)	0.0187 (6)
C16	0.0339 (8)	0.0306 (7)	0.0303 (7)	0.0117 (6)	0.0073 (6)	0.0132 (6)
O2	0.0524 (7)	0.0409 (7)	0.0345 (6)	0.0056 (6)	0.0106 (5)	-0.0036 (5)
C17	0.0702 (16)	0.0801 (17)	0.0559 (14)	-0.0046 (13)	0.0155 (12)	-0.0327 (12)
03	0.0308 (6)	0.0366 (6)	0.0593 (8)	0.0054 (5)	0.0046 (5)	0.0176 (6)
C18	0.0377 (9)	0.0509 (10)	0.0661 (12)	0.0142 (8)	0.0189 (9)	0.0296 (10)
C19	0.0402 (8)	0.0308 (7)	0.0293 (7)	0.0099 (6)	0.0061 (6)	0.0148 (6)
O4	0.0623 (8)	0.0473 (7)	0.0328 (6)	0.0228 (6)	0.0169 (5)	0.0239 (5)
C20	0.0868 (15)	0.0509 (11)	0.0473 (10)	0.0421 (11)	0.0271 (10)	0.0305 (9)

Geometric parameters (Å, °)

C101	1.3617 (18)	N1—N2	1.3940 (15)
C1—C6	1.395 (2)	C11—C12	1.3778 (19)
C1—C2	1.404 (2)	C11—C16	1.395 (2)
С2—С3	1.398 (2)	C12—C13	1.394 (2)
С2—С8	1.4746 (19)	C12—H12	0.9400
C3—C4	1.383 (2)	C13—O2	1.3744 (18)
С3—Н3	0.9400	C13—C14	1.378 (2)
C4—C5	1.383 (2)	C14—C15	1.394 (2)
C4—H4	0.9400	C14—H14	0.9400
С5—С6	1.375 (2)	C15—O3	1.3668 (18)
С5—Н5	0.9400	C15—C16	1.382 (2)
С6—Н6	0.9400	C16—H16	0.9400

O1—C7	1.412 (2)	O2—C17	1.421 (2)
C7—H7A	0.9700	C17—H17A	0.9700
С7—Н7В	0.9700	C17—H17B	0.9700
C7—H7C	0.9700	C17—H17C	0.9700
C8—N2	1 2891 (18)	03-C18	1427(2)
C8-C9	1 5090 (19)	C18—H18A	0.9700
C9-C10	1 5411 (19)	C18—H18B	0.9700
	0.9800	C18—H18C	0.9700
C9H9B	0.9800	C19-04	1 2236 (17)
	1.7740(17)	C_{19} C_{20}	1.2230(17) 1.407(2)
C_{10} C_{11}	1.4749(17) 1 5141 (10)	$C_{10} = C_{20}$	1.497(2)
C10_H10	0.0000	C20 H20R	0.9700
N1 C10	1,2524 (10)	C20—H20C	0.9700
NI—C19	1.5554 (19)	C20—H20C	0.9700
O1—C1—C6	123.01 (14)	C8—N2—N1	108.20 (11)
O1—C1—C2	116.47 (13)	C12—C11—C16	120.38 (13)
C6—C1—C2	120.52 (14)	C12—C11—C10	119.43 (12)
C3—C2—C1	117.68 (13)	C16—C11—C10	120.06 (12)
C3—C2—C8	119.07 (13)	C11—C12—C13	119.39 (14)
C1-C2-C8	123 24 (13)	С11—С12—Н12	120.3
C4-C3-C2	121 49 (15)	C13—C12—H12	120.3
C4—C3—H3	1193	02-C13-C14	124.09(14)
C2—C3—H3	119.3	02 - C13 - C12	114 83 (14)
C_{3} C_{4} C_{5}	119.82 (15)	C_{14} C_{13} C_{12}	121.03(14)
$C_3 - C_4 - H_4$	120.1	C_{13} C_{14} C_{15}	121.07(11) 118.92(14)
C5-C4-H4	120.1	C_{13} C_{14} H_{14}	120.5
C6-C5-C4	120.1 120.19(14)	C_{15} C_{14} H_{14}	120.5
С6—С5—Н5	110.0	03-015-016	120.3
C_{4} C_{5} H_{5}	110.0	$O_{3} = C_{15} = C_{16}$	124.30(14) 114.83(13)
$C_{4} = C_{5} = C_{5}$	119.9	$C_{16} = C_{15} = C_{14}$	114.85(13) 120.79(14)
C5 C6 H6	120.29 (13)	$C_{10} = C_{10} = C_{14}$	120.79(14)
C1 C6 H6	119.9	$C_{15} = C_{16} = C_{16}$	119.44 (13)
$C_1 = C_0 = 110$	119.9 119.67(14)	$C_{11} = C_{10} = H_{10}$	120.3
C1 = C7 = C7	100.5	$C_{11} = C_{10} = 1110$	120.3 116.72(15)
O1 = C7 = H7R	109.5	C13 - 02 - C17	100.5
$U_{-}U_{-}H_{B}$	109.5	$O_2 = C_1 T = H_1 T R$	109.5
$\Pi/A - C / - \Pi/B$	109.5	$U_2 = U_1 = U_1 D_1$	109.5
	109.5	HI/A - CI/-HI/B	109.5
H/A - C/ - H/C	109.5	$U_{-}U_{-}H_{-}H_{-}U_{-}H_{-}U_{-}H_{-}U_{-}H_{-}U_{-}H_{-}U_{-}H_{-}U_{-}H_{-}U_{-}H_{-}U_{-}H_{-}H_{-}H_{-}H_{-}H_{-}H_{-}H_{-}H$	109.5
H/B = C/=H/C	109.5	HI/A—CI/—HI/C	109.5
$N_2 = C_3 = C_2$	118.77 (12)	HI/B = CI/= HI/C	109.5
$N_2 = C_8 = C_9$	113.69 (12)	C15 - 03 - C18	117.33 (13)
$C_2 = C_8 = C_9$	127.53 (12)	O_3 — C_{18} —H18A	109.5
C_{8} C_{9} U_{10}	102.65 (11)		109.5
CIO CO HOA	111.2	H18A - C18 - H18B	109.5
С10—С9—Н9А	111.2	U_3 — $C18$ — $H18C$	109.5
	111.2	H18A - C18 - H18C	109.5
С10—С9—Н9В	111.2	H18B—C18—H18C	109.5
НУА—С9—Н9В	109.2	04—C19—N1	119.79 (14)

N1—C10—C11	111.67 (12)	O4—C19—C20	122.44 (14)
N1—C10—C9	101.24 (10)	N1-C19-C20	117.77 (13)
С11—С10—С9	112.00 (11)	C19—C20—H20A	109.5
N1—C10—H10	110.5	C19—C20—H20B	109.5
C11—C10—H10	110.5	H20A—C20—H20B	109.5
С9—С10—Н10	110.5	C19—C20—H20C	109.5
C19—N1—N2	122.73 (12)	H20A—C20—H20C	109.5
C19—N1—C10	124.12 (11)	H20B—C20—H20C	109.5
N2—N1—C10	113.02 (11)		
O1—C1—C2—C3	179.43 (13)	C19—N1—N2—C8	-177.84 (13)
C6—C1—C2—C3	-0.7 (2)	C10—N1—N2—C8	6.23 (16)
O1—C1—C2—C8	0.8 (2)	N1-C10-C11-C12	145.36 (13)
C6—C1—C2—C8	-179.33 (14)	C9—C10—C11—C12	-101.88 (15)
C1—C2—C3—C4	0.2 (2)	N1-C10-C11-C16	-38.83 (17)
C8—C2—C3—C4	178.85 (14)	C9-C10-C11-C16	73.92 (16)
C2—C3—C4—C5	0.6 (2)	C16—C11—C12—C13	-0.2 (2)
C3—C4—C5—C6	-0.8 (3)	C10-C11-C12-C13	175.58 (13)
C4—C5—C6—C1	0.3 (3)	C11—C12—C13—O2	-179.32 (13)
O1—C1—C6—C5	-179.62 (15)	C11—C12—C13—C14	0.0 (2)
C2—C1—C6—C5	0.5 (2)	O2—C13—C14—C15	179.53 (14)
C6-C1-O1-C7	6.1 (2)	C12—C13—C14—C15	0.2 (2)
C2-C1-O1-C7	-174.01 (16)	C13—C14—C15—O3	179.30 (13)
C3—C2—C8—N2	4.0 (2)	C13—C14—C15—C16	-0.3 (2)
C1—C2—C8—N2	-177.35 (14)	O3-C15-C16-C11	-179.44 (13)
C3—C2—C8—C9	-176.46 (14)	C14—C15—C16—C11	0.1 (2)
C1—C2—C8—C9	2.2 (2)	C12—C11—C16—C15	0.1 (2)
N2-C8-C9-C10	-7.73 (16)	C10-C11-C16-C15	-175.64 (13)
C2-C8-C9-C10	172.73 (13)	C14—C13—O2—C17	-2.7 (3)
C8—C9—C10—N1	10.06 (13)	C12—C13—O2—C17	176.6 (2)
C8—C9—C10—C11	-109.04 (12)	C16—C15—O3—C18	0.5 (2)
C11—C10—N1—C19	-67.02 (17)	C14—C15—O3—C18	-179.07 (14)
C9-C10-N1-C19	173.65 (13)	N2-N1-C19-O4	-179.14 (14)
C11—C10—N1—N2	108.85 (13)	C10-N1-C19-O4	-3.7 (2)
C9—C10—N1—N2	-10.49 (15)	N2-N1-C19-C20	0.9 (2)
C2-C8-N2-N1	-179.04 (12)	C10-N1-C19-C20	176.37 (15)
C9—C8—N2—N1	1.37 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C10—H10…O4 ⁱ	0.99	2.46	3.4340 (18)	167
C5—H5····O4 ⁱⁱ	0.94	2.59	3.309 (2)	134

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*, *y*, *z*+1.