

IUCrData

ISSN 2414-3146

Received 22 January 2021 Accepted 25 January 2021

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; palladium(II) complex; square-planar structure; 2,2':6',2"terpyridine; tridentate ligand; nitrate salt.

CCDC reference: 2058389

Structural data: full structural data are available from iucrdata.iucr.org

(Nitrato- κO)(2,2':6',2"-terpyridine- $\kappa^3 N, N', N''$)palladium(II) nitrate

Kwang Ha*

Chonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea. *Correspondence e-mail: hakwang@chonnam.ac.kr

The title complex, $[Pd(NO_3)(C_{15}H_{11}N_3)]NO_3$, comprises a cationic Pd^{II} complex and a nitrate anion. In the complex, the Pd^{II} cation is four-coordinated in a distorted square-planar coordination geometry defined by the three N atoms of the tridentate 2,2':6',2''-terpyridine ligand and one O atom from the NO₃⁻ anion. In the crystal, the complex molecules are stacked in columns along the *a* axis being connected by π - π stacking [closest inter-centroid separation between pyridyl rings = 3.878 (3) Å]. The connections between columns and anions to sustain a three-dimensional architecture are C-H···O hydrogen bonds.

Structure description

With reference to the title complex, $[Pd(terpy)(NO_3)](NO_3)$ (terpy = 2,2':6',2"-terpyridine), the crystal structures of related Pd^{II} complexes $[Pd(terpy)(pyridine)](CIO_4)_2$ (Bugarčić *et al.*, 2004), $[Pd(terpy)(NO_3)](NTf_2)$ [NTf₂ = bis(trifluoromethylsulfonyl)amide anion; Illner *et al.*, 2009) and $[Pd_2(terpy)_2(NO_3)]_2(PF_6)_6$ ·CH₃CN (Mei *et al.*, 2007) have been determined previously.

The title complex comprises a cationic Pd^{II} complex $[Pd(terpy)(NO_3)]^+$ and an $NO_3^$ anion (Fig. 1). In the complex, the central Pd^{II} cation is four-coordinated in a distorted square-planar coordination geometry defined by the pyridyl N1, N2 and N3 atoms derived from the tridentate terpy ligand and the O1 atom from the nitrato ligand. The tight N-Pd-N chelating angles of <N1-Pd1-N2 = 81.26 (17)° and <N2-Pd1-N8 =81.03 (16)° contribute to the distortion of the square-plane. The Pd-N [1.917 (4) to 2.030 (4) Å] and Pd-O [2.028 (3) Å] bond lengths are close. The pyridine rings of the terpy ligand are located approximately parallel to the least-squares plane of the PdN₃O unit [maximum deviation = 0.023 (2) Å], with dihedral angles of 1.4 (2)° (ring N1/C1-C5), 3.1 (2)° (ring N2/C6-C10) and 3.0 (2)° (ring N3/C11-C15). In the crystal (Fig. 2), the complex molecules are stacked in columns along the *a* axis. Within the columns,

The molecular structure of the title complex showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms.

numerous intermolecular π - π interactions between adjacent pyridine rings are present. For Cg1 (the centroid of ring N2/C6-C10) and $Cg2^i$ [the centroid of ring N3/C11-C15; symmetry code: (i) x + 1, y, z], the centroid-centroid distance is 3.878 (3) Å and the dihedral angle between the ring planes is 3.2 (3)° (Spek, 2020). The complex cations and anions form intermolecular C-H···O hydrogen bonds (Table 1) to stabilize the three-dimensional packing.

Synthesis and crystallization

To a solution of $Pd(NO_3)_2 \cdot 2H_2O$ (0.1320 g, 0.495 mmol) in acetone (30 ml) was added 2,2':6',2"-terpyridine (0.1179 g, 0.505 mmol) followed by stirring for 3 h at room temperature. The formed precipitate was separated by filtration, washed with acetone and dried at 323 K to give a light-yellow powder (0.2123 g). Yellow crystals of the product suitable for X-ray analysis were obtained by slow evaporation of its CH₃NO₂ solution at room temperature.

Figure 2

A view of the packing in the crystal of the title complex, viewed approximately along the *a* axis. Hydrogen-bonding interactions are drawn as dashed lines.

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
-	0.94	2 55	3 /10 (7)	153
$C4-H4\cdots O6^{ii}$	0.94	2.35	3.303 (7)	172
$C7-H7\cdots O6^{ii}$	0.94	2.30	3.231 (6)	171
C8−H8···O5 ⁱⁱⁱ	0.94	2.43	3.088 (6)	127
C9−H9···O6 ^{iv}	0.94	2.35	3.254 (6)	160
$C13-H13\cdots O5^{v}$	0.94	2.46	3.402 (7)	176
$C15{-}H15{\cdots}O3^{vi}$	0.94	2.38	3.280 (7)	161

Symmetry codes: (i) x + 1, y, z + 1; (ii) x + 1, y, z; (iii) $-x + 1, -y, z - \frac{1}{2}$; (iv) $-x, -y, z - \frac{1}{2}$; (v) x - 1, y, z - 1; (vi) $x - \frac{1}{2}, -y + \frac{1}{2}, z$.

Table 2Experimental details.

Crystal data	
Chemical formula	[Pd(NO ₃)(C ₁₅ H ₁₁ N ₃)]NO ₃
M _r	463.69
Crystal system, space group	Orthorhombic, $Pna2_1$
Temperature (K)	223
a, b, c (Å)	6.2190 (2), 33.9728 (15), 7.4819 (3)
$V(Å^3)$	1580.75 (11)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.22
Crystal size (mm)	$0.21 \times 0.14 \times 0.06$
Data collection	
Diffractometer	PHOTON 100 CMOS detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.688, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	41749, 3116, 2745
R _{int}	0.084
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.048, 1.09
No. of reflections	3116
No. of parameters	244
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.34, -0.43
Absolute structure	Flack x determined using 1141 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ Parsons <i>et al.</i> (2013).
Absolute structure parameter	0.006 (16)

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2014/7 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b) and ORTEP-3 for Windows (Farrugia, 2012).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bugarčić, D., Petrović, B. & Zangrando, E. (2004). *Inorg. Chim. Acta*, **357**, 2650–2656.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Illner, P., Puchta, R., Heinemann, F. W. & van Eldik, R. (2009). Dalton Trans. pp. 2795–2801.
- Mei, G.-Q., Huang, K.-L. & Huang, H.-P. (2007). Acta Cryst. E63, m2510-m2511.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.

full crystallographic data

IUCrData (2021). **6**, x210085 [https://doi.org/10.1107/S2414314621000857]

(Nitrato-κO)(2,2':6',2''-terpyridine-κ³N,N',N'')palladium(II) nitrate

Kwang Ha

(Nitrato- κO)(2,2':6',2''-terpyridine- $\kappa^3 N, N', N''$)palladium(II) nitrate

Crystal data	
$[Pd(C_{15}H_{11}N_3)(NO_3)]NO_3$ $M_r = 463.69$ Orthorhombic, $Pna2_1$ a = 6.2190 (2) Å b = 33.9728 (15) Å c = 7.4819 (3) Å V = 1580.75 (11) Å ³ Z = 4 F(000) = 920	$D_x = 1.948 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9942 reflections $\theta = 2.4-27.7^{\circ}$ $\mu = 1.22 \text{ mm}^{-1}$ T = 223 K Plate, yellow $0.21 \times 0.14 \times 0.06 \text{ mm}$
Data collection	
PHOTON 100 CMOS detector diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.688, T_{\max} = 0.745$ 41749 measured reflections	3116 independent reflections 2745 reflections with $I > 2\sigma(I)$ $R_{int} = 0.084$ $\theta_{max} = 26.1^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -41 \rightarrow 42$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.048$ S = 1.09 3116 reflections 244 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0152P)^2 + 0.8349P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.34$ e Å ⁻³ $\Delta\rho_{min} = -0.43$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 1141 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ Parsons <i>et al.</i> (2013). Absolute structure parameter: 0.006 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.94 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The Flack parameter = 0.006 (16) after the final cycles of refinement.

	<i>x</i>	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Pd1	0.22807 (4)	0.15784 (2)	0.48682 (9)	0.02233 (10)
01	0.1702 (6)	0.21529 (10)	0.4313 (4)	0.0343 (10)
O2	0.2291 (7)	0.19950 (12)	0.1521 (6)	0.0463 (10)
O3	0.1758 (7)	0.26017 (11)	0.2256 (6)	0.0540 (13)
N1	0.4977 (6)	0.16769 (12)	0.6321 (6)	0.0261 (10)
N2	0.2920 (6)	0.10452 (11)	0.5520 (5)	0.0220 (9)
N3	-0.0259 (6)	0.13077 (12)	0.3685 (5)	0.0214 (9)
N4	0.1927 (7)	0.22538 (14)	0.2626 (7)	0.0364 (12)
C1	0.5913 (9)	0.20210 (16)	0.6668 (8)	0.0344 (13)
H1	0.5322	0.2252	0.6180	0.041*
C2	0.7726 (9)	0.2048 (2)	0.7722 (8)	0.0450 (16)
H2	0.8307	0.2295	0.8015	0.054*
C3	0.8672 (9)	0.17072 (19)	0.8340 (8)	0.0415 (15)
Н3	0.9939	0.1719	0.9023	0.050*
C4	0.7740 (9)	0.13467 (19)	0.7944 (8)	0.0323 (13)
H4	0.8378	0.1112	0.8343	0.039*
C5	0.5864 (9)	0.13370 (17)	0.6959 (7)	0.0232 (12)
C6	0.4710 (8)	0.09759 (15)	0.6481 (6)	0.0232 (11)
C7	0.5267 (8)	0.05923 (15)	0.6877 (7)	0.0293 (13)
H7	0.6493	0.0536	0.7566	0.035*
C8	0.3979 (8)	0.02930 (15)	0.6235 (7)	0.0308 (13)
H8	0.4354	0.0031	0.6481	0.037*
C9	0.2163 (7)	0.03682 (14)	0.5247 (7)	0.0282 (16)
Н9	0.1295	0.0161	0.4828	0.034*
C10	0.1642 (6)	0.07567 (11)	0.4881 (12)	0.0219 (8)
C11	-0.0190 (8)	0.09089 (14)	0.3876 (7)	0.0222 (11)
C12	-0.1803 (8)	0.06726 (16)	0.3173 (7)	0.0285 (12)
H12	-0.1745	0.0398	0.3300	0.034*
C13	-0.3493 (8)	0.08484 (17)	0.2285 (7)	0.0302 (13)
H13	-0.4597	0.0694	0.1793	0.036*
C14	-0.3552 (9)	0.12527 (18)	0.2122 (8)	0.0266 (14)
H14	-0.4706	0.1376	0.1535	0.032*
C15	-0.1895 (8)	0.14736 (16)	0.2831 (8)	0.0269 (12)
H15	-0.1927	0.1749	0.2705	0.032*
O4	0.1900 (5)	0.09192 (10)	1.0047 (10)	0.0396 (10)
O5	0.2336 (6)	0.03043 (12)	1.0689 (6)	0.0505 (11)
O6	-0.0235 (6)	0.04770 (11)	0.8974 (5)	0.0425 (10)
N5	0.1345 (5)	0.05686 (11)	0.9909 (9)	0.0287 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	* 11	* 122	T 1 ² 2	T 12	T T 2	T 723
	U^{II}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Pd1	0.02599 (16)	0.01582 (15)	0.02517 (16)	0.00131 (14)	-0.0033 (4)	-0.0007 (3)
01	0.049 (2)	0.0166 (18)	0.037 (3)	0.0048 (15)	-0.0099 (16)	0.0013 (15)
O2	0.064 (3)	0.036 (2)	0.040 (2)	-0.010 (2)	-0.010 (2)	0.000 (2)
03	0.059 (3)	0.020 (2)	0.083 (3)	-0.003 (2)	-0.020 (2)	0.021 (2)
N1	0.030(2)	0.025 (3)	0.023 (2)	-0.0059 (18)	-0.0040 (19)	-0.0003 (19)
N2	0.0229 (19)	0.019 (2)	0.024 (2)	0.0028 (17)	0.0051 (17)	0.0003 (16)
N3	0.025 (2)	0.019 (2)	0.020 (2)	-0.0004 (17)	0.0018 (18)	-0.0021 (19)
N4	0.030 (2)	0.026 (3)	0.054 (3)	-0.007 (2)	-0.016 (2)	0.011 (3)
C1	0.042 (3)	0.024 (3)	0.037 (3)	-0.002 (3)	-0.004 (3)	0.000 (3)
C2	0.051 (4)	0.047 (4)	0.038 (3)	-0.021 (3)	-0.008 (3)	-0.002 (3)
C3	0.035 (3)	0.063 (4)	0.027 (3)	-0.014 (3)	-0.009 (3)	0.003 (3)
C4	0.029 (3)	0.044 (4)	0.025 (3)	0.003 (3)	0.001 (3)	0.006 (3)
C5	0.026 (3)	0.026 (3)	0.018 (3)	0.000 (2)	0.000 (2)	0.003 (2)
C6	0.025 (3)	0.027 (3)	0.018 (3)	0.003 (2)	0.003 (2)	0.005 (2)
C7	0.027 (3)	0.029 (3)	0.031 (3)	0.003 (2)	0.002 (2)	0.009 (3)
C8	0.034 (3)	0.020 (3)	0.039 (3)	0.008 (2)	0.007 (3)	0.012 (2)
C9	0.029 (2)	0.019 (2)	0.037 (5)	-0.0034 (19)	0.008 (2)	0.000 (2)
C10	0.0234 (19)	0.018 (2)	0.024 (2)	0.0004 (15)	0.000 (5)	-0.001 (4)
C11	0.026 (3)	0.018 (3)	0.022 (3)	0.002 (2)	0.006 (2)	0.000 (2)
C12	0.028 (3)	0.024 (3)	0.033 (3)	-0.006 (2)	0.007 (2)	-0.004 (2)
C13	0.024 (3)	0.037 (4)	0.030 (3)	-0.004 (2)	0.003 (2)	-0.009 (3)
C14	0.021 (3)	0.034 (4)	0.024 (4)	0.006 (3)	0.004 (3)	0.001 (3)
C15	0.029 (3)	0.024 (3)	0.027 (3)	0.007 (2)	0.003 (3)	-0.002 (2)
O4	0.0415 (17)	0.0291 (18)	0.048 (3)	-0.0045 (14)	-0.002 (3)	-0.003 (3)
05	0.041 (2)	0.042 (3)	0.068 (3)	0.011 (2)	-0.020 (2)	0.013 (2)
06	0.039 (2)	0.039 (2)	0.050 (2)	-0.0026 (18)	-0.0192 (19)	0.002 (2)
N5	0.0249 (17)	0.035 (2)	0.027 (2)	0.0011 (16)	0.004 (4)	-0.007 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Pd1—N2	1.917 (4)	C5—C6	1.466 (8)	
Pd1—N1	2.026 (4)	C6—C7	1.381 (7)	
Pd1—O1	2.028 (3)	C7—C8	1.380 (7)	
Pd1—N3	2.030 (4)	C7—H7	0.9400	
O1—N4	1.315 (6)	C8—C9	1.374 (7)	
O2—N4	1.228 (6)	C8—H8	0.9400	
O3—N4	1.218 (6)	C9—C10	1.386 (6)	
N1-C1	1.332 (6)	С9—Н9	0.9400	
N1-C5	1.366 (7)	C10—C11	1.460 (7)	
N2C6	1.346 (6)	C11—C12	1.388 (7)	
N2-C10	1.349 (6)	C12—C13	1.379 (7)	
N3—C15	1.328 (6)	C12—H12	0.9400	
N3—C11	1.363 (6)	C13—C14	1.379 (8)	
C1—C2	1.379 (7)	C13—H13	0.9400	
C1—H1	0.9400	C14—C15	1.381 (8)	

C2—C3	1.379 (9)	C14—H14	0.9400
С2—Н2	0.9400	C15—H15	0.9400
C3—C4	1 387 (8)	04—N5	1 245 (5)
C3 H3	0.9400	O_5 N5	1.216 (6)
	0.9400		1.230(0)
C4—C5	1.380 (7)	06—N3	1.245 (5)
C4—H4	0.9400		
N2 Pd1 N1	81 26 (17)	N2 C6 C7	110 1 (5)
	17(54(17))	N2 - CC - C7	119.1(3)
N2—Pd1—O1	1/0.54 (15)	N2	112.9 (4)
NI-PdI-OI	95.62 (15)	C/C6C5	128.0 (5)
N2—Pd1—N3	81.03 (16)	C8—C7—C6	118.4 (5)
N1—Pd1—N3	162.23 (16)	C8—C7—H7	120.8
O1—Pd1—N3	102.04 (15)	С6—С7—Н7	120.8
N4—O1—Pd1	115.4 (3)	C9—C8—C7	121.8 (5)
C1—N1—C5	119.8 (5)	С9—С8—Н8	119.1
C1—N1—Pd1	127.7 (4)	С7—С8—Н8	119.1
C5-N1-Pd1	112.5(4)	$C_{8} - C_{9} - C_{10}$	1184(5)
C6 N2 C10	112.3(1) 123.3(4)	$C_8 C_9 H_9$	120.8
C6 N2 Pd1	123.3(4)	$C_{0} = C_{0} = H_{0}$	120.8
$C_1 = N_2 = 1$	110.2(3)	N2 C10 C0	120.0
C10—N2—Pd1	118.3 (3)	N2	118.9 (5)
C15—N3—C11	119.8 (4)	N2	112.6 (4)
C15—N3—Pd1	127.9 (3)	C9—C10—C11	128.4 (4)
C11—N3—Pd1	112.4 (3)	N3—C11—C12	120.8 (5)
O3—N4—O2	123.9 (5)	N3—C11—C10	115.5 (4)
O3—N4—O1	117.5 (5)	C12—C11—C10	123.7 (4)
O2—N4—O1	118.6 (4)	C13—C12—C11	118.9 (5)
N1—C1—C2	121.9 (6)	C13—C12—H12	120.6
N1—C1—H1	119.1	C11—C12—H12	120.6
C2-C1-H1	119.1	C12-C13-C14	119.6(5)
C1 - C2 - C3	118.9 (6)	C12 - C13 - H13	120.2
C1 $C2$ $C3$	120.5	C14 $C13$ $H13$	120.2
$C_1 = C_2 = H_2$	120.5	C14 - C13 - III3	120.2
C3—C2—H2	120.5	C13 - C14 - C15	119.1 (5)
C2—C3—C4	119.5 (5)	C13—C14—H14	120.4
С2—С3—Н3	120.3	C15—C14—H14	120.4
С4—С3—Н3	120.3	N3—C15—C14	121.8 (5)
C5—C4—C3	119.2 (6)	N3—C15—H15	119.1
C5—C4—H4	120.4	C14—C15—H15	119.1
С3—С4—Н4	120.4	O5—N5—O4	121.2 (5)
N1—C5—C4	120.5 (5)	O5—N5—O6	118.5 (4)
N1—C5—C6	115.1 (5)	O4—N5—O6	120.3 (5)
C4—C5—C6	124.3 (5)		
Pd1-01-N4-03	-174.4 (3)	C6—C7—C8—C9	-0.9 (8)
Pd1-01-N4-02	5.6 (6)	C7—C8—C9—C10	0.6 (8)
C5—N1—C1—C2	-2.6 (8)	C6—N2—C10—C9	1.0 (9)
Pd1—N1—C1—C2	178.2 (4)	Pd1—N2—C10—C9	175.9 (5)
N1—C1—C2—C3	4.2 (9)	C6—N2—C10—C11	-179.7 (4)
C1—C2—C3—C4	-2.4 (9)	Pd1—N2—C10—C11	-4.8 (7)

C2—C3—C4—C5	-0.9 (8)	C8—C9—C10—N2	-0.6 (9)
C1—N1—C5—C4	-0.8 (8)	C8—C9—C10—C11	-179.7 (6)
Pd1-N1-C5-C4	178.5 (4)	C15—N3—C11—C12	0.5 (7)
C1—N1—C5—C6	-179.4 (5)	Pd1—N3—C11—C12	179.3 (4)
Pd1—N1—C5—C6	-0.2 (5)	C15—N3—C11—C10	-178.3 (5)
C3—C4—C5—N1	2.5 (8)	Pd1—N3—C11—C10	0.5 (6)
C3—C4—C5—C6	-179.0 (5)	N2-C10-C11-N3	2.6 (8)
C10—N2—C6—C7	-1.4 (8)	C9—C10—C11—N3	-178.2 (6)
Pd1—N2—C6—C7	-176.3 (4)	N2-C10-C11-C12	-176.1 (5)
C10—N2—C6—C5	177.7 (5)	C9—C10—C11—C12	3.0 (11)
Pd1—N2—C6—C5	2.8 (5)	N3-C11-C12-C13	-0.4 (8)
N1—C5—C6—N2	-1.6 (6)	C10-C11-C12-C13	178.3 (5)
C4—C5—C6—N2	179.8 (5)	C11—C12—C13—C14	-0.3 (8)
N1—C5—C6—C7	177.4 (5)	C12—C13—C14—C15	1.0 (8)
C4—C5—C6—C7	-1.2 (8)	C11—N3—C15—C14	0.1 (8)
N2—C6—C7—C8	1.3 (7)	Pd1—N3—C15—C14	-178.4 (4)
C5—C6—C7—C8	-177.7 (5)	C13—C14—C15—N3	-0.9 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
C3—H3…O2 ⁱ	0.94	2.55	3.419 (7)	153
C4—H4···O6 ⁱⁱ	0.94	2.37	3.303 (7)	172
C7—H7···O6 ⁱⁱ	0.94	2.30	3.231 (6)	171
C8—H8····O5 ⁱⁱⁱ	0.94	2.43	3.088 (6)	127
C9—H9…O6 ^{iv}	0.94	2.35	3.254 (6)	160
C13—H13···O5 ^v	0.94	2.46	3.402 (7)	176
C15—H15····O3 ^{vi}	0.94	2.38	3.280 (7)	161

Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) -x+1, -y, z-1/2; (iv) -x, -y, z-1/2; (v) x-1, y, z-1; (vi) x-1/2, -y+1/2, z.