ISSN 2414-3146

Received 21 January 2021 Accepted 9 February 2021

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; palladium(II) complex; square-planar structure; 2,3-di-2pyridylpyrazine.

CCDC reference: 2062092

Structural data: full structural data are available from iucrdata.iucr.org

Bis[2,3-bis(pyridin-2-yl)pyrazine- $\kappa^2 N^2$, N^3]palladium(II) dinitrate acetonitrile monosolvate

Kwang Ha*

Chonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea. *Correspondence e-mail: hakwang@chonnam.ac.kr

The title compound, $[Pd(C_{14}H_{10}N_4)_2](NO_3)_2 \cdot CH_3CN$, consists of a cationic Pd^{II} complex, two anions and one lattice solvent molecule, all in general positions. In the complex, the Pd^{II} cation is four-coordinated in a slightly distorted squareplanar geometry defined by the four N atoms of two bidentate 2,3-di-2pyridylpyrazine ligands. The complex, anions and solvent molecule are linked by weak $C-H \cdots O$ intermolecular hydrogen bonds. In the crystal, the complex molecules are stacked in columns along the *a* axis.

Structure description

With reference to the title compound, $[Pd(dpp)_2](NO_3)_2 \cdot CH_3CN$ (dpp = 2,3-di-2pyridylpyrazine), the crystal structures of related dpp-Pd^{II} complexes $[PdX_2(dpp)]$ have been determined previously [X = Cl (Ha, 2011a,b); X = Br (Ha, 2011c); X = I (Ha, 2011d); X = SCN (Ha, 2012)], and a heterometallic complex has been also reported, namely $[Ru(bipy)_2(\mu_2-dpp)PdCl_2](PF_6)_2$, where bipy is 2,2'-bipyridine (Yam *et al.*, 1994).

The title compound consists of a cationic Pd^{II} complex $[Pd(dpp)_2]^{2+}$, two NO_3^- anions and one solvent CH₃CN molecule (Fig. 1). In the complex, the central Pd^{II} cation is fourcoordinated in a slightly distorted square-planar geometry defined by the pyridyl N3, N4, N7 and N8 atoms of the two bidentate dpp ligands. The tight N-Pd-N chelating angles of N3-Pd1-N4 = 86.99 (7)° and N7-Pd1-N8 = 85.98 (7)° contribute to the distortion of the square-plane. The Pd-N bond lengths are almost equal [2.0170 (18) to 2.0286 (19) Å]. In the crystal, the pyridine rings are considerably inclined to the leastsquares plane of the [PdN₄] unit [maximum deviation = 0.0204 (7) Å], with dihedral angles of 70.56 (7) (ring N3···C9), 67.63 (6) (ring N4···C14), 71.32 (6) (ring N7···C23) and 71.64 (7)° (ring N8···C28). The nearly planar pyrazine rings [maximum deviation = 0.027 (2) Å] are fairly perpendicular to the [PdN₄] unit plane, with dihedral angles of 82.07 (7) (ring N1···C4) and 84.20 (7)° (ring N5···C18).

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots O4^{i}$	0.94	2.43	3.344 (3)	164
$C4-H4\cdots O1$	0.94	2.51	3.330 (4)	146
$C9-H9\cdots O2^{ii}$	0.94	2.40	3.113 (4)	133
$C14-H14\cdots O5^{iii}$	0.94	2.43	3.257 (3)	147
$C17-H17\cdots O6^{i}$	0.94	2.43	3.343 (3)	164
$C22-H22\cdots O3^{iv}$	0.94	2.45	3.273 (5)	146
$C23-H23\cdots O2^{ii}$	0.94	2.54	3.275 (4)	136
C29-H29A···O1	0.97	2.58	3.405 (5)	144
C29−H29C···O4	0.97	2.51	3.459 (4)	167

In the crystal structure (Fig. 2), the complex, anions and solvent molecules form intermolecular weak $C-H\cdots O$ hydrogen bonds (Table 1). The complex molecules are stacked in columns along the *a* axis. In the columns, numerous intraand intermolecular $\pi-\pi$ interactions between adjacent sixmembered rings are present. For Cg1 (the centroid of ring N4…C14) and $Cg1^{i}$ [symmetry code: (i) -x + 2, -y + 2, -z + 1), the centroid-to-centroid separation is 3.688 (2) Å and the planes are parallel and shifted by 1.683 Å.

Synthesis and crystallization

To a solution of 2,3-di-2-pyridylpyrazine (0.303 g, 1.293 mmol) in acetone (30 ml) was added $Pd(NO_3)_2 \cdot 2H_2O$ (0.170 g,

Figure 1

The molecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Table 2 Experimental details.	
Crystal data	
Chemical formula	$[Pd(C_{14}H_{10}N_4)_2](NO_3)_2 \cdot C_2H_3N$
M _r	739.99
Crystal system, space group	Triclinic, P1
Temperature (K)	223
a, b, c (Å)	10.2013 (4), 11.6159 (5), 14.2762 (6)
$lpha,eta,\gamma(^\circ)$	90.9753 (16), 109.2479 (14), 109.9435 (14)
$V(Å^3)$	1485.28 (11)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.69
Crystal size (mm)	$0.22\times0.15\times0.09$
Data collection	
Diffractometer	Bruker APEX2, PHOTON 100 detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.699, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38859, 5889, 5399
R _{int}	0.032
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.619
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.066, 1.06
No. of reflections	5889
No. of parameters	434
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.89, -0.49

Computer programs: *APEX2* and *SAINT* (Bruker, 2016), *SHELXT2014*/7 (Sheldrick, 2015*a*), *SHELXL2014*/7 (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2020).

0.637 mmol) and stirred for 1 h at room temperature. The formed precipitate was recrystallized from MeOH/ether, washed with ether, and dried under vacuum, to give a white powder (0.378 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of a MeOH/CH₃CN solution, at room temperature.

Figure 2

The packing in the crystal structure of the title compound, viewed approximately along the a axis. Hydrogen-bonding interactions are drawn as dashed lines.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The highest peak (0.89 e Å⁻³) and the deepest hole (-0.49 e Å^{-3}) in the last difference-Fourier map are located 1.02 and 0.97 Å, respectively, from atom O3.

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ha, K. (2011a). Acta Cryst. E67, m1615.
- Ha, K. (2011b). Acta Cryst. E67, m1634.
- Ha, K. (2011c). Acta Cryst. E67, m1896.
- Ha, K. (2011*d*). Acta Cryst. E67, m1626.
- Ha, K. (2012). Acta Cryst. E68, m144.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Yam, V. W.-W., Lee, V. W.-M. & Cheung, K.-K. (1994). J. Chem. Soc. Chem. Commun. pp. 2075–2076.

full crystallographic data

IUCrData (2021). **6**, x210153 [https://doi.org/10.1107/S241431462100153X]

Bis[2,3-bis(pyridin-2-yl)pyrazine- $\kappa^2 N^2$, N^3]palladium(II) dinitrate acetonitrile monosolvate

Kwang Ha

Bis[2,3-bis(pyridin-2-yl)pyrazine- $\kappa^2 N^2$, N^3] palladium(II) dinitrate acetonitrile monosolvate

Crystal data

$[Pd(C_{14}H_{10}N_4)_2](NO_3)_2 \cdot C_2H_3N$
$M_r = 739.99$
Triclinic, $P\overline{1}$
a = 10.2013 (4) Å
<i>b</i> = 11.6159 (5) Å
c = 14.2762 (6) Å
$\alpha = 90.9753 \ (16)^{\circ}$
$\beta = 109.2479 \ (14)^{\circ}$
$\gamma = 109.9435 \ (14)^{\circ}$
$V = 1485.28 (11) \text{ Å}^3$

Data collection

Bruker APEX2, PHOTON 100 detector diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.699, T_{\max} = 0.745$ 38859 measured reflections

Refinement

Refinement on F^2 SecondLeast-squares matrix: fullmatrix $R[F^2 > 2\sigma(F^2)] = 0.027$ Hydrom $wR(F^2) = 0.066$ netS = 1.06H-att5889 reflectionsw = 434 parameters0 restraints (Δ/σ) Primary atom site location: structure-invariant $\Delta\rho_{matrix}$ direct methods $\Delta\rho_{matrix}$

Z = 2 F(000) = 748 $D_x = 1.655 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9802 reflections $\theta = 2.3-28.3^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 223 K Block, colorless $0.22 \times 0.15 \times 0.09 \text{ mm}$

5889 independent reflections 5399 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.1^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 17$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.030P)^2 + 1.3932P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.89$ e Å⁻³ $\Delta\rho_{min} = -0.49$ e Å⁻³

Special details

Refinement. Hydrogen atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.94 or 0.97 Å, with isotropic displacements $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pd1	0.85573 (2)	0.80002 (2)	0.21420 (2)	0.02031 (6)
N1	0.8010 (2)	0.47002 (17)	0.32663 (14)	0.0296 (4)
N2	1.1007 (2)	0.62333 (18)	0.41615 (14)	0.0300 (4)
N3	0.70063 (19)	0.72337 (16)	0.27734 (14)	0.0243 (4)
N4	1.00126 (19)	0.87763 (16)	0.35473 (13)	0.0226 (4)
N5	0.8194 (2)	0.46396 (17)	0.07565 (15)	0.0318 (4)
N6	1.1185 (2)	0.61800 (19)	0.15483 (15)	0.0316 (4)
N7	0.71597 (19)	0.71968 (16)	0.07375 (13)	0.0249 (4)
N8	1.01151 (19)	0.87359 (16)	0.15207 (13)	0.0243 (4)
C1	0.8420 (2)	0.59294 (19)	0.34974 (15)	0.0228 (4)
C2	0.9924 (2)	0.6705 (2)	0.39218 (15)	0.0232 (4)
C3	1.0584 (3)	0.5018 (2)	0.39210 (18)	0.0342 (5)
Н3	1.1317	0.4662	0.4075	0.041*
C4	0.9105 (3)	0.4261 (2)	0.34529 (18)	0.0336 (5)
H4	0.8864	0.3415	0.3261	0.040*
C5	0.7133 (2)	0.6331 (2)	0.33404 (16)	0.0259 (5)
C6	0.6064 (3)	0.5744 (2)	0.3748 (2)	0.0380 (6)
H6	0.6146	0.5096	0.4121	0.046*
C7	0.4865 (3)	0.6125 (3)	0.3599 (2)	0.0478 (7)
H7	0.4132	0.5743	0.3874	0.057*
C8	0.4767 (3)	0.7063 (3)	0.3047 (2)	0.0470 (7)
H8	0.3977	0.7344	0.2950	0.056*
С9	0.5843 (2)	0.7592 (2)	0.2632 (2)	0.0350 (6)
Н9	0.5757	0.8223	0.2239	0.042*
C10	1.0482 (2)	0.8070 (2)	0.42188 (16)	0.0233 (4)
C11	1.1519 (2)	0.8600 (2)	0.51676 (17)	0.0308 (5)
H11	1.1821	0.8097	0.5635	0.037*
C12	1.2106 (3)	0.9870 (2)	0.54251 (19)	0.0364 (6)
H12	1.2824	1.0240	0.6064	0.044*
C13	1.1629 (3)	1.0586 (2)	0.47366 (19)	0.0342 (5)
H13	1.2022	1.1453	0.4895	0.041*
C14	1.0563 (2)	1.0014 (2)	0.38061 (18)	0.0287 (5)
H14	1.0213	1.0503	0.3342	0.034*
C15	0.8605 (2)	0.58748 (19)	0.07894 (15)	0.0237 (4)
C16	1.0115 (2)	0.6651 (2)	0.11952 (15)	0.0238 (4)
C17	1.0748 (3)	0.4960 (2)	0.15386 (19)	0.0367 (6)
H17	1.1473	0.4608	0.1803	0.044*
C18	0.9262 (3)	0.4196 (2)	0.11519 (19)	0.0359 (6)
H18	0.9000	0.3341	0.1169	0.043*
C19	0.7352 (2)	0.6281 (2)	0.02701 (16)	0.0255 (5)
C20	0.6387 (3)	0.5709 (2)	-0.06908 (18)	0.0372 (6)
H20	0.6503	0.5048	-0.1000	0.045*
C21	0.5258 (3)	0.6114 (3)	-0.11883 (19)	0.0451 (7)
H21	0.4610	0.5743	-0.1844	0.054*
C22	0.5088 (3)	0.7067 (3)	-0.0719 (2)	0.0423 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H22	0.4329	0.7360	-0.1050	0.051*
C23	0.6045 (2)	0.7585 (2)	0.02450 (19)	0.0333 (5)
H23	0.5919	0.8228	0.0570	0.040*
C24	1.0708 (2)	0.8015 (2)	0.11849 (16)	0.0250 (4)
C25	1.1870 (3)	0.8527 (2)	0.08430 (19)	0.0367 (6)
H25	1.2285	0.8019	0.0619	0.044*
C26	1.2419 (3)	0.9791 (3)	0.0832 (2)	0.0444 (7)
H26	1.3218	1.0151	0.0609	0.053*
C27	1.1782 (3)	1.0513 (2)	0.1153 (2)	0.0409 (6)
H27	1.2132	1.1372	0.1143	0.049*
C28	1.0624 (3)	0.9964 (2)	0.14890 (18)	0.0329 (5)
H28	1.0180	1.0456	0.1701	0.039*
N9	0.7053 (3)	0.0811 (2)	0.17671 (19)	0.0425 (5)
01	0.6818 (3)	0.1389 (3)	0.23751 (18)	0.0810 (8)
O2	0.7579 (3)	0.0012 (2)	0.1979 (3)	0.1035 (12)
O3	0.6834 (5)	0.1134 (4)	0.0945 (2)	0.1297 (15)
N10	0.2051 (3)	0.3037 (2)	0.3109 (2)	0.0463 (6)
O4	0.2775 (3)	0.3406 (2)	0.40190 (18)	0.0636 (6)
O5	0.0679 (2)	0.25210 (19)	0.2792 (2)	0.0688 (7)
O6	0.2740 (3)	0.3221 (2)	0.2514 (2)	0.0695 (7)
N11	0.3636 (4)	-0.0592 (4)	0.3507 (3)	0.0822 (10)
C29	0.4999 (4)	0.1768 (4)	0.3903 (4)	0.0813 (12)
H29A	0.5525	0.2046	0.3445	0.122*
H29B	0.5707	0.1988	0.4587	0.122*
H29C	0.4278	0.2163	0.3828	0.122*
C30	0.4232 (4)	0.0439 (4)	0.3679 (3)	0.0623 (9)

Atomic displacement parameters $(Å^2)$

U^{23}
0.00146 (6)
0.0027 (7)
0.0052 (8)
-0.0062 (7)
-0.0026 (7)
0.0021 (8)
0.0068 (9)
0.0074 (7)
0.0042 (7)
0.0019 (8)
0.0019 (8)
0.0110 (10)
0.0075 (9)
-0.0064 (9)
-0.0030 (11)
-0.0120 (14)
-0.0196 (14)
-0.0107 (11)

C10	0.0178 (10)	0.0246 (11)	0.0265 (11)	0.0056 (8)	0.0090 (8)	-0.0013 (9)
C11	0.0244 (11)	0.0354 (13)	0.0266 (11)	0.0074 (10)	0.0058 (9)	-0.0034 (10)
C12	0.0239 (11)	0.0386 (14)	0.0344 (13)	0.0028 (10)	0.0050 (10)	-0.0142 (11)
C13	0.0261 (12)	0.0242 (11)	0.0454 (14)	-0.0001 (9)	0.0146 (11)	-0.0131 (10)
C14	0.0247 (11)	0.0201 (11)	0.0405 (13)	0.0044 (9)	0.0149 (10)	-0.0029 (9)
C15	0.0280 (11)	0.0210 (10)	0.0204 (10)	0.0057 (9)	0.0102 (9)	0.0017 (8)
C16	0.0268 (11)	0.0255 (11)	0.0194 (10)	0.0083 (9)	0.0103 (9)	0.0033 (8)
C17	0.0438 (14)	0.0375 (14)	0.0409 (14)	0.0238 (12)	0.0208 (12)	0.0103 (11)
C18	0.0488 (15)	0.0243 (12)	0.0417 (14)	0.0159 (11)	0.0224 (12)	0.0051 (10)
C19	0.0217 (10)	0.0218 (10)	0.0234 (11)	-0.0001 (8)	0.0047 (9)	0.0039 (8)
C20	0.0319 (13)	0.0374 (14)	0.0262 (12)	-0.0010 (11)	0.0048 (10)	-0.0002 (10)
C21	0.0296 (13)	0.0485 (16)	0.0281 (13)	-0.0054 (12)	-0.0055 (10)	0.0073 (12)
C22	0.0210 (12)	0.0460 (15)	0.0435 (15)	0.0036 (11)	-0.0006 (11)	0.0237 (13)
C23	0.0238 (11)	0.0300 (12)	0.0419 (14)	0.0092 (10)	0.0067 (10)	0.0152 (10)
C24	0.0236 (10)	0.0242 (11)	0.0206 (10)	0.0035 (9)	0.0052 (8)	0.0024 (8)
C25	0.0375 (13)	0.0353 (13)	0.0361 (13)	0.0060 (11)	0.0195 (11)	0.0033 (11)
C26	0.0458 (15)	0.0380 (14)	0.0452 (15)	-0.0009 (12)	0.0280 (13)	0.0082 (12)
C27	0.0478 (15)	0.0254 (12)	0.0403 (14)	0.0003 (11)	0.0176 (12)	0.0103 (11)
C28	0.0362 (13)	0.0222 (11)	0.0325 (12)	0.0061 (10)	0.0074 (10)	0.0061 (9)
N9	0.0446 (13)	0.0276 (11)	0.0576 (15)	0.0164 (10)	0.0179 (11)	0.0038 (10)
01	0.0879 (19)	0.124 (2)	0.0508 (14)	0.0659 (18)	0.0220 (13)	0.0027 (15)
O2	0.0523 (14)	0.0291 (11)	0.209 (4)	0.0242 (11)	0.0119 (18)	0.0110 (16)
O3	0.202 (4)	0.184 (4)	0.071 (2)	0.125 (4)	0.075 (2)	0.043 (2)
N10	0.0505 (15)	0.0224 (11)	0.0667 (17)	0.0219 (10)	0.0132 (13)	0.0075 (11)
O4	0.0732 (16)	0.0563 (14)	0.0582 (14)	0.0345 (12)	0.0090 (12)	-0.0004 (11)
05	0.0470 (13)	0.0366 (11)	0.110 (2)	0.0152 (10)	0.0123 (13)	0.0097 (12)
06	0.0829 (17)	0.0708 (16)	0.0788 (17)	0.0431 (14)	0.0430 (15)	0.0216 (13)
N11	0.093 (3)	0.092 (3)	0.079 (2)	0.052 (2)	0.034 (2)	0.008 (2)
C29	0.060 (2)	0.084 (3)	0.115 (3)	0.046 (2)	0.030 (2)	0.015 (2)
C30	0.061 (2)	0.087 (3)	0.059 (2)	0.052 (2)	0.0209 (17)	0.008 (2)

Geometric parameters (Å, °)

Pd1—N7	2.0170 (18)	C12—H12	0.9400
Pd1—N8	2.0178 (18)	C13—C14	1.383 (3)
Pd1—N4	2.0257 (17)	C13—H13	0.9400
Pd1—N3	2.0286 (19)	C14—H14	0.9400
N1-C4	1.333 (3)	C15—C16	1.403 (3)
N1-C1	1.345 (3)	C15—C19	1.485 (3)
N2—C3	1.329 (3)	C16—C24	1.493 (3)
N2-C2	1.344 (3)	C17—C18	1.380 (4)
N3—C9	1.344 (3)	C17—H17	0.9400
N3—C5	1.351 (3)	C18—H18	0.9400
N4-C14	1.347 (3)	C19—C20	1.388 (3)
N4—C10	1.347 (3)	C20—C21	1.376 (4)
N5-C18	1.325 (3)	C20—H20	0.9400
N5-C15	1.346 (3)	C21—C22	1.373 (4)
N6—C17	1.331 (3)	C21—H21	0.9400

NG C16	1241(2)	C^{22}	1.276(4)
N0-C10	1.341(3)	C22—C23	1.370 (4)
N/	1.349 (3)	C22—n22	0.9400
N/	1.350 (3)	C23—H23	0.9400
N8-C24	1.349 (3)	$C_{24} = C_{25}$	1.381 (3)
N8—C28	1.349 (3)	C25-C26	1.384 (4)
C1—C2	1.400 (3)	C25—H25	0.9400
C1—C5	1.490 (3)	C26—C27	1.375 (4)
C2—C10	1.490 (3)	C26—H26	0.9400
C3—C4	1.381 (4)	C27—C28	1.380 (4)
С3—Н3	0.9400	С27—Н27	0.9400
C4—H4	0.9400	C28—H28	0.9400
C5—C6	1.385 (3)	N9—O3	1.211 (4)
C6—C7	1.392 (4)	N9—O2	1.218 (3)
С6—Н6	0.9400	N9—O1	1.219 (3)
C7—C8	1.367 (4)	N10—O5	1.235 (3)
С7—Н7	0.9400	N10-04	1.245 (3)
C8—C9	1.383 (4)	N10-06	1.248 (3)
С8—Н8	0.9400	N11—C30	1.123 (5)
С9—Н9	0.9400	C29—C30	1.446 (6)
C10—C11	1.384 (3)	C29—H29A	0.9700
C11—C12	1.380 (3)	C29—H29B	0.9700
С11—Н11	0.9400	C29—H29C	0.9700
C12—C13	1.372 (4)		0.07700
N7—Pd1—N8	85 98 (7)	C14—C13—H13	120.4
$N7_Pd1_N4$	177 88 (7)	N4-C14-C13	120.4 121.8(2)
N8 - Pd1 - N4	92 86 (7)	N4-C14-H14	119.1
$N7_Pd1_N3$	94.14(7)	C_{13} C_{14} H_{14}	119.1
N8 Pd1 N3	178.80(7)	N5 C15 C16	119.1 120.7(2)
N_{4} D_{41} N_{3}	170.09(7)	N5_C15_C10	120.7(2)
104 - 101 - 103	30.99(7)	10 - 013 - 019	113.73(19) 125.20(10)
C4 - NI - CI	110.7(2)	N(C1(C15	123.20(19)
$C_3 = N_2 = C_2$	110.9 (2)	$N_{0} = C_{10} = C_{15}$	120.9 (2)
C9 - N3 - C5	119.0 (2)	N6-C16-C24	113.55 (19)
C9—N3—Pdl	121.60 (17)	C15—C16—C24	125.26 (19)
C5—N3—Pd1	119.40 (14)	N6-C17-C18	121.9 (2)
C14—N4—C10	119.34 (19)	N6—C17—H17	119.0
C14—N4—Pd1	119.98 (15)	C18—C17—H17	119.0
C10—N4—Pd1	120.63 (14)	N5—C18—C17	121.6 (2)
C18—N5—C15	117.5 (2)	N5—C18—H18	119.2
C17—N6—C16	117.2 (2)	C17—C18—H18	119.2
C19—N7—C23	119.2 (2)	N7—C19—C20	120.7 (2)
C19—N7—Pd1	120.11 (14)	N7—C19—C15	119.79 (18)
C23—N7—Pd1	120.68 (17)	C20—C19—C15	119.5 (2)
C24—N8—C28	119.8 (2)	C21—C20—C19	119.6 (3)
C24—N8—Pd1	120.24 (14)	C21—C20—H20	120.2
C28—N8—Pd1	119.90 (16)	С19—С20—Н20	120.2
N1—C1—C2	121.4 (2)	C22—C21—C20	119.5 (2)
N1—C1—C5	113.28 (19)	C22—C21—H21	120.3
	× /		

C2—C1—C5	125.07 (19)	C20—C21—H21	120.3
N2—C2—C1	120.8 (2)	C21—C22—C23	119.0 (2)
N2—C2—C10	113.82 (18)	C21—C22—H22	120.5
C1—C2—C10	125.21 (19)	С23—С22—Н22	120.5
N2—C3—C4	122.2 (2)	N7—C23—C22	122.0 (2)
N2—C3—H3	118.9	N7—C23—H23	119.0
С4—С3—Н3	118.9	С22—С23—Н23	119.0
N1—C4—C3	121.7 (2)	N8—C24—C25	120.7 (2)
N1—C4—H4	119.2	N8—C24—C16	119.67 (19)
C3—C4—H4	119.2	C25—C24—C16	119.6 (2)
N3—C5—C6	121.3 (2)	C24—C25—C26	119.7 (2)
N3—C5—C1	119.16 (19)	C24—C25—H25	120.2
C6—C5—C1	119.5 (2)	C26—C25—H25	120.2
C5—C6—C7	119.1 (3)	C27—C26—C25	119.1 (2)
С5—С6—Н6	120.4	C27—C26—H26	120.4
C7—C6—H6	120.4	C_{25} C_{26} H_{26}	120.4
C8-C7-C6	119.2 (3)	$C_{26} - C_{27} - C_{28}$	119.3 (2)
C8—C7—H7	120.4	C26—C27—H27	120.3
C6-C7-H7	120.1	$C_{28} = C_{27} = H_{27}$	120.3
C7 - C8 - C9	119 3 (3)	N8-C28-C27	120.3 121.3(2)
C7—C8—H8	120.4	N8-C28-H28	119 3
C9—C8—H8	120.4	C27—C28—H28	119.3
N3-C9-C8	122.1 (3)	03 - N9 - 02	120.7(3)
N3—C9—H9	119.0	03—N9—01	1162(3)
C8-C9-H9	119.0	02 - N9 - 01	122.9(3)
N4-C10-C11	120.8 (2)	05—N10—04	122.9(3) 121.2(3)
N4-C10-C2	119 52 (18)	05—N10—06	120.2(3)
$C_{11} - C_{10} - C_{2}$	119.6 (2)	04—N10—06	118.6(3)
C12—C11—C10	119.8 (2)	C30—C29—H29A	109.5
C12—C11—H11	120.1	C30—C29—H29B	109.5
C10—C11—H11	120.1	H29A—C29—H29B	109.5
C13—C12—C11	119.1 (2)	C30—C29—H29C	109.5
C13—C12—H12	120.4	H29A—C29—H29C	109.5
C11—C12—H12	120.4	H29B—C29—H29C	109.5
C12—C13—C14	119.1 (2)	N11—C30—C29	179.9 (5)
С12—С13—Н13	120.4		
	120.1		
C4-N1-C1-C2	-0.6(3)	C18—N5—C15—C16	2.3(3)
C4-N1-C1-C5	-175.51(19)	C18 - N5 - C15 - C19	176.1(2)
$C_3 - N_2 - C_2 - C_1$	3.9 (3)	C17 - N6 - C16 - C15	-3.0(3)
$C_3 - N_2 - C_2 - C_{10}$	179.72 (19)	C17 - N6 - C16 - C24	-177.0(2)
N1-C1-C2-N2	-3.6(3)	N5-C15-C16-N6	0.8 (3)
C5-C1-C2-N2	170.7 (2)	C19—C15—C16—N6	-172.3(2)
N1-C1-C2-C10	-178.84 (19)	N5-C15-C16-C24	174.0 (2)
C_{5} C_{1} C_{2} C_{10}	-4.5 (3)	C19—C15—C16—C24	1.0 (3)
$C_2 - N_2 - C_3 - C_4$	-0.4 (3)	C16—N6—C17—C18	2.1 (4)
C1 - N1 - C4 - C3	4.1 (3)	C_{15} N5 C_{18} C_{17}	-3.2(4)
N2-C3-C4-N1	-38(4)	N6-C17-C18-N5	10(4)
	5.5(1)		··· (1)

C9—N3—C5—C6	2.2 (3)	C23—N7—C19—C20	-2.4 (3)
Pd1—N3—C5—C6	-177.06 (17)	Pd1-N7-C19-C20	179.11 (16)
C9—N3—C5—C1	179.91 (19)	C23—N7—C19—C15	177.89 (19)
Pd1—N3—C5—C1	0.7 (3)	Pd1—N7—C19—C15	-0.6 (3)
N1-C1-C5-N3	-127.1 (2)	N5-C15-C19-N7	131.2 (2)
C2-C1-C5-N3	58.2 (3)	C16—C15—C19—N7	-55.3 (3)
N1—C1—C5—C6	50.6 (3)	N5-C15-C19-C20	-48.5 (3)
C2—C1—C5—C6	-124.1 (2)	C16—C15—C19—C20	125.0 (2)
N3—C5—C6—C7	-2.3 (3)	N7—C19—C20—C21	2.7 (3)
C1—C5—C6—C7	179.9 (2)	C15—C19—C20—C21	-177.6 (2)
C5—C6—C7—C8	0.5 (4)	C19—C20—C21—C22	-1.1 (4)
C6—C7—C8—C9	1.3 (4)	C20—C21—C22—C23	-0.6 (4)
C5—N3—C9—C8	-0.2 (3)	C19—N7—C23—C22	0.6 (3)
Pd1—N3—C9—C8	179.01 (18)	Pd1—N7—C23—C22	179.05 (17)
C7—C8—C9—N3	-1.6 (4)	C21—C22—C23—N7	0.9 (4)
C14—N4—C10—C11	0.1 (3)	C28—N8—C24—C25	2.4 (3)
Pd1-N4-C10-C11	177.58 (16)	Pd1-N8-C24-C25	-174.04 (17)
C14—N4—C10—C2	-177.47 (19)	C28—N8—C24—C16	-178.37 (19)
Pd1—N4—C10—C2	0.0 (3)	Pd1-N8-C24-C16	5.2 (3)
N2-C2-C10-N4	131.5 (2)	N6-C16-C24-N8	-134.9 (2)
C1-C2-C10-N4	-52.9 (3)	C15—C16—C24—N8	51.4 (3)
N2-C2-C10-C11	-46.0 (3)	N6-C16-C24-C25	44.3 (3)
C1-C2-C10-C11	129.5 (2)	C15—C16—C24—C25	-129.4 (2)
N4—C10—C11—C12	-1.5 (3)	N8—C24—C25—C26	-0.9 (4)
C2-C10-C11-C12	176.1 (2)	C16—C24—C25—C26	179.9 (2)
C10-C11-C12-C13	1.1 (4)	C24—C25—C26—C27	-0.8 (4)
C11—C12—C13—C14	0.5 (4)	C25—C26—C27—C28	0.8 (4)
C10-N4-C14-C13	1.7 (3)	C24—N8—C28—C27	-2.4 (3)
Pd1-N4-C14-C13	-175.86 (17)	Pd1-N8-C28-C27	174.09 (18)
C12—C13—C14—N4	-2.0 (3)	C26—C27—C28—N8	0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C3—H3…O4 ⁱ	0.94	2.43	3.344 (3)	164
C4—H4…O1	0.94	2.51	3.330 (4)	146
С9—Н9…О2 ^{іі}	0.94	2.40	3.113 (4)	133
C14—H14…O5 ⁱⁱⁱ	0.94	2.43	3.257 (3)	147
C17—H17…O6 ⁱ	0.94	2.43	3.343 (3)	164
C22—H22…O3 ^{iv}	0.94	2.45	3.273 (5)	146
С23—Н23…О2 ^{іі}	0.94	2.54	3.275 (4)	136
C29—H29A…O1	0.97	2.58	3.405 (5)	144
С29—Н29С…О4	0.97	2.51	3.459 (4)	167

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*+1, *y*+1, *z*; (iv) -*x*+1, -*y*+1, -*z*.