

ISSN 2414-3146

Received 5 February 2021 Accepted 23 February 2021

Edited by R. J. Butcher, Howard University, USA

Keywords: crystal structure; Hirshfeld surface; O—H···O hydrogen bonds; C···H and H···H contacts.

CCDC reference: 2064599

Structural data: full structural data are available from iucrdata.iucr.org

13-Benzyl-4,11-dihydroxy-1,8-diphenyl-2,9-dithia-13-azadispiro[4.1.4.3]tetradecan-6-one

G. Vinotha,^a T. V. Sundar^a* and N. Sharmila^b

^aPostgraduate and Research Department of Physics, National College (Autonomous), Tiruchirappalli-620001, Tamil Nadu, India, and ^bDepartment of Physics, Shrimati Indira Gandhi College, Tiruchirappalli-620002, Tamil Nadu, India. *Correspondence e-mail: sunvag@gmail.com

In the title compound, $C_{30}H_{31}NO_3S_2$, the piperidine ring adopts a distorted chair conformation. The thiophene rings have twisted conformations about the C–C bonds. The mean plane of the piperidine ring makes a near orthogonal conformation with the toluene ring. Two of the phenyl rings in the structure are positionally disordered over two sets of sites with occupancies of 0.56 (2)/ 0.44 (2) and 0.672 (16)/0.328 (16). A region of disordered electron density was corrected for using the SQUEEZE [Spek (2015). *Acta Cryst.* C71, 9–18] routine in *PLATON*. The given chemical formula and other crystal data do not take into account the unknown solvent molecule. In the crystal, O–H···O hydrogen bonds are observed along with intramolecular S···H, O···H, C···H and H···H contacts.

Structure description

Many substituted piperidine derivatives possess a wide range of bioactivities (Pati & Banerjee, 2012). They find significant applications in drug development and their properties depend on the nature of the side groups and their orientations (Viswanathan *et al.*, 2015). As part of our studies in this area, we herein report the crystal structure of the title compound.

The molecular structure of the title compound with atom numbering is shown in Fig. 1. The piperidine ring adopts a distorted chair conformation as observed in a similar related structure, **2** {13-benzyl-4,11-dihydroxy-1,8-bis(4-methylphenyl)-2,9-dithia-13-azadispiro-[4.1.47.35]tetradecan-6-one; Viswanathan *et al.*, 2015}. However, both the thiophene rings (rings *D* S2/C16/C15/C13/C17 and *E*: S1/C7/C10/C9/C8) have twisted conformations about the C–C bonds (C10–C9 in *D* and C13–C15 in *E*). In **2**, ring *D* adopts an envelope conformation and ring *E* a twisted conformation about the C13–C17 bond,

data reports

Table 1			
Hydrogen-bond	l geometry (A,	°).	
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots O3 \\ O3 - H3 \cdots O3^i \end{array}$	0.82 0.82	2.31 2.05	3.058 (3) 2.851 (3)	152 167

Symmetry code: (i) y - 1, -x + 1, -z + 1.

indicating the influence of substitutional effects on the ring conformations. The mean plane of the piperidine ring A is nearly orthogonal [88.5 (3)°] to the toluene ring F. This angle is reported to be 75.09 (1)° in 2 (Viswanathan *et al.*, 2015). In addition, the dihedral angles between the mean planes of rings D and B and between E and C are 54.07 (14) and 40.5 (4) $^{\circ}$, respectively, differing significantly from the values reported for 2. An overlay analysis of the title compound (with major conformer only) for non-H atoms with the corresponding atoms in 2 has an r.m.s. deviation of 1.12 Å (Fig. 2). A similar analysis for a compound closely related to 2 (with a methyl rather than a benzyl substituent on the N atom of the central piperidine ring), the r.m.s. deviation is found to be 1.03 Å, indicating the conformational preservation of the five rings (A to E) in these structures. An intramolecular $O-H \cdots O$ contact (Table 1) is observed. The phenyl rings attached to rings D and E are both positionally disordered over two sets of sites with occupancies of 0.56 (2)/0.44 (2) and 0.672 (16)/ 0.328 (16), respectively.

In the crystal, an $O-H \cdots O$ interactions forms an $R_4^4(8)$ ring motif (Bernstein *et al.*, 1995). This pattern is stacked along the *c*-axis direction, forming hollow square frames parallel to *c* (Fig. 3).

Figure 2

An overlay of similar atoms of the title molecule (green) and the related compound 2 (yellow), excluding H atoms, indicating their nearly identical conformations.

The two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009) of the molecule, created using *CrystalExplorer17* (Turner *et al.*, 2017) for the contacts contributing to the Hirshfeld surface, are shown in Figs. 4–6. The analysis reveals that $H \cdots H$ contacts (68.2%) and $C \cdots H$ contacts (14.3%) are

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as circles of arbitrary radii. The minor conformations of the two disordered phenyl rings are not shown here for clarity.

Figure 3

An O-H···O interaction between atoms O3 and O1 of a symmetryrelated molecule (at 1 - x, -1 + y and 1 - z) leading to an $R_4^4(8)$ ring motif.

Figure 4

The two-dimensional fingerprint plot for the title compound depicting the overall contribution by the various contacts.

Figure 5

The two-dimensional fingerprint plot for the title compound depicting the contribution percentage of $O \cdots H$ contacts.

Figure 6

The two-dimensional fingerprint plot for the title compound depicting the contribution percentage of $S \cdots H$ contacts.

the main contributors to the crystal packing, followed by $S \cdots H$ (8.4%) and $O \cdots H$ (7.1%) contacts.

Synthesis and crystallization

A mixture of (3E,5E)-1-benzyl-3,5-dibenzylidenepiperidin-4one (1 mmol), 1,4-dithiane-2,5-diol (1 mmol and triethylamine (0.25 eq) in dichloromethane (6 ml) was heated under reflux for 3 h. After completion of the reaction (TLC), the solvent was removed and the product was purified by flash column using a petroleum ether–ethyl acetate mixture (4:1 ν/ν) as eluent (yield 74%, m.p. 476 K). Chloroform was used as the solvent to harvest crystals for experiment.

Crevetal data	
Crystal data	
Chemical formula	$C_{30}H_{31}NO_3S_2$
M _r	517.68
Crystal system, space group	Tetragonal, $P\overline{4}2_1c$
Temperature (K)	293
a, c (Å)	25.3750 (4), 8.6456 (2)
$V(Å^3)$	5566.8 (2)
Ζ	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.22
Crystal size (mm)	$0.28 \times 0.24 \times 0.20$
Data collection	
Diffractometer	Bruker SMART APEXII area- detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Sheldrick,
ТТ	1990)
¹ _{min} , ¹ _{max}	30/01 6899 5681
observed $[I > 2\sigma(I)]$ reflections	50401, 0699, 5061
R _{int}	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.110, 1.03
No. of reflections	6899
No. of parameters	389
No. of restraints	408
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.27, -0.15
Absolute structure	Flack x determined using 2151 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.04 (2)

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Qmol (Gans & Shalloway, 2001) and PLATON (Spek, 2020)'.

Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2. A region of disordered electron density (48 e Å⁻³) located near a symmetry element (0.0 0.5 - 0.018) was corrected for using the SQUEEZE (Spek, 2015) routine in *PLATON*. Two phenyl rings in the modelled structure are found to be positionally disordered over two sets of sites with occupancies of 0.56 (2)/0.44 (2) and 0.672 (16)/ 0.328 (16). Hence, disorder treatment was applied with the rigid-bond restraints SIMU and DELU for completing the refinement.

Acknowledgements

The authors thank Dr Christian Barathi for providing the sample for analysis and Dr V. Viswanathan of University of Madras for the help with the data collection.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. **19**, 557–559. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B**69**, 249–259.
- Pati, B. & Banerjee, S. (2012). J. Pharm. Res. 5, 5493-5509.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
- Viswanathan, V., Bharkavi, S., Perumal, S. & Velmurugan, D. (2015). *Acta Cryst.* E**71**, 1516–1520.

full crystallographic data

IUCrData (2021). 6, x210210 [https://doi.org/10.1107/S2414314621002108]

13-Benzyl-4,11-dihydroxy-1,8-diphenyl-2,9-dithia-13-azadispiro-[4.1.4.3]tetradecan-6-one

G. Vinotha, T. V. Sundar and N. Sharmila

13-Benzyl-4,11-dihydroxy-1,8-diphenyl-2,9-dithia-13-azadispiro[4.1.4.3]tetradecan-6-one

Crystal data

 $C_{30}H_{31}NO_3S_2$ $M_r = 517.68$ Tetragonal, $P\overline{42_1c}$ a = 25.3750 (4) Å c = 8.6456 (2) Å V = 5566.8 (2) Å³ Z = 8 F(000) = 2192 $D_x = 1.235$ Mg m⁻³

Data collection

Bruker SMART APEXII area-detector diffractometer ω and φ scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.685, T_{\max} = 0.742$ 30401 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.110$ S = 1.026899 reflections 389 parameters 408 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Melting point: 476.15 K Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6903 reflections $\theta = 1.1-28.3^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.28 \times 0.24 \times 0.20 \text{ mm}$

6899 independent reflections 5681 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -33 \rightarrow 23$ $k = -33 \rightarrow 27$ $l = -11 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0659P)^2 + 0.1922P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³ Absolute structure: Flack *x* determined using 2151 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.04 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydroxy H atoms were refined as riding: O—H = 0.82 Å with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 Å, and with $1.2U_{eq}(C)$ for H atoms.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S 1	0.19875 (3)	0.80219 (4)	0.82727 (10)	0.0581 (2)	
S2	0.07519 (3)	0.97740 (3)	0.14696 (9)	0.04708 (19)	
Ν	0.13618 (9)	0.81533 (8)	0.3251 (2)	0.0365 (5)	
01	0.10182 (9)	0.88166 (9)	0.7697 (2)	0.0528 (5)	
H1	0.083927	0.903237	0.722551	0.079*	
O2	0.17096 (8)	0.94891 (7)	0.5606 (2)	0.0440 (5)	
03	0.05248 (7)	0.94022 (8)	0.4969 (2)	0.0414 (4)	
Н3	0.020531	0.939159	0.510786	0.062*	
C1	0.2681 (4)	0.8548 (5)	0.6236 (10)	0.043 (3)	0.44 (2)
C2	0.3011 (6)	0.8117 (5)	0.6461 (15)	0.051 (2)	0.44 (2)
H2A	0.289787	0.783422	0.705944	0.061*	0.44 (2)
C3	0.3509 (6)	0.8109 (5)	0.5791 (16)	0.065 (2)	0.44 (2)
H3A	0.372892	0.782049	0.594152	0.078*	0.44 (2)
C4	0.3677 (4)	0.8532 (5)	0.4897 (13)	0.074 (2)	0.44 (2)
H4A	0.401038	0.852616	0.444862	0.089*	0.44 (2)
C5	0.3348 (5)	0.8963 (5)	0.4672 (18)	0.067 (2)	0.44 (2)
H5A	0.346080	0.924556	0.407363	0.081*	0.44 (2)
C6	0.2850 (4)	0.8971 (5)	0.5342 (17)	0.057 (2)	0.44 (2)
H6A	0.262974	0.925931	0.519155	0.068*	0.44 (2)
C1A	0.2679 (3)	0.8540 (4)	0.6274 (8)	0.0401 (19)	0.56 (2)
C2A	0.2951 (4)	0.8070 (3)	0.6069 (13)	0.0478 (18)	0.56 (2)
H2AA	0.279047	0.775147	0.631921	0.057*	0.56 (2)
C3A	0.3462 (4)	0.8075 (3)	0.5489 (12)	0.066 (2)	0.56 (2)
H3AA	0.364329	0.776020	0.535225	0.079*	0.56 (2)
C4A	0.3701 (3)	0.8551 (4)	0.5115 (11)	0.079 (2)	0.56 (2)
H4AA	0.404302	0.855444	0.472747	0.094*	0.56 (2)
C5A	0.3430 (4)	0.9022 (4)	0.5320 (17)	0.072 (2)	0.56 (2)
H5AA	0.358993	0.933996	0.506964	0.087*	0.56 (2)
C6A	0.2919 (3)	0.9016 (3)	0.5899 (14)	0.0524 (18)	0.56 (2)
H6AA	0.273711	0.933124	0.603660	0.063*	0.56 (2)
C7	0.21172 (10)	0.85613 (11)	0.6917 (3)	0.0370 (6)	
H7	0.208163	0.889184	0.749387	0.044*	
C8	0.13063 (12)	0.79323 (13)	0.7676 (4)	0.0495 (7)	
H8A	0.126873	0.760935	0.708600	0.059*	
H8B	0.107757	0.791298	0.857322	0.059*	
C9	0.11644 (10)	0.84041 (10)	0.6689 (3)	0.0381 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Н9	0.086970	0.831599	0.600358	0.046*	
C10	0.16622 (10)	0.85436 (10)	0.5712 (3)	0.0319 (5)	
C11	0.17586 (11)	0.81241 (10)	0.4471 (3)	0.0380 (6)	
H11A	0.210565	0.817450	0.402454	0.046*	
H11B	0.174908	0.777734	0.494223	0.046*	
C12	0.14383 (11)	0.86442 (10)	0.2399 (3)	0.0381 (6)	
H12A	0.123068	0.863910	0.145687	0.046*	
H12B	0.180634	0.868270	0.211807	0.046*	
C13	0.12668 (9)	0.91073 (9)	0.3422 (3)	0.0314 (5)	
C14	0.15673 (9)	0.90880 (10)	0.4977 (3)	0.0315 (5)	
C15	0.06627 (10)	0.90622 (10)	0.3714 (3)	0.0352 (5)	
H15	0.057208	0.869749	0.397543	0.042*	
C16	0.03912 (11)	0.92192 (12)	0.2229 (4)	0.0457 (7)	
H16A	0.002780	0.931643	0.242898	0.055*	
H16B	0.039538	0.892939	0 149758	0.055*	
C17	0.13408 (10)	0.96560 (10)	0.2640(3)	0.0350(5)	
H17	0.133754	0.901842	0.347127	0.042*	
C18	0.18491 (10)	0.991042 0.97408 (9)	0.347127 0.1735(3)	0.042 0.0374 (5)	
C19	0.10491(10) 0.22921(12)	0.97408(9) 0.99325(12)	0.1755(5) 0.2497(4)	0.0574(3)	
H10	0.22721 (12)	0.99823 (12)	0.355936	0.0505 (7)	
C20	0.227904 0.27490 (14)	1 00411 (13)	0.1705 (5)	0.0645 (9)	
H20	0.27490 (14)	1.00411 (13)	0.1705 (5)	0.0043 (5)	
C21	0.304100 0.27770(16)	0.00650 (13)	0.223038	0.077	
U21	0.27770 (10)	0.99030 (13)	-0.0129(3)	0.0031 (10)	
П21 С22	0.300310	1.004137	-0.040/04	0.082°	
U22	0.25575 (10)	0.97718 (14)	-0.0043(4)	0.0004 (10)	
П22 С22	0.233172 0.19916 (12)	0.972000	-0.170930	0.080°	
U23	0.18810 (15)	0.90334 (12)	0.0140(3)	0.0499 (7)	
П23	0.139320	0.931888	-0.038301	0.000°	
	0.13841 (13)	0.70884(11)	0.2234(3)	0.04/3 (/)	
H24A	0.1/4111	0.704142	0.183004	0.05/*	
H24B	0.115547	0.7/4237	0.134857	0.05/*	0 (72 (10)
C25	0.1210 (3)	0.71931 (18)	0.3115 (8)	0.0449 (15)	0.6/2(16)
C26	0.0695 (2)	0.7125 (3)	0.3626 (11)	0.058/(1/)	0.6/2 (16)
H26A	0.044391	0.738401	0.343379	0.0/0*	0.672 (16)
027	0.0556 (2)	0.66/1 (3)	0.4425 (10)	0.086 (2)	0.6/2 (16)
H27A	0.021107	0.662541	0.476661	0.103*	0.672 (16)
C28	0.0931 (4)	0.6284 (2)	0.4712 (9)	0.097 (2)	0.672 (16)
H28A	0.083765	0.597997	0.524630	0.116*	0.672 (16)
C29	0.1446 (3)	0.6352 (2)	0.4201 (10)	0.089 (2)	0.672 (16)
H29A	0.169708	0.609312	0.439317	0.106*	0.672 (16)
C30	0.1585 (3)	0.6806 (2)	0.3402 (9)	0.0669 (17)	0.672 (16)
H30A	0.192993	0.685172	0.306033	0.080*	0.672 (16)
C25A	0.1208 (6)	0.7211 (4)	0.2988 (18)	0.048 (3)	0.328 (16)
C26A	0.0731 (6)	0.7254 (5)	0.377 (2)	0.054 (3)	0.328 (16)
H26B	0.056243	0.757823	0.383767	0.065*	0.328 (16)
C27A	0.0508 (5)	0.6812 (6)	0.446 (2)	0.080 (3)	0.328 (16)
H27B	0.018955	0.684108	0.498750	0.096*	0.328 (16)
C28A	0.0761 (6)	0.6327 (5)	0.4366 (19)	0.089 (3)	0.328 (16)

data reports

H28B C29A	0.061129 0.1237 (7)	0.603172 0.6284 (4)	0.482718 0.358 (2)	0.106* 0.086 (3)	0.328 (16) 0.328 (16)
H29B	0.140592	0.595950	0.351704	0.103*	0.328 (16)
C30A	0.1460 (5)	0.6726 (5)	0.2892 (19)	0.069 (3)	0.328 (16)
H30B	0.177882	0.669665	0.236720	0.083*	0.328 (16)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0511 (4)	0.0731 (5)	0.0502 (4)	-0.0028 (4)	-0.0115 (4)	0.0292 (4)
S2	0.0453 (4)	0.0521 (4)	0.0438 (4)	0.0018 (3)	-0.0063 (3)	0.0186 (3)
Ν	0.0486 (12)	0.0305 (10)	0.0305 (11)	-0.0012 (9)	-0.0034 (10)	-0.0029 (9)
01	0.0582 (13)	0.0577 (13)	0.0424 (11)	0.0094 (10)	0.0105 (10)	-0.0008 (10)
O2	0.0581 (12)	0.0362 (10)	0.0377 (10)	-0.0013 (8)	-0.0104 (9)	-0.0039 (8)
03	0.0374 (10)	0.0483 (11)	0.0386 (10)	0.0014 (8)	0.0034 (8)	0.0008 (9)
C1	0.039 (5)	0.044 (5)	0.046 (5)	0.005 (4)	-0.009 (4)	0.001 (4)
C2	0.046 (4)	0.045 (4)	0.060 (5)	-0.002 (3)	-0.010 (4)	0.003 (4)
C3	0.047 (4)	0.065 (4)	0.084 (5)	0.011 (4)	0.000 (4)	-0.004 (4)
C4	0.051 (4)	0.080 (5)	0.091 (5)	0.006 (4)	0.016 (4)	0.000 (4)
C5	0.054 (4)	0.072 (4)	0.076 (6)	-0.002 (3)	0.009 (5)	0.009 (5)
C6	0.049 (4)	0.053 (4)	0.068 (6)	0.005 (3)	0.006 (4)	0.013 (4)
C1A	0.037 (4)	0.043 (4)	0.040 (4)	0.002 (3)	-0.006 (3)	0.002 (3)
C2A	0.043 (3)	0.049 (3)	0.051 (4)	0.002 (2)	-0.013 (3)	-0.008 (3)
C3A	0.050 (3)	0.065 (4)	0.081 (4)	0.016 (3)	-0.005 (3)	-0.012 (3)
C4A	0.049 (4)	0.084 (4)	0.102 (5)	0.007 (3)	0.019 (4)	0.004 (4)
C5A	0.052 (4)	0.072 (4)	0.092 (6)	-0.001 (3)	0.014 (4)	0.016 (4)
C6A	0.047 (3)	0.048 (3)	0.062 (5)	0.009 (3)	0.003 (3)	0.010 (3)
C7	0.0398 (13)	0.0405 (13)	0.0308 (13)	0.0000 (11)	-0.0042 (10)	0.0058 (11)
C8	0.0467 (16)	0.0555 (17)	0.0464 (16)	-0.0029 (13)	-0.0034 (13)	0.0175 (14)
C9	0.0404 (13)	0.0428 (13)	0.0310 (13)	-0.0013 (11)	0.0000 (11)	0.0049 (12)
C10	0.0346 (12)	0.0328 (12)	0.0282 (12)	-0.0003 (9)	-0.0023 (10)	0.0027 (10)
C11	0.0426 (14)	0.0332 (13)	0.0382 (13)	0.0037 (10)	-0.0015 (11)	0.0006 (11)
C12	0.0484 (15)	0.0357 (13)	0.0302 (12)	0.0013 (11)	0.0003 (12)	-0.0004 (11)
C13	0.0350 (12)	0.0318 (11)	0.0272 (11)	-0.0003 (9)	-0.0006 (10)	0.0029 (10)
C14	0.0319 (12)	0.0372 (13)	0.0254 (11)	0.0021 (10)	0.0012 (10)	0.0013 (10)
C15	0.0355 (13)	0.0378 (13)	0.0324 (13)	-0.0028 (10)	-0.0025 (11)	0.0040 (11)
C16	0.0442 (15)	0.0496 (16)	0.0432 (16)	-0.0022 (12)	-0.0107 (12)	0.0070 (13)
C17	0.0396 (13)	0.0340 (12)	0.0313 (12)	0.0015 (10)	-0.0037 (11)	0.0042 (10)
C18	0.0454 (14)	0.0285 (12)	0.0383 (13)	0.0009 (10)	0.0030 (11)	0.0043 (11)
C19	0.0462 (16)	0.0539 (17)	0.0514 (17)	-0.0058 (13)	0.0004 (14)	0.0103 (15)
C20	0.0486 (18)	0.061 (2)	0.084 (3)	-0.0088 (15)	-0.0008 (19)	0.0099 (19)
C21	0.066 (2)	0.0541 (19)	0.085 (3)	-0.0054 (16)	0.038 (2)	0.0046 (19)
C22	0.089 (3)	0.0534 (19)	0.057 (2)	-0.0153 (18)	0.031 (2)	-0.0065 (17)
C23	0.0624 (18)	0.0438 (15)	0.0436 (16)	-0.0117 (13)	0.0110 (14)	-0.0027 (13)
C24	0.0670 (19)	0.0379 (14)	0.0370 (15)	-0.0026 (13)	0.0065 (14)	-0.0078 (12)
C25	0.053 (3)	0.034 (3)	0.047 (3)	-0.006 (2)	0.001 (3)	-0.007 (2)
C26	0.054 (3)	0.042 (3)	0.081 (4)	-0.009 (3)	0.001 (3)	0.001 (3)
C27	0.089 (4)	0.060 (5)	0.110 (4)	-0.021 (3)	0.024 (4)	0.008 (4)

data reports

C28	0.127 (5)	0.055 (3)	0.109 (5)	-0.014 (4)	0.004 (4)	0.023 (3)
C29	0.109 (5)	0.045 (3)	0.112 (5)	0.014 (3)	-0.017 (4)	0.005 (3)
C30	0.071 (3)	0.041 (3)	0.089 (4)	0.004 (2)	-0.003 (3)	-0.009 (3)
C25A	0.055 (5)	0.033 (5)	0.056 (5)	0.003 (5)	-0.005 (5)	-0.009 (5)
C26A	0.061 (5)	0.033 (5)	0.070 (5)	-0.018 (4)	0.004 (4)	-0.008 (5)
C27A	0.089 (5)	0.046 (6)	0.106 (6)	-0.014 (4)	0.016 (5)	0.005 (5)
C28A	0.105 (6)	0.050 (5)	0.111 (6)	-0.012 (5)	0.007 (5)	0.024 (5)
C29A	0.102 (6)	0.038 (4)	0.117 (7)	0.006 (5)	-0.007 (6)	0.008 (5)
C30A	0.073 (5)	0.036 (4)	0.098 (6)	0.002 (4)	0.002 (5)	-0.011 (5)

Geometric parameters (Å, °)

S1—C8	1.818 (3)	C12—H12A	0.9700
S1—C7	1.832 (3)	C12—H12B	0.9700
S2—C16	1.803 (3)	C13—C14	1.546 (3)
S2—C17	1.829 (3)	C13—C15	1.558 (3)
NC11	1.460 (3)	C13—C17	1.559 (3)
N—C12	1.460 (3)	C15—C16	1.511 (4)
N—C24	1.473 (3)	С15—Н15	0.9800
O1—C9	1.412 (3)	C16—H16A	0.9700
O1—H1	0.8200	C16—H16B	0.9700
O2—C14	1.209 (3)	C17—C18	1.524 (4)
O3—C15	1.430 (3)	С17—Н17	0.9800
O3—H3	0.8200	C18—C19	1.390 (4)
C1—C2	1.3900	C18—C23	1.394 (4)
C1—C6	1.3900	C19—C20	1.374 (5)
C1—C7	1.548 (10)	С19—Н19	0.9300
C2—C3	1.3900	C20—C21	1.377 (6)
C2—H2A	0.9300	С20—Н20	0.9300
C3—C4	1.3900	C21—C22	1.390 (6)
С3—НЗА	0.9300	C21—H21	0.9300
C4—C5	1.3900	C22—C23	1.376 (5)
C4—H4A	0.9300	С22—Н22	0.9300
C5—C6	1.3900	С23—Н23	0.9300
C5—H5A	0.9300	C24—C25A	1.448 (10)
C6—H6A	0.9300	C24—C25	1.535 (6)
C1A—C2A	1.3900	C24—H24A	0.9700
C1A—C6A	1.3900	C24—H24B	0.9700
C1A—C7	1.532 (8)	C25—C26	1.3900
C2A—C3A	1.3900	C25—C30	1.3900
C2A—H2AA	0.9300	C26—C27	1.3900
C3A—C4A	1.3900	C26—H26A	0.9300
СЗА—НЗАА	0.9300	C27—C28	1.3900
C4A—C5A	1.3900	С27—Н27А	0.9300
C4A—H4AA	0.9300	C28—C29	1.3900
C5A—C6A	1.3900	C28—H28A	0.9300
С5А—Н5АА	0.9300	C29—C30	1.3900
С6А—Н6АА	0.9300	С29—Н29А	0.9300

C7—C10	1.556 (3)	С30—Н30А	0.9300
C7—H7	0.9800	C25A—C26A	1.3900
C8—C9	1 514 (4)	C25A - C30A	1 3900
C8—H8A	0.9700	C_{26A} C_{27A}	1 3900
C8—H8B	0.9700	C_{26A} H26B	0.9300
C_{0} C_{10}	1 560 (4)	C27A $C28A$	1 3000
C_{0} H_{0}	0.0800	$C_27A = C_28A$	0.0300
C10 C11	0.9800	$C_2/A = H_2/B$	1 2000
C10 - C11	1.551(5) 1.540(2)	$C_{20A} = C_{29A}$	1.3900
	1.340 (3)	C_{20A} C_{20A}	0.9300
CII—HIIA	0.9700	C_{29A} C_{30A}	1.3900
CII—HIIB	0.9700	C29A—H29B	0.9300
012-013	1.534 (4)	C30A—H30B	0.9300
C8—S1—C7	94.74 (12)	C14—C13—C17	110.24 (19)
C16—S2—C17	94.91 (12)	C15—C13—C17	104.74 (19)
C11—N—C12	108.4 (2)	O2—C14—C10	121.5 (2)
C11—N—C24	111.4 (2)	O2-C14-C13	120.8 (2)
C12—N—C24	112.1 (2)	C10-C14-C13	117.7(2)
C9-01-H1	109 5	03-C15-C16	117.0(2)
$C_{15} = 0_{3} = H_{3}$	109.5	03-C15-C13	108.7(2)
C_{2} C_{1} C_{6}	120.0	C_{16} C_{15} C_{13}	106.7(2)
$C_2 - C_1 - C_7$	121.3 (8)	03-C15-H15	100.9 (2)
$C_{2} = C_{1} = C_{7}$	121.5(0) 1186(8)	C16 C15 H15	109.7
$C_0 = C_1 = C_1$	120.0	$C_{10} = C_{15} = H_{15}$	109.7
$C_3 = C_2 = C_1$	120.0	$C_{15} = C_{15} = M_{15}$	105.7
$C_3 = C_2 = H_2 A$	120.0	C15 - C16 - S2	100.49 (19)
C1 = C2 = H2A	120.0		110.4
C4 - C3 - C2	120.0	S2-C10-H10A	110.4
C4—C3—H3A	120.0	C15—C16—H16B	110.4
С2—С3—НЗА	120.0	S2—C16—H16B	110.4
C3-C4-C5	120.0	H16A—C16—H16B	108.6
C3—C4—H4A	120.0	C18—C17—C13	116.8 (2)
С5—С4—Н4А	120.0	C18—C17—S2	112.63 (18)
C6—C5—C4	120.0	C13—C17—S2	106.71 (16)
С6—С5—Н5А	120.0	C18—C17—H17	106.7
C4—C5—H5A	120.0	C13—C17—H17	106.7
C5—C6—C1	120.0	S2—C17—H17	106.7
С5—С6—Н6А	120.0	C19—C18—C23	118.3 (3)
С1—С6—Н6А	120.0	C19—C18—C17	119.4 (2)
C2A—C1A—C6A	120.0	C23—C18—C17	122.3 (3)
C2A—C1A—C7	122.5 (6)	C20—C19—C18	121.1 (3)
C6A—C1A—C7	117.5 (6)	С20—С19—Н19	119.5
C1A—C2A—C3A	120.0	C18—C19—H19	119.5
C1A—C2A—H2AA	120.0	C19—C20—C21	120.5 (3)
СЗА—С2А—Н2АА	120.0	С19—С20—Н20	119.7
C4A—C3A—C2A	120.0	C21—C20—H20	119.7
С4А—С3А—НЗАА	120.0	C20—C21—C22	119.0 (3)
С2А—С3А—НЗАА	120.0	C20—C21—H21	120.5
C3A—C4A—C5A	120.0	C22—C21—H21	120.5

	100.0	G00 G00 G01	100 7 (2)
C3A—C4A—H4AA	120.0		120.7 (3)
С5А—С4А—Н4АА	120.0	C23—C22—H22	119.6
C4A—C5A—C6A	120.0	C21—C22—H22	119.6
С4А—С5А—Н5АА	120.0	C22—C23—C18	120.4 (3)
С6А—С5А—Н5АА	120.0	С22—С23—Н23	119.8
C5A—C6A—C1A	120.0	C18—C23—H23	119.8
С5А—С6А—Н6АА	120.0	C25A—C24—N	112.9 (6)
С1А—С6А—Н6АА	120.0	N	110.4 (3)
C1A—C7—C10	116.6 (3)	N—C24—H24A	109.6
C1—C7—C10	115.5 (4)	C25—C24—H24A	109.6
C1A—C7—S1	111.9 (4)	N—C24—H24B	109.6
C1—C7—S1	113.1 (5)	C25—C24—H24B	109.6
C10-C7-S1	105 87 (16)	H24A - C24 - H24B	108.1
C1	107.3	$C_{26} - C_{25} - C_{30}$	120.0
C10-C7-H7	107.3	$C_{26} - C_{25} - C_{24}$	120.0 1220(4)
S1H7	107.3	$C_{20} = C_{25} = C_{24}$	122.0(4) 118.0(4)
$S_1 = C_2 = M_2$	107.3 106.7(2)	$C_{20} = C_{20} = C_{24}$	120.0
$C_9 = C_0 = S_1$	100.7(2)	$C_{27} = C_{20} = C_{23}$	120.0
C_{9} C_{8} H_{8A}	110.4	$C_{2} = C_{2} = C_{2$	120.0
SI = CS = HSA	110.4	C_{23} — C_{20} — H_{20A}	120.0
C9—C8—H8B	110.4	$C_{26} = C_{27} = C_{28}$	120.0
SI—C8—H8B	110.4	C26—C27—H27A	120.0
H8A—C8—H8B	108.6	С28—С27—Н27А	120.0
01—C9—C8	107.5 (2)	C27—C28—C29	120.0
O1—C9—C10	112.3 (2)	C27—C28—H28A	120.0
C8—C9—C10	107.0 (2)	C29—C28—H28A	120.0
O1—C9—H9	110.0	C30—C29—C28	120.0
С8—С9—Н9	110.0	С30—С29—Н29А	120.0
С10—С9—Н9	110.0	С28—С29—Н29А	120.0
C11—C10—C14	111.0 (2)	C29—C30—C25	120.0
C11—C10—C7	111.8 (2)	С29—С30—Н30А	120.0
C14—C10—C7	111.51 (19)	С25—С30—Н30А	120.0
C11—C10—C9	110.5 (2)	C26A—C25A—C30A	120.0
C14—C10—C9	107.49 (19)	C26A—C25A—C24	115.0 (10)
C7—C10—C9	104.2 (2)	C30A—C25A—C24	124.9 (10)
N - C11 - C10	111.2 (2)	C25A—C26A—C27A	120.0
N-C11-H11A	109.4	C25A—C26A—H26B	120.0
C10-C11-H11A	109.4	C27A - C26A - H26B	120.0
N C11 H11B	109.4	C_{26A} C_{27A} C_{28A}	120.0
C_{10} C_{11} H_{11B}	109.4	$C_{20}A = C_{27}A = C_{20}A$	120.0
	109.4	$C_{20}A = C_{27}A = H_{27}B$	120.0
N C12 C12	100.0(2)	$C_{20}A = C_{2}A = H_{2}/B$	120.0
N = C12 = U12A	109.0 (2)	$C_{29A} = C_{28A} = C_{27A}$	120.0
N-CI2-HI2A	109.9	C29A—C28A—H28B	120.0
$U_{13} - U_{12} - H_{12A}$	109.9	$C_2/A = C_2 \delta A = H_2 \delta B$	120.0
N—C12—H12B	109.9	C28A—C29A—C30A	120.0
C13—C12—H12B	109.9	C28A—C29A—H29B	120.0
H12A—C12—H12B	108.3	C30A—C29A—H29B	120.0
C12—C13—C14	109.70 (19)	C29A—C30A—C25A	120.0
C12—C13—C15	108.5 (2)	C29A—C30A—H30B	120.0

C14—C13—C15	109.98 (19)	C25A—C30A—H30B	120.0
C12—C13—C17	113.6 (2)		
C(C1 C2 C2	0.0	<u>C0</u> <u>C10</u> <u>C14</u> <u>C12</u>	95.0(2)
$C_{0} - C_{1} - C_{2} - C_{3}$	0.0	C_{9} C_{10} C_{14} C_{13} C_{12} C_{14} C_{23}	-85.9(2)
$C_{1} = C_{2} = C_{3}$	1//.8(/)	C12-C13-C14-O2	143.1(2)
C1 = C2 = C3 = C4	0.0	C15 - C13 - C14 - O2	-9/./(3)
$C_2 = C_3 = C_4 = C_5$	0.0	C17 - C13 - C14 - O2	17.3 (3)
C3-C4-C5-C6	0.0	C12—C13—C14—C10	-38.7 (3)
C4—C5—C6—C1	0.0	C15—C13—C14—C10	80.5 (2)
C2-C1-C6-C5	0.0	C17—C13—C14—C10	-164.5(2)
C7—C1—C6—C5	-177.8 (7)	C12—C13—C15—O3	165.0 (2)
C6A—C1A—C2A—C3A	0.0	C14—C13—C15—O3	45.1 (3)
C7—C1A—C2A—C3A	-179.6 (6)	C17—C13—C15—O3	-73.4 (2)
C1A—C2A—C3A—C4A	0.0	C12—C13—C15—C16	-74.0 (3)
C2A—C3A—C4A—C5A	0.0	C14—C13—C15—C16	166.1 (2)
C3A—C4A—C5A—C6A	0.0	C17—C13—C15—C16	47.6 (3)
C4A—C5A—C6A—C1A	0.0	O3—C15—C16—S2	78.5 (2)
C2A—C1A—C6A—C5A	0.0	C13—C15—C16—S2	-40.4 (3)
C7—C1A—C6A—C5A	179.6 (5)	C17—S2—C16—C15	17.7 (2)
C2A—C1A—C7—C10	-91.3 (6)	C12—C13—C17—C18	-42.0(3)
C6A—C1A—C7—C10	89.1 (6)	C14—C13—C17—C18	81.6 (3)
C2A—C1A—C7—S1	30.8 (6)	C15—C13—C17—C18	-160.2(2)
C6A—C1A—C7—S1	-148.8(6)	C12—C13—C17—S2	85.0 (2)
C2-C1-C7-C10	-112.3 (8)	C14—C13—C17—S2	-151.45 (16)
C6—C1—C7—C10	65.5 (9)	C15—C13—C17—S2	-33.2 (2)
C_{2} C_{1} C_{7} S_{1}	10.0 (9)	$C_{16} = S_{2} = C_{17} = C_{18}$	139.0(2)
C6-C1-C7-S1	-172.2.(7)	$C_{16} = S_{2} = C_{17} = C_{13}$	96(2)
C8 = S1 = C7 = C1A	-1439(3)	C_{13} C_{17} C_{18} C_{19}	-88.8(3)
C8 = S1 = C7 = C1	-1434(4)	S_{2} C_{17} C_{18} C_{19}	1472(2)
C8 = S1 = C7 = C10	-159(2)	C_{13} C_{17} C_{18} C_{23}	942(3)
C7 = S1 = C8 = C9	-123(2)	$S_{2}^{-}C_{17}^{-}C_{18}^{-}C_{23}^{-}$	-29.8(3)
$C_1 = C_1 = C_2 = C_2$	-83.4(2)	$C_{23}^{22} = C_{17}^{17} = C_{10}^{10} = C_{23}^{20}$	27.8(3)
S1 - C8 - C9 - C10	33.4(2)	C_{23} C_{13} C_{19} C_{20} C_{17} C_{18} C_{19} C_{20}	-176 4 (3)
S1 - C3 - C10 - C11	57.5(5)	C17 - C18 - C19 - C20	1/0.4(3)
CIA = C/ = CI0 = CI1	44.3 (3)	C18 - C19 - C20 - C21	0.4(3)
	43.3 (0)	C19 - C20 - C21 - C22	-0.0(3)
SI = C = CI0 = CI1	-80.7(2)	$C_{20} = C_{21} = C_{22} = C_{23}$	-0.3(6)
CIA = C/ = CI0 = CI4	-80.5(5)	$C_{21} = C_{22} = C_{23} = C_{18}$	1.5 (5)
C1 - C7 - C10 - C14	-/9.6(6)	C19 - C18 - C23 - C22	-1.6(5)
S1 - C - C10 - C14	154.29 (17)	C17 - C18 - C23 - C22	1/5.4 (3)
CIA_C/_CI0_C9	163.8 (4)	C11—N—C24—C25A	69.8 (7)
C1—C7—C10—C9	164.7 (6)	C12—N—C24—C25A	-168.5 (7)
S1—C7—C10—C9	38.6 (2)	C11—N—C24—C25	67.9 (4)
01—C9—C10—C11	-171.5 (2)	C12—N—C24—C25	-170.4 (3)
C8—C9—C10—C11	70.8 (3)	N—C24—C25—C26	66.9 (5)
O1—C9—C10—C14	-50.2 (3)	N-C24-C25-C30	-112.9 (5)
C8—C9—C10—C14	-167.9 (2)	C30—C25—C26—C27	0.0
O1—C9—C10—C7	68.2 (3)	C24—C25—C26—C27	-179.8 (5)
C8—C9—C10—C7	-49.5 (3)	C25—C26—C27—C28	0.0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 68.0\ (3)\\ -168.2\ (2)\\ -48.1\ (3)\\ -173.3\ (2)\\ 71.1\ (3)\\ -71.5\ (3)\\ 165.1\ (2)\\ 55.1\ (3)\\ -65.1\ (3)\\ 178.9\ (2)\\ -146.7\ (2)\\ -21.3\ (3)\\ 92.3\ (3)\\ 35.2\ (3)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 0.0 0.0 179.8 (5) 48.5 (9) -135.6 (10) 0.0 176.1 (11) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
C7—C10—C14—C13	160.5 (2)	C24—C25A—C30A—C29A	-175.7 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
01—H1…O3	0.82	2.31	3.058 (3)	152
O3—H3…O3 ⁱ	0.82	2.05	2.851 (3)	167

Symmetry code: (i) y-1, -x+1, -z+1.