

ISSN 2414-3146

Received 31 March 2021 Accepted 1 April 2021

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; 2-aminothiophene derivative; hydrogen bonding.

CCDC reference: 2074848

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 2-amino-4-methylthiophene-3-carboxylate

data reports

Ghazala Khanum,^a Aysha Fatima,^a Pooja Sharma,^a S. K. Srivastava^a and Ray J. Butcher^b*

^aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA. *Correspondence e-mail: rbutcher99@yahoo.com

The title compound, $C_8H_{11}NO_2S$, crystallizes with two molecules, A and B, in the asymmetric unit. Each molecule features an intramolecular $N-H\cdots O$ hydrogen bond and the same H atom is also involved in an intermolecular $N-H\cdots S$ bond to generate A + B dimers. Further $N-H\cdots O$ hydrogen bonds link the dimers into a [010] chain.

Structure description

Thiophene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, antidepressant, antimicrobial and anticonvulsant activities (Molvi *et al.*, 2007; Ashalatha *et al.*, 2007; Rai *et al.*, 2008). Thiophene derivatives are found to be active as allosteric enhancers at the adenosine A1 receptor, which has been linked to antiarrhythmic and antilipolytic activity (Cannito *et al.*,1990; Lütjens *et al.*, 2003; Göblyös & Ijzerman, 2009; Nikolakopoulos *et al.*, 2006). Thiophenes also possess properties that are suitable for functional materials, such as field effect transistors (MacDiarmid, 2001; Kraft, 2001) and organic light-emitting diodes (Akcelrud, 2003; Perepichka *et al.*, 2005) because of their reversible oxidation occurring at low potentials (Nessakh *et al.*, 1995; van Haare *et al.*, 1995) and their semiconductor-like behaviour obtained upon *p*-doping (Roncali *et al.*, 2005).

Many 2-,3-aminothiophene derivatives have been prepared so far and the structures of more than 25 of them have been published (see, *e.g.*: Çoruh *et al.*, 2003; Nirmala *et al.*, 2005; Bourgeaux & Skene, 2007; Akkurt *et al.*, 2008; Zhang & Jiao, 2010; Ghorab *et al.*, 2012). Crystal structures of several thiophenes have been determined in which different functional groups are attached in place of NH₂ at the 2-position of the ring (Yan & Liu, 2007; Mukhtar *et al.*, 2012; de Oliveira *et al.*, 2012; Mabkhot *et al.*, 2013; Kaur *et al.*, 2014). Compounds are known in which the replacement of NH₂ group by iodine resulted in a cyclomer by the association of two monomers through a weak intermolecular $CN \cdots I$

Table 1			
Hydrogen-bond	geometry	(Å, '	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1B-H1BA\cdotsO1B$	0.82 (3)	2.14 (3)	2.734 (3)	130 (2)
$N1B-H1BB\cdotsO1A^{i}$	0.87 (3)	2.10(3)	2.946 (3)	163 (2)
$N1A - H1AA \cdots S1B^{ii}$	0.83 (3)	3.07 (3)	3.819 (2)	151 (2)
$N1A - H1AA \cdots O1A$	0.83 (3)	2.14 (3)	2.736 (3)	129 (2)
$N1A - H1AB \cdots O1B$	0.86(3)	2.05(3)	2.897 (3)	165 (2)
$C7A - H7AA \cdots S1A^{iii}$	0.97	3.02	3.736 (3)	131

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z; (iii) -x + 1, -y + 2, -z + 2.

Lewis acid-base interaction (Moncol *et al.*, 2007). In the crystal structure of another compound, which is a derivative of piperidine containing aminothiophenes, a dimer is formed by the intermolecular $C-H\cdots S$ interaction between the piperidine and thiophene rings (Al-Adiwish *et al.*, 2012).

We report herein the synthesis, characterization and crystal structure of the title compound, 2-amino-4-methylthiophene-3-carboxylate (1) (Fig. 1), which crystallizes in the triclinic space group $P\overline{1}$ with four molecules in the unit cell (Z' = 2). The two molecules in the asymmetric unit are labelled as A and B. In both A and B, the thiophene ring and the directly attached atoms are all coplanar within experimental error [for A: the r.m.s. deviation of the thiophene moiety is 0.003 (1) Å with N1, C5, and C6 at 0.044 (3), 0.005 (3) and 0.011 (3) Å, respectively; for B the r.m.s. deviation is 0.001 (1) Å with N1, C5 and C6 at 0.009 (4), 0.009 (4), and 0.003 (3) Å, respectively]. For A the dihedral angle between the thiophene ring and the NH₂ substituent is 12.5 $(18)^{\circ}$ while for the C7, O1 and O2 moiety, this angle is $1.65 (10)^\circ$, indicating that this group is almost exactly coplanar with the ring. For B the corresponding values are 11 (2) and 2.1 (2)°.

A search for structures containing a 2-amino-thiophene-3carboxylate moiety gave 45 hits, two of which are particularly relevant to the current reported structure, *viz*. ethyl 2-amino-4-isobutylthiophene-3-carboxylate (KIKPIE; Liao *et al.*, 2007) and ethyl 2-amino-4-phenylthiophen-3-carboxylate (VIWPUM; Dufresne & Skene, 2010). The only difference between these structures and that of **1** is in the substituent at the 3-position on the ring which are 2-methylpropyl and

Diagram showing the two molecules A and B with atom labelling. $R_2^3(6)$ interactions involving the NH₂ and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B links the A and B molecules. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.

Diagram showing both intra- and intermolecular hydrogen bonding, which links the molecules into a $C_4^2(12)$ chain in the *b*-axis direction, and $R_2^3(6)$ interactions involving the NH₂ and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B which links the A and B molecules. Hydrogen bonds are shown with dashed lines. Atomic displacement parameters are at the 30% probability level.

phenyl for KIKPIE (Liao *et al.*, 2007) and VIWPUM (Dufresne & Skene, 2010). In both cases the metrical parameters are similar as well as the planarity of the substituents.

As far as the packing of the molecules is concerned, there is both intra- and intermolecular hydrogen bonding. This links the molecules into a $C_4^2(12)$ chain in the *b*-axis direction (Etter *et al.*, 1990). In addition, there are $R_2^3(6)$ interactions involving the NH₂ and S moieties with a bifurcated hydrogen bond from H1BA to S1A and O1B, which links the A and B molecules (Table 1, Figs. 2 and 3).

Synthesis and crystallization

The title compound (ethyl 2-amino-4-methylthiophene-3carboxylate) (1) was prepared by the procedure described in

Figure 3 Packing diagram viewed along the *a* axis. Hydrogen bonds are shown with dashed lines.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_8H_{11}NO_2S$
$M_{ m r}$	185.24
Crystal system, space group	Triclinic, P1
Temperature (K)	293
a, b, c (Å)	7.664 (3), 9.876 (3), 13.018 (5)
α, β, γ (°)	91.602 (12), 104.301 (13), 101.729 (13)
$V(Å^3)$	931.7 (6)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.31
Crystal size (mm)	$0.48\times0.35\times0.12$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick 1996)
T_{\min}, T_{\max}	0.565, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	27589, 5636, 3845
R _{int}	0.062
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.168, 1.03
No. of reflections	5636
No. of parameters	237
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.62, -0.39

Computer programs: *APEX2* (Bruker, 2005), *SAINT* (Bruker, 2002), *SHELXT* (Sheldrick 2015a), *SHELXL2018/3* (Sheldrick, 2015b) and *SHELXTL* (Sheldrick 2008).

the literature (Zhang et al., 2010). A mixture of acetone (0.5 mmol) and ethylcyanoacetate (0.5 mmol) in absolute ethanol (2 ml) was added to a solution of elemental S (0.5 mmol) and diethylamine (0.5 mmol) in absolute ethanol (2 ml) and stirred constantly for 3 h at 50°C. The reaction completion was confirmed by using pre-coated silica gel 60 F254 MERCK (20×20 cm). The reaction mixture was quenched with ice-cold water and extracted with ethyl acetate. The organic layer was separated, dried over anhydrous sodium sulfate and concentrated. The crude product was purified using silica gel column chromatography (100–200 mesh) using hexane/ethyl acetate (7:3) mixture solution. Yellow crystals were obtained by slow evaporation of a saturated solution in ethyl acetate and the crystals were used for X-ray diffraction studies. Compound 1: Yield: (85%). m.p. 76–79°C. ¹H NMR (400 MHz, CDCl₃) δ 6.07 (s, 2H), 5.82 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ 166.13, 164.17, 136.71, 106.72, 102.85, 59.54, 18.40, 14.40. ESI-MS: m/z calculated for C₈H₁₁NO₂S 185.05; found [M + H]+ 186.15.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research.

References

- Akcelrud, L. (2003). Prog. Polym. Sci. 28, 875-962.
- Akkurt, M., Yıldırım, S. Ö., Asiri, A. M. & McKee, V. (2008). Acta Cryst. E64, o1084.
- Al-Adiwish, W. M., Adan, D., Mohamed Tahir, M. I., Yaacob, W. A. & Kassim, M. B. (2012). Acta Cryst. E68, o138.
- Ashalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719–728.
- Bourgeaux, M. & Skene, W. G. (2007). Acta Cryst. E63, o1603-o1605.
- Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cannito, A., Perrissin, M., Luu-Duc, C., Huguet, F., Gaultier, C. & Narcisse, G. (1990). *Eur. J. Med. Chem.* 25, 635–639.
- Çoruh, U., Ustabaş, R., Tümer, F., García-Granda, S., Demir, Ü., Ekinci, D. & Yavuz, M. (2003). Acta Cryst. E**59**, o1339–o1341.
- Dufresne, S. & Skene, W. G. (2010). Acta Cryst. E66, o3221.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Ghorab, M. M., Al-Said, M. S., Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). *Acta Cryst.* E68, o2111.
- Göblyös, A. & IJzerman, A. P. (2009). Purinergic Signal. 5, 51-61.
- Haare, J. A. E. H. van, Groenendaal, L., Peerlings, H. W. I., Havinga, E. E., Vekemans, J. A. J. M., Janssen, R. A. J. & Meijer, E. W.
- (1995). *Chem. Mater.* **7**, 1984–1989. Kaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). *Acta Cryst.* **E70**, 0951–0952.
- Kraft, A. (2001). ChemPhysChem, 2, 163-165.
- Liao, Q.-B., Huang, J., Yang, Z.-Z. & Liu, M.-G. (2007). Acta Cryst. E63, 03824.
- Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2003). J. Med. Chem. 46, 1870–1877.
- Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049.
- MacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581-2590.
- Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058.
- Moncol, J., Puterová, Z. & Végh, D. (2007). Acta Cryst. E63, 03921.
- Mukhtar, A., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2012). *Acta Cryst.* E68, o2042.
- Nessakh, B., Horowitz, G., Garnier, F., Deloffre, F., Srivastava, P. & Yassar, A. (1995). J. Electroanal. Chem. **399**, 97–103.
- Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365.
- Nirmala, K. A., Vasu, Chopra, D., Mohan, S. & Prasad, M. R. (2005). *Acta Cryst.* E61, o1541–o1543.
- Oliveira, J. G. B. de, Mendonça Junio, F. J. B., de Lima, M., do C. A., de Simone, C. A. & Ellena, J. A. (2012). Acta Cryst. E68, o2360.
- Perepichka, I. F., Perepichka, D. F., Meng, H. & Wudl, F. (2005). Adv. Mater. 17, 2281–2305.
- Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.
- Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589– 1610.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Yan, F.-Y. & Liu, D.-Q. (2007). Acta Cryst. E63, 04877.
- Zhang, Q. & Jiao, Y.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 283–284.

full crystallographic data

IUCrData (2021). **6**, x210351 [https://doi.org/10.1107/S2414314621003515]

Ethyl 2-amino-4-methylthiophene-3-carboxylate

Ghazala Khanum, Aysha Fatima, Pooja Sharma, S. K. Srivastava and Ray J. Butcher

Z = 4

F(000) = 392

 $\theta = 2.6 - 30.7^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$

Plate, colourless

 $0.48 \times 0.35 \times 0.12 \text{ mm}$

 $\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$

5636 independent reflections

3845 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.062$

 $h = -10 \rightarrow 10$

 $k = -14 \rightarrow 14$

 $l = -18 \rightarrow 18$

 $D_{\rm x} = 1.321 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9004 reflections

Ethyl 2-amino-4-methylthiophene-3-carboxylate

Crystal data C₈H₁₁NO₂S $M_r = 185.24$ Triclinic, $P\overline{1}$ a = 7.664 (3) Å b = 9.876 (3) Å c = 13.018 (5) Å a = 91.602 (12)° $\beta = 104.301$ (13)° $\gamma = 101.729$ (13)° V = 931.7 (6) Å³

```
Data collection
```

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.565, T_{\max} = 0.747$ 27589 measured reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.057$ Hydrogen site location: mixed $wR(F^2) = 0.168$ H atoms treated by a mixture of independent S = 1.03and constrained refinement 5636 reflections $w = 1/[\sigma^2(F_0^2) + (0.0812P)^2 + 0.2238P]$ where $P = (F_0^2 + 2F_c^2)/3$ 237 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved with *SHELXT* (Sheldrick, 2015*a*) and refined with *SHELXL2018*/3 (Sheldrick 2015*b*). The amine hydrogen atoms were refined isotropically while the C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95-0.98 Å, and with $1.2U_{eq}(C)$ for H atoms.

	x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
S1A	0.57912 (8)	0.63040 (5)	0.90873 (4)	0.05608 (17)
O1A	0.5956 (2)	1.07513 (14)	0.82938 (11)	0.0598 (4)
O2A	0.77241 (18)	1.13164 (13)	0.99478 (10)	0.0469 (3)
N1A	0.4678 (3)	0.7995 (2)	0.76263 (15)	0.0611 (5)
H1AA	0.478 (4)	0.878 (3)	0.741 (2)	0.074 (8)*
H1AB	0.420 (4)	0.728 (3)	0.718 (2)	0.067 (7)*
C1A	0.5667 (3)	0.79097 (18)	0.86174 (15)	0.0434 (4)
C2A	0.6638 (2)	0.89702 (17)	0.93919 (13)	0.0394 (4)
C3A	0.7481 (2)	0.84624 (19)	1.03824 (14)	0.0429 (4)
C4A	0.7121 (3)	0.7062 (2)	1.03180 (17)	0.0535 (5)
H4AA	0.754788	0.655468	1.088165	0.064*
C5A	0.8619 (3)	0.9325 (2)	1.13746 (16)	0.0580 (5)
H5AA	0.899385	0.872987	1.191859	0.087*
H5AB	0.790195	0.990278	1.160998	0.087*
H5AC	0.969117	0.989811	1.123237	0.087*
C6A	0.6715 (2)	1.03954 (17)	0.91494 (14)	0.0400 (4)
C7A	0.7865 (3)	1.27623 (18)	0.97679 (16)	0.0501 (4)
H7AA	0.664931	1.297311	0.957187	0.060*
H7AB	0.845948	1.299239	0.919940	0.060*
C8A	0.8989 (3)	1.3566 (2)	1.07851 (18)	0.0607 (5)
H8AA	0.910249	1.454059	1.070404	0.091*
H8AB	1.019220	1.335704	1.096380	0.091*
H8AC	0.839418	1.331695	1.134225	0.091*
S1B	0.35148 (12)	0.08122 (6)	0.57884 (5)	0.0809 (3)
O1B	0.3541 (2)	0.53445 (14)	0.63773 (11)	0.0620 (4)
O2B	0.2205 (2)	0.52307 (14)	0.46392 (11)	0.0538 (3)
N1B	0.4376 (3)	0.2976 (2)	0.72151 (14)	0.0639 (5)
H1BA	0.451 (3)	0.381 (3)	0.7357 (18)	0.057 (7)*
H1BB	0.484 (4)	0.242 (3)	0.765 (2)	0.076 (8)*
C1B	0.3661 (3)	0.25098 (19)	0.61927 (15)	0.0474 (4)
C2B	0.2967 (3)	0.32322 (18)	0.53404 (13)	0.0425 (4)
C3B	0.2320 (3)	0.2374 (2)	0.43493 (16)	0.0564 (5)
C4B	0.2549 (5)	0.1078 (3)	0.4495 (2)	0.0824 (8)
H4BA	0.221258	0.038177	0.394211	0.099*
C5B	0.1488 (4)	0.2818 (3)	0.32835 (17)	0.0748 (7)
H5BA	0.121058	0.205434	0.275478	0.112*
H5BB	0.234517	0.357479	0.311217	0.112*
H5BC	0.037419	0.311113	0.329922	0.112*
C6B	0.2961 (3)	0.46767 (18)	0.55163 (14)	0.0424 (4)
C7B	0.2082 (3)	0.6659 (2)	0.47361 (19)	0.0609 (5)
H7BA	0.330234	0.725322	0.498848	0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

data reports

H7BB	0.136218	0.679395	0.523229	0.073*
C8B	0.1157 (4)	0.6988 (3)	0.3643 (2)	0.0809 (8)
H8BA	0.089268	0.789501	0.367982	0.121*
H8BB	0.002774	0.631283	0.336545	0.121*
H8BC	0.195895	0.696714	0.318332	0.121*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1A	0.0707 (4)	0.0344 (2)	0.0629 (3)	0.0106 (2)	0.0173 (3)	0.0055 (2)
O1A	0.0810 (10)	0.0432 (7)	0.0456 (7)	0.0181 (7)	-0.0054 (7)	0.0073 (6)
O2A	0.0547 (8)	0.0354 (6)	0.0441 (7)	0.0084 (5)	0.0020 (6)	0.0059 (5)
N1A	0.0846 (14)	0.0431 (9)	0.0456 (9)	0.0128 (9)	0.0003 (9)	-0.0027 (8)
C1A	0.0497 (10)	0.0369 (8)	0.0453 (9)	0.0108 (7)	0.0141 (8)	0.0038 (7)
C2A	0.0404 (9)	0.0366 (8)	0.0414 (8)	0.0088 (7)	0.0103 (7)	0.0065 (6)
C3A	0.0425 (9)	0.0434 (9)	0.0450 (9)	0.0116 (7)	0.0128 (7)	0.0109 (7)
C4A	0.0631 (12)	0.0458 (10)	0.0543 (11)	0.0166 (9)	0.0144 (9)	0.0176 (8)
C5A	0.0635 (13)	0.0579 (12)	0.0444 (10)	0.0124 (10)	-0.0012 (9)	0.0109 (9)
C6A	0.0428 (9)	0.0378 (8)	0.0400 (8)	0.0115 (7)	0.0091 (7)	0.0055 (6)
C7A	0.0621 (12)	0.0345 (8)	0.0500 (10)	0.0116 (8)	0.0062 (9)	0.0055 (7)
C8A	0.0653 (13)	0.0454 (10)	0.0605 (13)	0.0052 (9)	0.0021 (10)	-0.0021 (9)
S1B	0.1329 (7)	0.0398 (3)	0.0631 (4)	0.0278 (3)	0.0053 (4)	0.0040 (2)
O1B	0.0879 (11)	0.0431 (7)	0.0452 (7)	0.0163 (7)	-0.0015 (7)	-0.0043 (6)
O2B	0.0696 (9)	0.0449 (7)	0.0446 (7)	0.0190 (6)	0.0046 (6)	0.0083 (6)
N1B	0.0985 (16)	0.0499 (10)	0.0380 (8)	0.0265 (10)	-0.0011 (9)	0.0056 (8)
C1B	0.0601 (11)	0.0383 (8)	0.0419 (9)	0.0129 (8)	0.0077 (8)	0.0040 (7)
C2B	0.0492 (10)	0.0395 (8)	0.0360 (8)	0.0107 (7)	0.0052 (7)	0.0015 (6)
C3B	0.0707 (13)	0.0495 (10)	0.0404 (9)	0.0104 (9)	0.0015 (9)	-0.0040 (8)
C4B	0.128 (2)	0.0480 (12)	0.0570 (13)	0.0180 (14)	0.0015 (14)	-0.0132 (10)
C5B	0.1004 (19)	0.0743 (15)	0.0386 (10)	0.0216 (14)	-0.0035 (11)	-0.0068 (10)
C6B	0.0463 (9)	0.0398 (8)	0.0399 (8)	0.0107 (7)	0.0074 (7)	0.0050 (7)
C7B	0.0672 (13)	0.0447 (10)	0.0700 (14)	0.0180 (9)	0.0105 (11)	0.0160 (9)
C8B	0.0828 (18)	0.0716 (16)	0.0840 (18)	0.0226 (14)	0.0055 (14)	0.0366 (14)

Geometric parameters (Å, °)

S1A—C4A	1.727 (2)	S1B—C4B	1.715 (3)
S1A—C1A	1.7277 (19)	S1B—C1B	1.716 (2)
O1A—C6A	1.220 (2)	O1B—C6B	1.217 (2)
O2A—C6A	1.330 (2)	O2B—C6B	1.333 (2)
O2A—C7A	1.440 (2)	O2B—C7B	1.437 (2)
N1A—C1A	1.340 (3)	N1B—C1B	1.337 (3)
N1A—H1AA	0.83 (3)	N1B—H1BA	0.82 (3)
N1A—H1AB	0.86 (3)	N1B—H1BB	0.87 (3)
C1A—C2A	1.386 (3)	C1B—C2B	1.389 (2)
C2A—C6A	1.444 (2)	C2B—C6B	1.440 (2)
C2A—C3A	1.445 (2)	C2B—C3B	1.443 (3)
C3A—C4A	1.350 (3)	C3B—C4B	1.339 (3)

C3A—C5A	1.495 (3)	C3B—C5B	1.495 (3)
С4А—Н4АА	0.9300	C4B—H4BA	0.9300
С5А—Н5АА	0.9600	C5B—H5BA	0.9600
С5А—Н5АВ	0.9600	C5B—H5BB	0.9600
C5A—H5AC	0.9600	C5B—H5BC	0.9600
C7A—C8A	1 492 (3)	C7B—C8B	1 502 (3)
C7A—H7AA	0.9700	C7B—H7BA	0.9700
C7A—H7AB	0.9700	C7B—H7BB	0.9700
C8A—H8AA	0.9600	C8B—H8BA	0.9600
	0.9600	C8B_H8BB	0.9600
	0.9600	C8B H8BC	0.9600
con-mone	0.9000		0.9000
C4A—S1A—C1A	91.37 (9)	C4B—S1B—C1B	91.28 (11)
C6A—O2A—C7A	117.21 (14)	C6B—O2B—C7B	117.81 (16)
C1A—N1A—H1AA	116.2 (19)	C1B—N1B—H1BA	116.5 (17)
C1A—N1A—H1AB	122.2 (17)	C1B—N1B—H1BB	118.1 (18)
H1AA—N1A—H1AB	120(2)	H1BA—N1B—H1BB	124 (2)
N1A—C1A—C2A	128 91 (17)	N1B-C1B-C2B	12853(18)
N1A—C1A—S1A	119.95 (15)	N1B-C1B-S1B	120.35(10) 120.36(15)
C^2A — C^1A — S^1A	111 12 (14)	C2B-C1B-S1B	120.30(12) 11112(14)
C1A - C2A - C6A	119 56 (16)	C1B-C2B-C6B	119.66 (16)
C1A - C2A - C3A	112.69 (15)	C1B C2B C3B	112.00 (10)
C6A - C2A - C3A	127.75 (16)	C6B - C2B - C3B	112.43(17) 127.92(17)
C4A - C3A - C2A	11136(17)	C4B-C3B-C2B	127.92(17) 111.01(19)
$C_{4\Lambda} = C_{3\Lambda} = C_{2\Lambda}$	111.30(17) 122.25(18)	C4B $C3B$ $C5B$	111.01(17) 122.6(2)
$C_{A} C_{A} C_{A} C_{A} C_{A}$	122.23(16) 126.40(16)	$C_{AB} = C_{AB} = C_{AB} = C_{AB}$	122.0(2) 126.34(10)
$C_{2A} = C_{3A} = C_{3A}$	120.40(10) 113.46(15)	$C_{2B} = C_{4B} = C_{5B}$	120.34(19)
$C_{3A} = C_{4A} = S_{1A}$	113.40 (13)	$C_{3}B = C_{4}B = H_{4}BA$	114.10(17)
$C_{JA} = C_{A} = H_{AA}$	123.3	$C_{3}D_{-}C_{4}D_{-}\Pi_{4}DA$	122.9
SIA - C4A - H4AA	125.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122.9
$C_{A} = C_{A} = H_{A}$	109.5	C3D C5D U5DD	109.5
	109.5		109.5
$\square \square $	109.5	C2D C5D USDC	109.5
	109.5		109.5
HSAR CSA HSAC	109.5	H5BA—C5B—H5BC	109.5
HJAB—CJA—HJAC	109.5	H3BB—C3B—H3BC	109.5
OIA - C6A - O2A	121.81 (16)	$OIB - C_{0}B - O2B$	121.96 (17)
OIA - C6A - C2A	124.29 (16)	$OIB - C_{0B} - C_{2B}$	124.56 (17)
O2A - C6A - C2A	113.89 (15)	02B—C6B—C2B	113.46 (16)
02A—C/A—C8A	106.65 (16)	02B—C/B—C8B	106.1 (2)
O2A—C/A—H/AA	110.4	02B—C/B—H/BA	110.5
С8А—С7А—Н7АА	110.4	C8B—C7B—H7BA	110.5
O2A—C7A—H7AB	110.4	O2B—C7B—H7BB	110.5
C8A—C7A—H7AB	110.4	C8B—C7B—H7BB	110.5
Н7АА—С7А—Н7АВ	108.6	H7BA—C7B—H7BB	108.7
С7А—С8А—Н8АА	109.5	C7B—C8B—H8BA	109.5
C7A—C8A—H8AB	109.5	C7B—C8B—H8BB	109.5
H8AA—C8A—H8AB	109.5	H8BA—C8B—H8BB	109.5
C7A—C8A—H8AC	109.5	C7B—C8B—H8BC	109.5

109.5	H8BA—C8B—H8BC	109.5
109.5	H8BB—C8B—H8BC	109.5
-177.88 (18)	C4B—S1B—C1B—N1B	-179.6 (2)
0.54 (15)	C4B—S1B—C1B—C2B	0.33 (19)
-2.3 (3)	N1B-C1B-C2B-C6B	-0.3 (3)
179.41 (13)	S1B—C1B—C2B—C6B	179.78 (15)
177.8 (2)	N1B—C1B—C2B—C3B	179.7 (2)
-0.5 (2)	S1B—C1B—C2B—C3B	-0.3 (2)
0.1 (2)	C1B—C2B—C3B—C4B	0.0 (3)
-179.77 (18)	C6B—C2B—C3B—C4B	180.0 (2)
-179.96 (18)	C1B—C2B—C3B—C5B	179.7 (2)
0.2 (3)	C6B—C2B—C3B—C5B	-0.3 (4)
0.3 (2)	C2B—C3B—C4B—S1B	0.2 (3)
-179.62 (16)	C5B—C3B—C4B—S1B	-179.5 (2)
-0.52 (17)	C1B—S1B—C4B—C3B	-0.3 (3)
0.9 (3)	C7B—O2B—C6B—O1B	-0.2 (3)
-179.88 (16)	C7B—O2B—C6B—C2B	178.22 (17)
0.7 (3)	C1B—C2B—C6B—O1B	0.4 (3)
-179.46 (18)	C3B—C2B—C6B—O1B	-179.5 (2)
-178.48 (15)	C1B—C2B—C6B—O2B	-177.98 (17)
1.4 (3)	C3B—C2B—C6B—O2B	2.1 (3)
177.71 (17)	C6B—O2B—C7B—C8B	-179.07 (18)
	$\begin{array}{c} 109.5\\ 109.5\\ \hline \\ 109.5\\ \hline \\ -177.88\ (18)\\ 0.54\ (15)\\ \hline \\ -2.3\ (3)\\ 179.41\ (13)\\ 177.8\ (2)\\ \hline \\ -0.5\ (2)\\ 0.1\ (2)\\ \hline \\ -179.77\ (18)\\ \hline \\ -179.96\ (18)\\ 0.2\ (3)\\ 0.3\ (2)\\ \hline \\ -179.62\ (16)\\ \hline \\ -0.52\ (17)\\ 0.9\ (3)\\ \hline \\ -179.88\ (16)\\ 0.7\ (3)\\ \hline \\ -179.46\ (18)\\ \hline \\ -178.48\ (15)\\ 1.4\ (3)\\ 177.71\ (17)\\ \end{array}$	109.5 $H8BA-C8B-H8BC$ 109.5 $H8BB-C8B-H8BC$ $-177.88 (18)$ $C4B-S1B-C1B-N1B$ $0.54 (15)$ $C4B-S1B-C1B-C2B$ $-2.3 (3)$ $N1B-C1B-C2B-C6B$ $179.41 (13)$ $S1B-C1B-C2B-C3B$ $-0.5 (2)$ $S1B-C1B-C2B-C3B$ $-0.5 (2)$ $S1B-C1B-C2B-C3B$ $-0.5 (2)$ $S1B-C1B-C2B-C3B-C4B$ $-179.77 (18)$ $C6B-C2B-C3B-C4B$ $-179.96 (18)$ $C1B-C2B-C3B-C5B$ $0.2 (3)$ $C6B-C2B-C3B-C4B-S1B$ $-179.62 (16)$ $C5B-C3B-C4B-S1B$ $-0.52 (17)$ $C1B-S1B-C4B-C3B$ $0.9 (3)$ $C7B-O2B-C6B-O1B$ $-179.46 (18)$ $C3B-C2B-C6B-O1B$ $-179.46 (18)$ $C3B-C2B-C6B-O2B$ $1.4 (3)$ $C3B-C2B-C6B-O2B$ $1.4 (3)$ $C3B-C2B-C6B-O2B$ $1.77.71 (17)$ $C6B-O2B-C7B-C8B$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
N1B—H1BA…O1B	0.82 (3)	2.14 (3)	2.734 (3)	130 (2)
$N1B$ — $H1BB$ ···· $O1A^{i}$	0.87 (3)	2.10 (3)	2.946 (3)	163 (2)
$N1A$ — $H1AA$ ···· $S1B^{ii}$	0.83 (3)	3.07 (3)	3.819 (2)	151 (2)
N1 <i>A</i> —H1 <i>AA</i> ···O1 <i>A</i>	0.83 (3)	2.14 (3)	2.736 (3)	129 (2)
N1 <i>A</i> —H1 <i>AB</i> ···O1 <i>B</i>	0.86 (3)	2.05 (3)	2.897 (3)	165 (2)
$C7A$ — $H7AA$ ···· $S1A^{iii}$	0.97	3.02	3.736 (3)	131

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+2, -*z*+2.