

ISSN 2414-3146

Received 19 March 2021 Accepted 8 April 2021

Edited by R. J. Butcher, Howard University, USA

Keywords: 1-(2,3-dichlorophenyl)piperazinium picrate; crystal structure; supramolecular interaction.

CCDC reference: 2076126

Structural data: full structural data are available from iucrdata.iucr.org

4-(2,3-Dichlorophenyl)piperazin-1-ium picrate

Udhayasuriyan Sathya,^a Jeyaraman Selvaraj Nirmal Ram,^a* Sundaramoorthy Gomathi,^b Shyamaladevi Ramu,^b Samson Jegan Jennifer^c and Abdul Razak Ibrahim^d

^aCentre for Research and Development, PRIST Deemed to be University, Thanjavur, 613 403, Tamil Nadu, India, ^bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, ^cX-ray Crystallography Unit, School of Physics, University Sains Malaysia, 11800, USM, Penang, Malaysia, and ^dXray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia. *Correspondence e-mail: nirmalramjs@gmail.com

The title compound, $C_6H_2N_3O_7^{-}\cdot C_{10}H_{13}Cl_2N_2^+$, crystallizes with one 1-(2,3dichloro-phenyl)piperazine (DP) cation and one picrate (PA) anion in the asymmetric unit. In the crystal structure, the DP cation and PA anion are interconnected *via* several N-H···O and C-H···O hydrogen bonds. The DP cation and PA anion are further connected through C-Cl··· π [3.8201 (4), 3.7785 (4) Å] and N-O··· π [3.7814 (4) Å] interactions. The DP cations are further interconnected *via* a weak intermolecular Cl···Cl [3.2613 (4) Å] halogen-halogen interaction. The combination of these supramolecular interactions leads to a herringbone like supramolecular architecture.

Structure description

1-(2,3-Dichlorophenyl)piperazine (DP), a precursor in the synthesis of potent drugs such as aripiperazole (AP) (Oshiro *et al.*, 1998), is used as an antipsychotic drug for the treatment of schizophrenia (Braun *et al.*, 2009; Frank *et al.*, 2007). A survey of the Cambridge Structural Database (CSD version 5.40, updates of May 2019; Groom *et al.*, 2016) shows that there are no reports of salt and co-crystal forms of this compound. We herein report the crystal structure of a new solid form of DP, 1-(2,3-dichloro-phenyl)-piperazinium picrate (1).

The title salt, **1**, crystallizes in the monoclinic $P2_1/n$ space group. The asymmetric unit contains one (DP) cation and one picrate (PA) anion as shown in Fig. 1. In **1**, the pyrazine ring of the cation molecule adopts a chair conformation with N–H and C–H bonds in axial–axial and equatorial–equatorial positions (Singh *et al.*, 2015; Maia *et al.*, 2012).

The protonated DP cation interacts with the neighbouring deprotonated PA anions *via* $N1-H1A\cdots O4^{i}$, $N1-H1B\cdots O2^{ii}$ and $N1-H1B\cdots O7^{ii}$ hydrogen bonds and C2-

Figure 1 The title compound shown with 50% probability ellipsoids. The hydrogen bond is shown as a dashed line.

H2B···O3, C5–H5A···O7ⁱⁱ, C10–H10···O5ⁱⁱⁱ and C17– H17···O1^{iv} hydrogen bonds (Table 1). The crystal packing is shown in Fig. 2. Each DP cation is surrounded by four PA anions. The combination of N1–H1B···O7, N1–H1B···O2 and C5–H5A···O7 interactions between the ions leads to the formation of six-membered rings with graph-set notation $R_1^2(6)$ and $R_2^1(6)$ (Bernstein *et al.*, 1995; Motherwell *et al.*, 2000). Atom H1B of the amino group (N1) acts as a bifurcated

Figure 2

A view of the N–H···O and C–H···O hydrogen-bonded packing pattern of the title salt.

Figure 3

The three dimensional herring bone supramolecular architecture viewed along the a and c axis.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	
N1-H1 A ···O4 ⁱ	0.89	2.25	3.134 (2)	171	
$N1 - H1B \cdots O2^{ii}$	0.89	2.28	2.828 (3)	119	
$N1-H1B\cdots O7^{ii}$	0.89	1.84	2.695 (2)	159	
$C2-H2B\cdots O3$	0.97	2.59	3.444 (3)	148	
$C5-H5A\cdots O7^{ii}$	0.97	2.59	3.287 (2)	129	
C10−H10···O5 ⁱⁱⁱ	0.93	2.56	3.399 (3)	151	
$C17 - H17 \cdots O1^{iv}$	0.93	2.50	3.348 (2)	152	

Symmetry codes: (i) $-x + \frac{5}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x - 1, y, z; (iv) x + 1, y, z.

donor to the O atoms of the deprotonated O1 carbonyl and O2 nitro groups of the PA anion. Inversion-related cationanion pairs are also linked through N1-H1A...O4, N1- $H1B \cdots O2$ and $C17 - H17 \cdots O1$ hydrogen bonds, forming an $R_2^3(11)$ ring motif. Adjacent DP cations and PA anions are further connected through C8–Cl1 $\cdots \pi$ (phenyl ring of PA anion), C9–H9··· π (phenyl ring of DP cation) and N5– $O2 \cdots \pi$ (phenyl ring of DP cation) interactions [C-Cl···Cg1, $C-Cl\cdots Cg3^{v}$ and $N-O\cdots Cg3$; symmetry codes: (v) 1-x, 2 - y, 1 - z with $C \cdot \cdot \pi$ distances of 3.8201 (4) and 3.7785 (4) Å, and N··· π = 3.782 (2) Å, with C–Cl··· π angles of 74.15 (7) and 76.91 (7)° and an N-O··· π angle of 68.80 (12)°. The combination of N-H···O and C-H···O hydrogen bonds and C-Cl $\cdots \pi$ and N-O $\cdots \pi$ interactions leads to the formation of a three-dimensional supramolecular herringbone architecture, which propagates along the a- and caxis directions (Fig. 3). Additionally, the DP cations are also connected through weak intermolecular halogen-halogen $Cl1 \cdots Cl1(7 - x, 2 - y, -z)$ interactions [3.2613 (4) Å] (Fig. 4).

Synthesis and crystallization

1-(2,3-Dichlorophenyl)piperazine (DP) (0.0577 mg, 0.25 mmol) and picric acid (PA) (0.05727 mg, 0.25 mmol) were

A view of the C-Cl··· π and N-O·· π interactions involving the phenyl rings of the cation and anion (at symmetry positions *x*, *y*, *z* and 1 - *x*, -*y*, 1 - *z*) and the weak intermolecular Cl···Cl halogen-halogen bond.

Figure 5 Reaction scheme.

dissolved independently in water and ethanol. The reactants were then mixed together in a 100 ml beaker and heated over a water bath at 90°C for 1 h (Fig. 5). The clear reaction mixture was then left aside for crystallization at room temperature. After a few days, yellow-coloured plate-like crystals formed were separated out form the mother solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Braun, D. E., Gelbrich, T., Kahlenberg, V., Tessadri, R., Wieser, J. & Griesser, U. J. (2009). J. Pharm. Sci. 98, 2010–2026.
- Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray. org.
- Frank, H. M., GuoJun, Z. & QiPeng, Y. (2007). Journal of Beijing University of Chemical Technology, 34, 425–427.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Maia, R. C., Tesch, R. & Fraga, C. A. M. (2012). *Expert Opin. Ther. Pat.* **22**, 1169–1178.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$C_{10}H_{13}Cl_2N_2^+ \cdot C_6H_2N_3O_7^-$
M _r	460.23
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.9855 (9), 13.5742 (15), 17.6103 (19)
8 (°)	91.463 (4)
V (Å ³)	1908.3 (4)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.39
Crystal size (mm)	$0.40\times0.35\times0.20$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2009)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	72319, 5581, 3798
R _{int}	0.060
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.704
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.150, 1.01
No. of reflections	5581
No. of parameters	271
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.41, -0.31

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SHELXS97* (Sheldrick 2008), *SHELXL2018/3* (Sheldrick, 2015), *PLATON* (Spek, 2020), *Mercury* (Macrae *et al.*, 2020), POVRay (Cason, 2004) and *publCIF* (Westrip, 2010).

- Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871.
- Oshiro, Y., Sato, S., Kurahashi, N., Tanaka, T., Kikuchi, T., Tottori, K., Uwahodo, Y. & Nishi, T. (1998). J. Med. Chem. 41, 658–667.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, K., Siddiqui, H. H., Shakya, P., Bagga, P., Kumar, A., Khalid, M., Arif, M. & Alok, S. (2015). *IJPSR*. 6, 4145-4158.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2021). **6**, x210379 [https://doi.org/10.1107/S2414314621003795]

4-(2,3-Dichlorophenyl)piperazin-1-ium picrate

Udhayasuriyan Sathya, Jeyaraman Selvaraj Nirmal Ram, Sundaramoorthy Gomathi, Shyamaladevi Ramu, Samson Jegan Jennifer and Abdul Razak Ibrahim

4-(2,3-Dichlorophenyl)piperazin-1-ium 2,4,6-trinitrophenolate

Crystal data	
$C_{10}H_{13}Cl_2N_2^+ \cdot C_6H_2N_3O_7^-$	F(000) = 944
$M_r = 460.23$	$D_{\rm x} = 1.602 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 7.9855 (9) Å	Cell parameters from 5581 reflections
b = 13.5742 (15) Å	$\theta = 1.9 - 30.0^{\circ}$
c = 17.6103 (19) Å	$\mu = 0.39 \text{ mm}^{-1}$
$\beta = 91.463 \ (4)^{\circ}$	T = 293 K
$V = 1908.3 (4) \text{ Å}^3$	Plate, yellow
Z = 4	$0.40 \times 0.35 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD	5581 independent reflections
diffractometer	3798 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.060$
Absorption correction: multi-scan	$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 1.9^\circ$
(SADABS; Bruker, 2009)	$h = -11 \rightarrow 11$
	$k = -19 \rightarrow 19$
72319 measured reflections	$l = -24 \rightarrow 24$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.150$	neighbouring sites
S = 1.01	H-atom parameters constrained
5581 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0739P)^2 + 0.6029P]$
271 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{A}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e A}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.86754 (7)	0.90877 (4)	0.49364 (3)	0.05570 (16)
C12	0.55596 (9)	0.87130 (5)	0.38716 (3)	0.06593 (19)
01	0.42341 (18)	0.61036 (13)	0.47240 (9)	0.0596 (4)
03	1.1299 (3)	0.66281 (15)	0.68775 (11)	0.0815 (6)
O4	1.1043 (2)	0.50943 (13)	0.66777 (11)	0.0737 (5)
O6	0.8856 (2)	0.70824 (13)	0.33400 (8)	0.0620 (4)
07	0.73482 (19)	0.56905 (14)	0.66344 (8)	0.0607 (4)
N1	1.0258 (2)	0.97533 (15)	0.77447 (10)	0.0557 (5)
H1A	1.129102	0.979276	0.794458	0.067*
H1B	0.958093	1.009367	0.804070	0.067*
N4	0.8056 (2)	0.90163 (12)	0.65808 (9)	0.0448 (4)
N5	0.5018 (2)	0.60547 (13)	0.53316 (10)	0.0464 (4)
N6	1.0712 (2)	0.59397 (13)	0.65270 (9)	0.0449 (4)
N7	0.9808 (2)	0.70084 (14)	0.38929 (9)	0.0491 (4)
C2	0.9720 (3)	0.8704 (2)	0.77267 (13)	0.0631 (6)
H2A	0.968767	0.844980	0.824094	0.076*
H2B	1.052353	0.831680	0.744979	0.076*
C3	0.8019 (3)	0.86087 (18)	0.73514 (12)	0.0565 (5)
H3A	0.769483	0.792039	0.732931	0.068*
H3B	0.719974	0.896037	0.764531	0.068*
C5	0.8499 (3)	1.00694 (15)	0.66127 (11)	0.0462 (4)
H5A	0.768611	1.042218	0.690919	0.055*
H5B	0.847524	1.034217	0.610346	0.055*
C6	1.0229 (3)	1.01986 (18)	0.69695 (12)	0.0534 (5)
H6A	1.105461	0.987896	0.665858	0.064*
H6B	1.050319	1.089372	0.700291	0.064*
C7	0.6619 (3)	0.88178 (14)	0.61170 (11)	0.0428 (4)
C8	0.6754 (2)	0.88572 (14)	0.53246 (11)	0.0421 (4)
C9	0.5373 (3)	0.86809 (15)	0.48480 (12)	0.0482 (5)
C10	0.3843 (3)	0.84451 (17)	0.51519 (15)	0.0582 (6)
H10	0.291238	0.833430	0.483512	0.070*
C11	0.3714 (3)	0.83768 (19)	0.59227 (16)	0.0627 (6)
H11	0.269194	0.820331	0.612601	0.075*
C12	0.5069 (3)	0.85596 (18)	0.64071 (14)	0.0574 (6)
H12	0.494641	0.851030	0.692952	0.069*
C13	0.7830 (2)	0.59718 (14)	0.59988 (11)	0.0408 (4)
C14	0.6823 (2)	0.61733 (14)	0.53291 (11)	0.0393 (4)
C15	0.7479 (2)	0.64827 (14)	0.46521 (11)	0.0399 (4)
H15	0.677360	0.659033	0.423206	0.048*
C16	0.9173 (2)	0.66320 (14)	0.45975 (10)	0.0406 (4)
C17	1.0258 (2)	0.64607 (15)	0.52161 (11)	0.0425 (4)
H17	1.140531	0.656262	0.518004	0.051*
C18	0.9590 (2)	0.61409 (14)	0.58717 (11)	0.0398 (4)
02	0.43209 (19)	0.59195 (15)	0.59333 (10)	0.0695 (5)
05	1.1286 (2)	0.72559 (16)	0.38803 (9)	0.0718 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U ²³
Cl1	0.0499 (3)	0.0718 (4)	0.0456 (3)	-0.0124 (2)	0.0050 (2)	-0.0060 (2)
C12	0.0769 (4)	0.0705 (4)	0.0493 (3)	-0.0001 (3)	-0.0201 (3)	-0.0011 (3)
01	0.0332 (7)	0.0855 (12)	0.0594 (9)	-0.0006 (7)	-0.0084 (7)	0.0115 (8)
03	0.0942 (14)	0.0746 (12)	0.0738 (12)	-0.0009 (10)	-0.0364 (11)	-0.0154 (10)
O4	0.0748 (12)	0.0611 (11)	0.0835 (12)	0.0018 (9)	-0.0331 (10)	0.0162 (9)
06	0.0556 (9)	0.0880 (12)	0.0424 (8)	0.0026 (8)	-0.0011 (7)	0.0138 (8)
07	0.0418 (8)	0.0957 (12)	0.0445 (8)	-0.0086 (8)	0.0000 (6)	0.0179 (8)
N1	0.0409 (9)	0.0817 (13)	0.0441 (9)	0.0083 (9)	-0.0063 (7)	-0.0172 (9)
N4	0.0456 (9)	0.0503 (9)	0.0384 (8)	-0.0041 (7)	-0.0035 (7)	-0.0005 (7)
N5	0.0334 (8)	0.0518 (10)	0.0538 (10)	0.0049 (7)	0.0004 (7)	0.0101 (7)
N6	0.0357 (8)	0.0566 (11)	0.0423 (8)	-0.0009 (7)	-0.0037 (6)	0.0030 (7)
N7	0.0441 (9)	0.0610 (11)	0.0424 (9)	-0.0009 (8)	0.0037 (7)	0.0038 (7)
C2	0.0720 (16)	0.0737 (16)	0.0431 (11)	0.0137 (12)	-0.0103 (10)	-0.0005 (10)
C3	0.0684 (14)	0.0595 (13)	0.0415 (10)	-0.0043 (11)	-0.0035 (10)	0.0036 (9)
C5	0.0433 (10)	0.0526 (11)	0.0424 (10)	-0.0050 (8)	-0.0037 (8)	-0.0040 (8)
C6	0.0433 (11)	0.0678 (14)	0.0492 (11)	-0.0053 (10)	-0.0006 (9)	-0.0087 (10)
C7	0.0431 (10)	0.0421 (10)	0.0432 (10)	-0.0052 (8)	-0.0017 (8)	-0.0038 (8)
C8	0.0396 (10)	0.0408 (10)	0.0458 (10)	-0.0052 (7)	-0.0017 (8)	-0.0028 (8)
C9	0.0514 (12)	0.0402 (10)	0.0523 (11)	0.0003 (8)	-0.0124 (9)	-0.0028 (8)
C10	0.0422 (11)	0.0549 (13)	0.0769 (15)	-0.0048 (9)	-0.0135 (10)	-0.0065 (11)
C11	0.0454 (12)	0.0611 (14)	0.0819 (17)	-0.0134 (10)	0.0058 (11)	-0.0061 (12)
C12	0.0545 (13)	0.0630 (14)	0.0551 (12)	-0.0126 (10)	0.0082 (10)	-0.0050 (10)
C13	0.0337 (9)	0.0480 (10)	0.0408 (9)	-0.0015 (7)	0.0012 (7)	0.0036 (8)
C14	0.0278 (8)	0.0473 (10)	0.0428 (9)	0.0024 (7)	-0.0005 (7)	0.0038 (8)
C15	0.0348 (9)	0.0449 (10)	0.0397 (9)	0.0026 (7)	-0.0044 (7)	0.0028 (7)
C16	0.0356 (9)	0.0483 (10)	0.0380 (9)	-0.0005 (7)	0.0019 (7)	0.0035 (7)
C17	0.0300 (9)	0.0522 (11)	0.0453 (10)	-0.0007 (7)	0.0002 (7)	0.0016 (8)
C18	0.0311 (9)	0.0497 (10)	0.0383 (9)	0.0009 (7)	-0.0052 (7)	0.0021 (7)
02	0.0348 (7)	0.1106 (15)	0.0634 (10)	0.0098 (8)	0.0102 (7)	0.0282 (9)
05	0.0486 (9)	0.1141 (15)	0.0533 (9)	-0.0199 (9)	0.0101 (7)	0.0089 (9)

Geometric parameters (Å, °)

Cl1—C8	1.724 (2)	С3—Н3В	0.9700
Cl2—C9	1.730 (2)	C5—C6	1.513 (3)
01—N5	1.227 (2)	C5—H5A	0.9700
O3—N6	1.208 (2)	C5—H5B	0.9700
O4—N6	1.206 (2)	C6—H6A	0.9700
O6—N7	1.224 (2)	C6—H6B	0.9700
O7—C13	1.252 (2)	C7—C12	1.396 (3)
N1-C2	1.488 (3)	C7—C8	1.403 (3)
N1—C6	1.493 (3)	C8—C9	1.389 (3)
N1—H1A	0.8900	C9—C10	1.384 (3)
N1—H1B	0.8900	C10—C11	1.367 (4)
N4—C7	1.417 (3)	C10—H10	0.9300

N4—C3	1.467 (3)	C11—C12	1.383 (3)
N4—C5	1.474 (3)	C11—H11	0.9300
N5—O2	1.223 (2)	C12—H12	0.9300
N5-C14	1.451 (2)	C13—C14	1.436 (3)
N6-C18	1.468(2)	C13—C18	1447(3)
N7-05	1.100(2) 1.228(2)	C14-C15	1.117(3)
N7-C16	1.226(2) 1.445(2)	C15 - C16	1.300(3) 1.373(3)
C^2 C^3	1.501(2)	C15 H15	0.0300
$C_2 = H_2 \Lambda$	0.0700	C15 -115	1.304(3)
C2 H2P	0.9700	C10-C17	1.394(3) 1.256(2)
С2—П2В	0.9700		1.550 (5)
Сэ—пза	0.9700	C1/—H1/	0.9300
C2—N1—C6	111.74 (17)	N1—C6—H6B	109.9
C2—N1—H1A	109.3	C5—C6—H6B	109.9
C6—N1—H1A	109.3	H6A—C6—H6B	108.3
C_{2} N1 H1B	109.3	C12-C7-C8	117 72 (19)
C6—N1—H1B	109.3	C12 - C7 - N4	123 32 (19)
HIA NI HIB	107.9	C^{8} C^{7} N^{4}	123.32(17) 118.95(17)
$\Gamma \Gamma $	107.9	$C_{0} = C_{1} = C_{1}$	110.93(17) 120.03(10)
C7 N4 C5	113.23(17) 112.28(16)	$C_{2} = C_{3} = C_{1}$	120.95(19) 110.40(16)
$C_{1} = N_{4} = C_{5}$	113.36(10) 100.04(16)	C_{2} C_{2} C_{11}	119.49 (10)
$C_3 = N_4 = C_3$	109.94 (10)	$C = C_0 = C_1$	119.34(13)
02-N5-O1	122.01(17)	C10-C9-C8	120.1(2)
02-N5-C14	119.57 (17)	C10-C9-C12	119.29 (17)
01—N5—C14	118.42 (17)	C8—C9—C12	120.59 (17)
O4—N6—O3	122.95 (19)	C11—C10—C9	119.3 (2)
O4—N6—C18	118.42 (17)	C11—C10—H10	120.4
O3—N6—C18	118.60 (18)	C9—C10—H10	120.4
O6—N7—O5	122.73 (17)	C10—C11—C12	121.5 (2)
O6—N7—C16	119.20 (17)	C10-C11-H11	119.2
O5—N7—C16	118.06 (17)	C12—C11—H11	119.2
N1—C2—C3	110.43 (19)	C11—C12—C7	120.4 (2)
N1—C2—H2A	109.6	C11—C12—H12	119.8
С3—С2—Н2А	109.6	C7—C12—H12	119.8
N1—C2—H2B	109.6	O7—C13—C14	127.87 (17)
C3—C2—H2B	109.6	O7—C13—C18	120.54 (17)
H2A—C2—H2B	108.1	C14—C13—C18	111.60 (16)
N4—C3—C2	109.6 (2)	C15—C14—C13	123.41 (16)
N4—C3—H3A	109.7	C15—C14—N5	115.83 (16)
С2—С3—НЗА	109.7	C13—C14—N5	120.76 (16)
N4—C3—H3B	109.7	C16—C15—C14	120.11 (17)
C^2 — C^3 — H^3B	109.7	C16-C15-H15	119.9
$H_{3A} - C_{3} - H_{3B}$	108.2	C14-C15-H15	119.9
N4	110 14 (17)	C_{15} C_{16} C_{17}	120.96 (16)
N4—C5—H5A	109.6	C15-C16-N7	118 66 (17)
C6_C5_H5A	109.6	C17 - C16 N7	120.34(17)
N4_C5_H5R	109.0	C12 - C12 - C12	120.34(17) 117.04(17)
C6 C5 U5P	109.0	$C_{10} = C_{17} = C_{10}$	11/.24(1/)
	109.0	$C_{10} - C_{17} - \Pi_{17}$	121.0
пла—Сэ—нэв	108.1	U10-U1/-H1/	121.0

109.00 (18)	C17—C18—C13	125.98 (17)
109.9	C17—C18—N6	118.89 (16)
109.9	C13—C18—N6	115.13 (16)
$\begin{array}{c} 109.9\\ -55.7 \ (2)\\ 169.33 \ (18)\\ -61.0 \ (2)\\ 57.7 \ (2)\\ -167.66 \ (17)\\ 61.7 \ (2)\\ 55.3 \ (2)\\ -57.9 \ (2)\\ 20.8 \ (3)\\ -107.2 \ (2)\\ -157.64 \ (19)\\ 74.4 \ (2)\\ 2.4 \ (3)\\ -179.13 \ (18)\\ -175.49 \ (17)\\ 3.0 \ (3)\\ -1.2 \ (3)\\ 176.69 \ (17)\\ -179.03 \ (15)\\ -1.2 \ (2)\end{array}$	C13—C18—N6 C18—C13—C14—C15 O7—C13—C14—N5 C18—C13—C14—N5 O2—N5—C14—C15 O1—N5—C14—C15 O2—N5—C14—C13 O1—N5—C14—C13 C13—C14—C15—C16 N5—C14—C15—C16 C14—C15—C16—C17 C14—C15—C16—C17 O6—N7—C16—C15 O5—N7—C16—C17 O5—N7—C16—C17 C15—C16—C17—C18 N7—C16—C17—C18 C16—C17—C18—C13 C16—C17—C18—N6 O7—C13—C18—C17	$\begin{array}{c} 115.13\ (16)\\ 0.4\ (3)\\ -0.3\ (3)\\ -179.80\ (17)\\ -169.69\ (19)\\ 9.6\ (3)\\ 10.5\ (3)\\ -170.20\ (18)\\ -1.3\ (3)\\ 178.92\ (18)\\ 1.0\ (3)\\ -176.60\ (18)\\ -7.9\ (3)\\ 171.0\ (2)\\ 174.48\ (19)\\ -6.6\ (3)\\ 0.1\ (3)\\ 177.69\ (19)\\ -1.1\ (3)\\ 178.99\ (17)\\ -178.8\ (2)\\ \end{array}$
-0.8 (3)	C14—C13—C18—C17	0.8 (3)
177.11 (18)	O7—C13—C18—N6	1.2 (3)
1.5 (4)	C14—C13—C18—N6	-179.27 (16)
-0.2 (4)	O4—N6—C18—C17	-103.0 (2)
-1.7 (3)	O3—N6—C18—C17	74.9 (3)
179.9 (2)	O4—N6—C18—C13	77.0 (2)
180.0 (2)	O3—N6—C18—C13	-105.0 (2)
	$\begin{array}{c} 109.00 \ (18) \\ 109.9 \\ 109.9 \\ 109.9 \\ \hline \\ 109.9 \\ \hline \\ 109.9 \\ \hline \\ 109.33 \ (18) \\ -61.0 \ (2) \\ 57.7 \ (2) \\ -167.66 \ (17) \\ 61.7 \ (2) \\ 55.3 \ (2) \\ -57.9 \ (2) \\ 20.8 \ (3) \\ -107.2 \ (2) \\ -157.64 \ (19) \\ 74.4 \ (2) \\ 2.4 \ (3) \\ -179.13 \ (18) \\ -175.49 \ (17) \\ 3.0 \ (3) \\ -1.2 \ (3) \\ 176.69 \ (17) \\ -179.03 \ (15) \\ -1.2 \ (2) \\ -0.8 \ (3) \\ 177.11 \ (18) \\ 1.5 \ (4) \\ -0.2 \ (4) \\ -1.7 \ (3) \\ 179.9 \ (2) \\ 180.0 \ (2) \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1A····O4 ⁱ	0.89	2.25	3.134 (2)	171
N1—H1 <i>B</i> ···O2 ⁱⁱ	0.89	2.28	2.828 (3)	119
N1—H1 <i>B</i> ···O7 ⁱⁱ	0.89	1.84	2.695 (2)	159
C2—H2 <i>B</i> ···O3	0.97	2.59	3.444 (3)	148
C5—H5A····O7 ⁱⁱ	0.97	2.59	3.287 (2)	129
C10—H10…O5 ⁱⁱⁱ	0.93	2.56	3.399 (3)	151
C17—H17····O1 ^{iv}	0.93	2.50	3.348 (2)	152

Symmetry codes: (i) -x+5/2, y+1/2, -z+3/2; (ii) -x+3/2, y+1/2, -z+3/2; (iii) x-1, y, z; (iv) x+1, y, z.