ISSN 2414-3146

Received 20 April 2021 Accepted 30 April 2021

Edited by R. J. Butcher, Howard University, USA

Keywords: cobalt; cobaltocenium; ylide; microwave-assisted synthesis; crystal structure.

Structural data: full structural data are available from iucrdata.iucr.org

(Cobaltoceniumylamido)pyridinium hexafluoridophosphate

Daniel Menia, Thomas Höfer, Klaus Wurst and Benno Bildstein*

University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria. *Correspondence e-mail: benno.bildstein@uibk.ac.at

The title compound, $[Co(C_5H_5)(C_{10}H_9N_2)]PF_6$, was synthesized from deprotonated 1-aminopyridinium iodide, followed by microwave-assisted nucleophilic aromatic substitution of iodo-cobaltocenium iodide. After anion exchange with potassium hexafluoridophosphate, the title compound crystallizes as orange prisms in the space group *Pc*. This very stable pyridine nitrene adduct is the first example of a cobaltocenium derivative, formally containing a nitrene nitrogen species.

Structure description

The title compound (Fig. 1) is the first example of a cationic cobaltocenium nitrene species, stabilized by a bonded pyridine. It is highly polar, stable in various solvents up to high temperatures (approx. 200°C). The unsubstituted cyclopentadienyl ring and the pyridine moiety are structurally as expected, displaying carbon–cobalt bond lengths for C1–C9 of 2.005 (7)–2.047 (5) Å and carbon–carbon C1–C15 lengths of 1.354 (9)–1.462 (7) Å, respectively. The substituted cyclopentadienyl ring is slightly twisted out of plane [11,4(6)°] as the carbon–cobalt bond to C10 [2.227 (5) Å] is elongated. The bond lengths N1–N2 [1.421 (6) Å], N1–C10 [1.327 (7) Å] and bond angle C10–N1–N2 [110.4 (4)°], N1–N2–C11 [118.2 (4)°] are comparable to a pentafluorophenyl (instead of cobaltoceniumyl) analogue (Poe *et al.*, 1992). Due to resonance, the N1–N2 and N1–C10 bond lengths are shortened compared to N–N [1.46 Å] and N–C [1.47 Å] standard single bonds. Weak hydrogen bonds (Table 1) are present between the anion and the pyridine substituent (Fig. 2) and intermolecularly between the nitrene nitrogen N1 and the pyridine H15, forming chains along the *c*-axis direction (Fig. 3).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Hydrogen bond $H \cdots F$ is represented by a green dashed line.

The arrangement of the molecular units of the title compound in the unit cell, with displacement ellipsoids drawn at the 50% probability level for non-H atoms along the *b* axis. Hydrogen bonds are represented by dashed lines (H···N blue, H···F green). Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. (Symmetry code: $x, -y, z + \frac{1}{2}$).

Synthesis and crystallization

In a microwave-assisted one-pot synthesis, first 9.44 g of 1-aminopyridinium iodide (4.2 mmol, 1.5 equiv.) was deprotonated with 0.67 g of potassium tert-butoxide (5.9 mmol, 2.1 equiv.) in 100 ml of EtOH solution. Subsequently, after heating for 25 min (250 W, ramp 10 min, hold for 15 min, 100°C), 1.17 g of iodo-cobaltocenium iodide (Vanicek et al., 2016) (2.8 mmol, 1 equiv.) were added and heating was continued for 40 min (250 W, ramp 10 min, hold for 30 min, 100°C). Workup: After cooling to room temperature, the mixture was transferred to a round-bottomed flask, 1.83 g of potassium hexafluoridophosphate (9.9 mmol, 3.5 equiv.) were added and the mixture was stirred for 10 min. Neutral aluminium oxide (10 g) was added and the solvent was removed on a rotary evaporator. The product was purified, using a short neutral aluminium oxide column (h = 4 cm, d =10 cm) with CH₃CN as eluent. The solvent was removed on a rotary evaporator. The product was further dissolved in 200 ml CH₂Cl₂ and filtered. Toluene (20 ml) was added and the mixture was concentrated to 30 ml. Et₂O (100 ml) was added and the product precipitated at -20° C over a period of 2 h. After filtration and washing with Et₂O, 0.86 g of pure (cobaltoceniumylamido)pyridinium hexafluoridophosphate was obtained as an orange-red powder. Yield: 82% based on iodocobaltocenium iodide. M.p. 139-140 °C. HRMS (ESI+): m/z calc. 281.0484 (M+), found 281.0473 (M+). ¹H NMR (400 MHz, CD₃CN): δ 8.55 (*d* x q, J = 6.5, 1.3 Hz, 2H), 8.21 (*t* x *t*, *J* = 7.6, 1.3 Hz, 1H), 7.97-7.90 (*m*, 2H), 5.35 (*t*, *J* = 2.1 Hz, 2H), 5.26 (s, 5H), 4.63-4.56 (m, 2H). ¹³C NMR (75 MHz, CD₂Cl₂): δ 141.8, 139.0, 129.7, 105.1, 83.0, 77.6. Single crystals were obtained by vapor diffusion crystallization in acetone with Et₂O at 4°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank Dr Thomas Müller (Institute of Organic Chemistry) and Dr Holger Kopacka (Institut of General, Inorganic and

Figure 3

Formation of the hydrogen bonds of the title compound, with displacement ellipsoids drawn in at the 50% probability level for non-H atoms. Hydrogen bonds are represented by dashed lines $(H \cdots N \text{ blue}, H \cdots F \text{ green})$. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Left view along the *b* axis, right view along the *c* axis.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C11-H11F1	0.95	2.35	3.273 (8)	164
$C12-H12\cdots F6^{i}$	0.95	2.46	3.293 (7)	146
$C14-H14\cdots F4^{ii}$	0.95	2.61	3.388 (7)	139
$C15-H15\cdots N1^{iii}$	0.95	2.44	3.156 (6)	132

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) x, y, z + 1; (iii) $x, -y, z + \frac{1}{2}$.

Theoretical Chemistry) for the measurement of HRMS and NMR spectra.

Funding information

Funding for this research was provided by: Austrian Science Fund FWF (grant No. P33858).

References

- Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Poe, R., Schnapp, K., Young, M. J. T., Grayzar, J. & Platz, M. S. (1992). J. Am. Chem. Soc. 114, 5054-5067.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 12, 2101-2109.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Table 2 Experimental details.

Crystal data	
Chemical formula	$[Co(C_5H_5)(C_{10}H_9N_2)]PF_6$
$M_{ m r}$	426.18
Crystal system, space group	Monoclinic, Pc
Temperature (K)	183
a, b, c (Å)	9.9610 (8), 8.9243 (7), 9.7204 (7)
β (°)	106.943 (3)
$V(\dot{A}^3)$	826.59 (11)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.20
Crystal size (mm)	$0.18 \times 0.14 \times 0.04$
Data collection	
Diffractometer	Bruker D8 OUEST PHOTON 100
Absorption correction	Multi-scan (<i>SADABS</i> : Bruker.
F	2014)
Tmin, Tmax	0.817. 0.901
No. of measured, independent and	11210, 3329, 2999
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.628
Refinement	
$R[F^2 > 2\sigma(F^2)] w R(F^2) S$	0.037 0.093 1.05
No of reflections	3329
No of parameters	227
No of restraints	2
H-atom treatment	- H-atom parameters constrained
$\Delta \rho_{\text{min}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	1.010.26
Absolute structure	Flack x determined using 1289
	quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$
	(Parsons et al., 2013)
Absolute structure parameter	-0.007 (7)

Computer programs: APEX3 and SAINT (Bruker, 2014), SHELXT2014/4 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

full crystallographic data

IUCrData (2021). **6**, x210460 [https://doi.org/10.1107/S2414314621004600]

(Cobaltoceniumylamido)pyridinium hexafluoridophosphate

Daniel Menia, Thomas Höfer, Klaus Wurst and Benno Bildstein

(Cobaltoceniumylamido)pyridinium hexafluoridophosphate

Crystal data $[Co(C_5H_5)(C_{10}H_9N_2)]PF_6$ $M_r = 426.18$ Monoclinic, *Pc* a = 9.9610 (8) Å b = 8.9243 (7) Å c = 9.7204 (7) Å $\beta = 106.943$ (3)° V = 826.59 (11) Å³ Z = 2

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.817, T_{\max} = 0.901$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.093$ S = 1.053329 reflections 227 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites F(000) = 428 $D_x = 1.712 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5116 reflections $\theta = 2.3-26.5^{\circ}$ $\mu = 1.20 \text{ mm}^{-1}$ T = 183 KPrism, orange $0.18 \times 0.14 \times 0.04 \text{ mm}$

11210 measured reflections 3329 independent reflections 2999 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 26.5^\circ, \ \theta_{min} = 2.1^\circ$ $h = -12 \rightarrow 12$ $k = -11 \rightarrow 11$ $l = -11 \rightarrow 12$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0512P)^{2} + 0.4385P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.01 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2014/7 (Sheldrick 2014), Fc*=kFc[1+0.001xFc2\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.015 (3) Absolute structure: Flack *x* determined using 1289 quotients [(I⁺)-(I⁻)]/[(I⁺)+(I⁻)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.007 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-bound H atoms were placed in calculated positions and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and a C—H distance of 0.95 Å for aromatic H atoms. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (S) are based on F². *R*-factor (gt) are based on F. The threshold expression of F² > 2.0 sigma(F²) is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Col	0.82275 (6)	0.26234 (6)	0.59021 (6)	0.0254 (2)
N1	0.5977 (5)	0.0343 (4)	0.6695 (4)	0.0274 (9)
N2	0.5060 (4)	0.1237 (4)	0.7231 (4)	0.0252 (9)
C1	0.8101 (10)	0.4810 (7)	0.5333 (7)	0.063 (2)
H1	0.8231	0.5613	0.6000	0.075*
C2	0.9142 (8)	0.4111 (9)	0.4857 (9)	0.068 (2)
H2	1.0108	0.4372	0.5104	0.081*
C3	0.8468 (10)	0.2939 (9)	0.3934 (8)	0.060 (2)
Н3	0.8918	0.2237	0.3481	0.072*
C4	0.7089 (10)	0.2978 (9)	0.3801 (8)	0.059 (2)
H4	0.6405	0.2326	0.3215	0.070*
C5	0.6824 (8)	0.4094 (9)	0.4636 (8)	0.058 (2)
Н5	0.5930	0.4348	0.4732	0.070*
C6	0.7849 (6)	0.2298 (6)	0.7833 (6)	0.0287 (12)
Н6	0.7348	0.3021	0.8204	0.034*
C7	0.9298 (7)	0.2339 (7)	0.7978 (7)	0.0396 (15)
H7	0.9954	0.3032	0.8544	0.048*
C8	0.9606 (6)	0.1167 (6)	0.7131 (7)	0.0397 (13)
H8	1.0505	0.0934	0.7034	0.048*
C9	0.8336 (6)	0.0404 (6)	0.6455 (6)	0.0319 (12)
Н9	0.8223	-0.0353	0.5744	0.038*
C10	0.7242 (6)	0.0961 (5)	0.7018 (5)	0.0256 (10)
C11	0.4222 (6)	0.2215 (6)	0.6334 (6)	0.0377 (13)
H11	0.4244	0.2300	0.5367	0.045*
C12	0.3324 (7)	0.3100 (8)	0.6834 (8)	0.0501 (16)
H12	0.2748	0.3822	0.6218	0.060*
C13	0.3266 (7)	0.2939 (7)	0.8201 (7)	0.0422 (14)
H13	0.2659	0.3552	0.8554	0.051*
C14	0.4102 (7)	0.1871 (7)	0.9076 (7)	0.0420 (14)
H14	0.4051	0.1722	1.0028	0.050*
C15	0.4995 (6)	0.1035 (6)	0.8571 (6)	0.0331 (13)
H15	0.5574	0.0305	0.9172	0.040*
P1	0.19726 (16)	0.24876 (16)	0.21938 (17)	0.0344 (4)
F1	0.3620 (5)	0.2643 (7)	0.2863 (6)	0.105 (2)
F2	0.0334 (4)	0.2311 (4)	0.1507 (5)	0.0554 (11)

data reports

F3	0.1747 (7)	0.3921 (5)	0.3041 (6)	0.095 (2)
F4	0.2192 (5)	0.1044 (5)	0.1347 (5)	0.0743 (14)
F5	0.1885 (5)	0.1453 (5)	0.3502 (4)	0.0668 (14)
F6	0.2058 (4)	0.3523 (4)	0.0880 (4)	0.0452 (9)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0257 (3)	0.0225 (3)	0.0292 (4)	-0.0010 (4)	0.0101 (2)	-0.0013 (4)
N1	0.034 (2)	0.025 (2)	0.027 (2)	0.0000 (17)	0.0146 (19)	-0.0016 (16)
N2	0.026 (2)	0.026 (2)	0.025 (2)	0.0014 (17)	0.0092 (17)	0.0012 (16)
C1	0.114 (7)	0.023 (3)	0.044 (4)	-0.004 (3)	0.014 (4)	0.003 (2)
C2	0.041 (4)	0.074 (5)	0.084 (6)	-0.018 (4)	0.013 (4)	0.041 (5)
C3	0.096 (7)	0.055 (4)	0.039 (4)	0.027 (5)	0.035 (4)	0.007 (3)
C4	0.081 (6)	0.045 (4)	0.038 (4)	-0.023 (4)	-0.002 (4)	0.011 (3)
C5	0.049 (4)	0.059 (4)	0.070 (5)	0.019 (3)	0.023 (4)	0.038 (4)
C6	0.034 (3)	0.031 (3)	0.022 (3)	0.004 (2)	0.009 (2)	0.001 (2)
C7	0.031 (3)	0.044 (4)	0.039 (4)	-0.004 (3)	0.004 (3)	-0.002 (3)
C8	0.027 (3)	0.039 (3)	0.052 (4)	0.007 (2)	0.011 (3)	0.006 (3)
C9	0.035 (3)	0.025 (2)	0.037 (3)	0.004 (2)	0.013 (3)	-0.0003 (19)
C10	0.033 (3)	0.022 (2)	0.024 (2)	0.006 (2)	0.012 (2)	0.0046 (18)
C11	0.039 (3)	0.047 (3)	0.027 (3)	0.012 (3)	0.009 (2)	0.012 (2)
C12	0.045 (4)	0.058 (4)	0.049 (4)	0.026 (3)	0.015 (3)	0.021 (3)
C13	0.040 (3)	0.045 (3)	0.049 (4)	0.009 (3)	0.025 (3)	0.005 (3)
C14	0.052 (4)	0.044 (3)	0.039 (4)	0.009 (3)	0.028 (3)	0.010 (3)
C15	0.046 (3)	0.031 (3)	0.026 (3)	0.008 (2)	0.017 (3)	0.009 (2)
P1	0.0312 (8)	0.0438 (10)	0.0295 (8)	-0.0074 (6)	0.0108 (6)	0.0027 (6)
F1	0.042 (3)	0.183 (7)	0.074 (4)	-0.042 (3)	-0.009 (2)	0.055 (3)
F2	0.034 (2)	0.064 (2)	0.064 (3)	-0.0091 (17)	0.0072 (18)	0.0112 (19)
F3	0.162 (6)	0.064 (3)	0.096 (4)	-0.056 (3)	0.096 (4)	-0.046 (3)
F4	0.104 (4)	0.049 (2)	0.094 (4)	0.011 (2)	0.067 (3)	0.001 (2)
F5	0.072 (3)	0.089 (3)	0.037 (2)	-0.029 (3)	0.012 (2)	0.019 (2)
F6	0.050 (2)	0.049 (2)	0.0397 (19)	-0.0074 (16)	0.0184 (17)	0.0105 (16)

Geometric parameters (Å, °)

Co1—C7	2.005 (7)	C6—C7	1.408 (9)
Co1—C8	2.012 (6)	C6—C10	1.462 (7)
Co1—C3	2.016 (7)	С6—Н6	0.9500
Col—Cl	2.022 (6)	C7—C8	1.419 (9)
Co1—C6	2.040 (6)	C7—H7	0.9500
Co1—C2	2.041 (7)	C8—C9	1.418 (8)
Col—C9	2.047 (5)	C8—H8	0.9500
Co1—C5	2.047 (6)	C9—C10	1.442 (7)
Co1—C4	2.051 (7)	С9—Н9	0.9500
Co1-C10	2.227 (5)	C11—C12	1.383 (9)
N1-C10	1.327 (7)	C11—H11	0.9500
N1—N2	1.421 (6)	C12—C13	1.355 (9)

N2-C15	1 335 (6)	С12—Н12	0.9500
N2	1.340(7)	C13 - C14	1 383 (9)
C1 - C2	1.340(1)	C13H13	0.9500
C1 = C2	1.379(11) 1.408(11)	C14 C15	1 358 (8)
$C_1 = C_3$	0.0500	C14 = H14	1.558 (8)
$C_1 = C_1$	0.9500	C15 U15	0.9500
$C_2 = C_3$	1.414(12)	C13—115	0.9300
	0.9300	$\Gamma I = \Gamma J$	1.372(3)
$C_3 - C_4$	1.342 (12)	P1—F4	1.578 (4)
C3—H3	0.9500	PI—F2	1.581 (4)
C4—C5	1.358 (12)		1.585 (5)
C4—H4	0.9500	P1—F5	1.595 (4)
С5—Н5	0.9500	P1—F6	1.599 (4)
C7—Co1—C8	41.4 (3)	С3—С4—Н4	125.3
C7—Co1—C3	142.9 (3)	C5—C4—H4	125.3
C8—Co1—C3	113.8 (3)	Co1—C4—H4	126.5
C7—Co1—C1	111.7 (3)	C4-C5-C1	108.3 (7)
C_{8} C_{01} C_{1}	139 8 (3)	C4-C5-Co1	70.8 (4)
$C_3 - C_0 - C_1$	67.7(3)	C1 - C5 - Co1	68.8(4)
C_{7} C_{01} C_{6}	40.8(3)	C4	125.8
$C_{1}^{2} = C_{0}^{2} = C_{0}^{2}$	68.8(2)	C1	125.8
C_{3} C_{21} C_{6}	176.3(4)	$C_1 = C_2 = H_2$	125.0
C_{3}	1/0.3(4)	C7 - C6 - C10	120.1
$C_1 = C_0 = C_0$	112.1(3)	$C_{}C_{-$	109.0(3)
C = C = C = C = C = C = C = C = C = C =	113.6 (3)	C/-Co-CoI	68.3(4)
C8—Co1—C2	112.9 (3)		77.1 (3)
C3—Co1—C2	40.8 (4)	С/—С6—Н6	125.5
C1—Co1—C2	40.3 (3)	С10—С6—Н6	125.5
C6—Co1—C2	141.2 (3)	Co1—C6—H6	120.8
C7—Co1—C9	69.0 (2)	C6—C7—C8	108.1 (5)
C8—Co1—C9	40.9 (2)	C6—C7—Co1	71.0 (3)
C3—Co1—C9	111.9 (3)	C8—C7—Co1	69.6 (4)
C1—Co1—C9	179.3 (3)	С6—С7—Н7	125.9
C6—Co1—C9	68.3 (2)	С8—С7—Н7	125.9
C2—Co1—C9	139.8 (3)	Со1—С7—Н7	125.1
C7—Co1—C5	139.1 (3)	C9—C8—C7	107.9 (5)
C8—Co1—C5	179.5 (3)	C9—C8—Co1	70.9 (3)
C3—Co1—C5	65.7 (3)	C7—C8—Co1	69.0 (3)
C1—Co1—C5	40.5 (3)	С9—С8—Н8	126.1
C6—Co1—C5	111.6 (3)	С7—С8—Н8	126.1
C2—Co1—C5	67.0 (3)	Co1—C8—H8	125.6
C9—Co1—C5	138.8 (3)	C8—C9—C10	109.3 (5)
C7—Co1—C4	177.8 (4)	C8—C9—Co1	68.2 (3)
C8—Co1—C4	140.8 (3)	C10—C9—Co1	77.2 (3)
C3-Co1-C4	38.5 (4)	C8—C9—H9	125.4
C1 - Co1 - C4	66.8 (3)	С10—С9—Н9	125.4
C6-C01-C4	137 8 (3)	Co1—C9—H9	120.8
$C_{2}^{2}-C_{0}^{1}-C_{4}^{4}$	66 5 (3)	N1-C10-C9	120.0
$C_{2} = C_{01} = C_{4}$	112 5 (3)	N1C10C6	122.3(7) 1330(5)
U) UUI-UT	112.3 (3)		133.0 (3)

C5—Co1—C4	38.7 (3)	C9—C10—C6	104.3 (5)
C7—Co1—C10	66.8 (2)	N1-C10-Co1	133.2 (3)
C8—Co1—C10	66.5 (2)	C9—C10—Co1	63.6 (3)
C3—Co1—C10	138.3 (3)	C6—C10—Co1	63.2 (3)
C1—Co1—C10	140.8 (3)	N2—C11—C12	119.2 (5)
C6—Co1—C10	39.8 (2)	N2—C11—H11	120.4
C2—Co1—C10	178.8 (3)	C12—C11—H11	120.4
C9—Co1—C10	39.14 (19)	C13—C12—C11	120.0 (6)
C5—Co1—C10	113.5 (3)	C13—C12—H12	120.0
C4-Co1-C10	113.2 (3)	C11—C12—H12	120.0
C10-N1-N2	110.2(0) 110.4(4)	C12 - C13 - C14	119.1 (6)
C15 - N2 - C11	121.6(5)	C12-C13-H13	120.4
$C_{15} N_{2} N_{1}$	121.0(3) 1201(4)	C14—C13—H13	120.1
C11 - N2 - N1	120.1(1) 118 2 (4)	C15 - C14 - C13	119.8 (6)
C_{2} C_{1} C_{5}	106.9 (6)	C15 - C14 - H14	120.1
$C_2 = C_1 = C_0 I$	70.6(4)	C13 - C14 - H14	120.1
$C_{2} = C_{1} = C_{01}$	70.0(4)	N2-C15-C14	120.1 120.1(5)
$C_2 = C_1 = C_0 T_1$	126.5	$N_2 = C15 = C14$ $N_2 = C15 = H15$	110.0
C_{2} C_{1} H_{1}	126.5	$C_{14} - C_{15} - H_{15}$	119.9
	120.5	$F_{2} = P_{1} = F_{4}$	179.7
C1 - C2 - C3	125.0 106.2 (7)	F_{3} P_{1} F_{7}	90.8(3)
C1 - C2 - Co1	69.1(4)	F4F2	20.8 (3) 88 9 (3)
$C_{1}^{-}C_{2}^{-}C_{0}^{1}$	68.7(4)	F_{3} P_{1} F_{1}	90.1(4)
$C_{1} = C_{2} = C_{01}$	126.9	F_{4} P_{1} F_{1}	90.1 (4)
$C_1 - C_2 - H_2$	126.9	F_{-}^{-} F ₁ F ₁ F ₁	179.0(3)
$C_3 = C_2 = H_2$	120.9	$F_2 = F_1 = F_1$ F3 P1 F5	179.0(3)
$C_{4} C_{3} C_{2}$	120.3 100.0(7)	F4 P1 F5	90.2 (3) 89 5 (3)
$C_{4} = C_{3} = C_{2}$	109.0(7) 72 1 (4)	$F_{4} = F_{1} = F_{3}$ F2 P1 F5	89.5 (3)
$C_{1}^{2} = C_{2}^{3} = C_{1}^{3}$	72.1(4) 70.5(4)	$F_2 - F_1 - F_5$	09.4(2)
$C_{2} = C_{3} = C_{01}$	125.5	$F_{1} = F_{1} = F_{3}$ $F_{3} = P_{1} = F_{6}$	90.8 (2) 80 8 (2)
$C_{1}^{2} = C_{2}^{2} = H_{2}^{2}$	125.5	F4 D1 F6	09.0(2)
$C_2 = C_3 = H_3^2$	123.3	F_{-}^{-} F_{-}^{-} F_{-}^{-} F_{-}^{-}	90.4(2)
$C_3 C_4 C_5$	123.4	F_{2} F_{1} F_{1} F_{6}	90.3 (2) 80 3 (2)
$C_3 = C_4 = C_3$	109.3(7)	$F_{1} = F_{1} = F_{0}$	170.0(2)
$C_{5} = C_{4} = C_{01}$	09.3 (4) 70.5 (4)	13-11-10	179.9 (3)
05-04-001	70.5 (4)		
C10_N1_N2_C15	-874(5)	$C_{0}1 - C_{8} - C_{9} - C_{10}$	-66.9(4)
C10 N1 N2 $C11$	96 1 (5)	C7 C8 C9 Col	50 3 (4)
$C_{10} = N_{1} = N_{2} = C_{11}$	-2.8(7)	$N_{2} N_{1} C_{10} C_{9}$	-1719(4)
$C_3 - C_1 - C_2 - C_3$	2.8(7)	$N_2 = N_1 = C_{10} = C_9$	26(7)
$C_{0} = C_{1} = C_{2} = C_{0}$	-61.7(4)	$N_2 = N_1 = C_{10} = C_{01}$	-89.0(5)
$C_1 - C_2 - C_3 - C_4$	31(8)	C8 - C9 - C10 - N1	-1727(4)
$C_1 = C_2 = C_3 = C_4$	62 3 (5)	$C_0 = C_0 = C_1 = 0$	1/2.7(4) 126 1 (4)
$C_1 - C_2 - C_3 - C_4$	-59.2(5)	C8 - C9 - C10 - C6	120.1(4) 11.4(5)
$C_1 - C_2 - C_3 - C_0 C_1$	-21(0)	$C_0 = C_2 = C_1 = C_0$	-40.7(3)
$C_2 - C_3 - C_4 - C_5$	2.1(7)	C_{8} C_{9} C_{10} C_{01}	49.7(3)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{0}^{1}	-613(5)	C7 - C6 - C10 - N1	173 5 (5)
C_{3} C_{4} C_{5} C_{1}	03(8)	$C_{0} = C_{0} = C_{0} = 0.0$	-1252(5)
$\overline{\mathbf{U}}$	0.5 (0)	C01-C0-C10-N1	123.2 (3)

Co1—C4—C5—C1	58.8 (5)	C7—C6—C10—C9	-11.3 (6)
C3—C4—C5—Co1	-58.5 (5)	Co1—C6—C10—C9	50.0 (3)
C2-C1-C5-C4	1.7 (7)	C7—C6—C10—Co1	-61.3 (4)
Co1—C1—C5—C4	-60.0 (5)	C15—N2—C11—C12	3.8 (9)
C2-C1-C5-Co1	61.7 (5)	N1—N2—C11—C12	-179.8 (6)
C10—C6—C7—C8	7.0 (7)	N2-C11-C12-C13	-2.1 (11)
Co1—C6—C7—C8	-59.9 (4)	C11—C12—C13—C14	-0.7 (11)
C10-C6-C7-Co1	66.9 (4)	C12—C13—C14—C15	2.0 (11)
C6—C7—C8—C9	0.3 (7)	C11—N2—C15—C14	-2.6 (9)
Co1—C7—C8—C9	-60.5 (4)	N1-N2-C15-C14	-178.9 (5)
C6—C7—C8—Co1	60.8 (4)	C13—C14—C15—N2	-0.4 (10)
C7—C8—C9—C10	-7.6 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C11—H11…F1	0.95	2.35	3.273 (8)	164
C12—H12…F6 ⁱ	0.95	2.46	3.293 (7)	146
C14—H14…F4 ⁱⁱ	0.95	2.61	3.388 (7)	139
C15—H15…N1 ⁱⁱⁱ	0.95	2.44	3.156 (6)	132

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) *x*, *y*, *z*+1; (iii) *x*, -*y*, *z*+1/2.