



ISSN 2414-3146

Received 30 June 2021 Accepted 6 July 2021

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords:** crystal structure; 1*H*-indazole; inversion dimer.

CCDC reference: 2094667

Structural data: full structural data are available from iucrdata.iucr.org

# *tert*-Butyl 3-amino-5-bromo-1*H*-indazole-1carboxylate

Aravazhi Amalan Thiruvalluvar,<sup>a</sup>\* Raviraj Kusanur<sup>b</sup> and Makuteswaran Sridharan<sup>b</sup>

<sup>a</sup>Principal (Retired), Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, and <sup>b</sup>Department of Chemistry, RV College of Engineering, Bangalore 560 059, Karnataka, India. \*Correspondence e-mail: thiruvalluvar.a@gmail.com

In the title compound,  $C_{12}H_{14}BrN_3O_2$ , the pyrazole and benzene rings are nearly co-planar with a dihedral angle between the rings of 2.36 (5)°. In the crystal, inversion dimers linked by pairwise  $N-H\cdots N$  hydrogen bonds generate  $R_2^2(8)$ loops. The dimers are linked into a three-dimensional network by weak aromatic  $\pi-\pi$  stacking interactions [centroid–centroid separation = 3.7394 (6) Å] and C–  $H\cdots O$  and C– $H\cdots Br$  hydrogen bonds.



### Structure description

Indazole derivatives possess pharmacological properties against infectious, neurodegenerative and inflammatory disorders and are also good anti-microbial agents (*e.g.*, Kusanur & Mahesh, 2013). To generate a library of compounds using 3-amino-6-bromo indazole, the boc protection of the ring NH group was carried out to form the title compound. From the crystal data, it is confirmed that, as expected, the boc protection happened only at the ring NH grouping.

In this structure (Fig. 1), the fused pyrazole (N1/N2/C7/C6/C1) and benzene (C1–C6) rings are nearly co-planar, subtending a dihedral angle of 2.36 (5)°. The dihedral angle between the C8/O1/O2 ester group and the fused-ring system is 10.01 (4)°. One of the methyl groups (C10) of the *tert*-butyl substituent lies close to the ester-group plane [displacement = -0.068 (1) Å], whereas C11 and C12 are displaced above and below it. Very weak C2–H2···O2, C11–H11C···O2 and C12–H12B···O2 intramolecular interactions are present (Table 1).

In the extended structure, pairwise N3–H3B···N2 links form centrosymmetric dimers with an  $R_2^2(8)$  ring motif (Fig. 2). The dimers are linked into a three-dimensional network by C2–H2···O2, C5–H5···Br1 and C12–H12A···O2 hydrogen bonds and a  $\pi$ – $\pi$ 



| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$                              | D-H        | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|----------------------------------------------------------|------------|-------------------------|-------------------------|-----------------------------|
| C2_H2O2                                                  | 0.95       | 2.46                    | 2 9609 (13)             | 113                         |
| $C_2 = H_2 \cdots O_2$<br>$C_{11} = H_{11} C \cdots O_2$ | 0.95       | 2.38                    | 2.9559 (15)             | 115                         |
| $C12-H12B\cdots O2$                                      | 0.98       | 2.46                    | 3.0475 (15)             | 118                         |
| $N3 - H3B \cdot \cdot \cdot N2^{i}$                      | 0.865 (18) | 2.165 (19)              | 3.0249 (12)             | 172.8 (16)                  |
| $C2-H2\cdots O2^{ii}$                                    | 0.95       | 2.62                    | 3.4133 (12)             | 141                         |
| $C5-H5\cdots Br1^{iii}$                                  | 0.95       | 3.11                    | 3.8871 (10)             | 140                         |
| $C12-H12A\cdots O2^{iv}$                                 | 0.98       | 2.62                    | 3.5582 (14)             | 161                         |
|                                                          |            |                         |                         |                             |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 2, -y + 2, -z; (iv) x - 1, y, z.

stacking interaction (Fig. 3) also occurs with  $Cg1\cdots Cg1(2 - x, 1 - y, -z) = 3.7394$  (6) Å, where Cg1 is the centroid of the pyrazole ring.

### Synthesis and crystallization

**5-Bromo-1***H***-indazol-3-amine (1):** To a solution of 5-bromo-2-fluoro benzonitrile (1.0 mmol) in ethanol (20 ml) was added hydrazine hydrate (99%) (10.0 mmol). The reaction mixture was heated in sealed tube at 343 K for 4 h and progress of the reaction was monitored by TLC. The reaction mixture was concentrated to dryness. The brown-coloured solid was purified by recrystallization from ethanol solution to afford pale-yellow needles (90%), m.p. 407 K (Fig. 4).

*tert*-Butyl 3-amino-5-bromo-1*H*-indazole-1-carboxylate (2): To a solution of compound (1) (5.0 mmol) in dichloromethane (40 ml) was added DMAP (5.0 mmol). The reaction mixture cooled to 273 K and boc anhydride (5.0 mmol) was added. The reaction mixture was slowly warmed to room temperature and stirred for 15 h. Progress of the reaction was monitored by TLC. The reaction mixture was diluted with dichloromethane (50 ml) and washed with water and brine (25 ml), dried over



#### Figure 1

A view of the structure of the title compound with displacement ellipsoids drawn at the 70% probability level.











Synthesis scheme for the title compound.

Table 2Experimental details.

| Crystal data                                                        |                                                                              |
|---------------------------------------------------------------------|------------------------------------------------------------------------------|
| Chemical formula                                                    | $C_{12}H_{14}BrN_3O_2$                                                       |
| $M_{\rm r}$                                                         | 312.17                                                                       |
| Crystal system, space group                                         | Triclinic, $P\overline{1}$                                                   |
| Temperature (K)                                                     | 100                                                                          |
| a, b, c (Å)                                                         | 5.8281 (2), 10.5313 (3), 11.0917 (3)                                         |
| $\alpha, \beta, \gamma$ (°)                                         | 85.954 (1), 78.801 (2), 75.105 (1)                                           |
| $V(Å^3)$                                                            | 645.23 (3)                                                                   |
| Z                                                                   | 2                                                                            |
| Radiation type                                                      | Μο Κα                                                                        |
| $\mu (\text{mm}^{-1})$                                              | 3.18                                                                         |
| Crystal size (mm)                                                   | $0.45 \times 0.32 \times 0.30$                                               |
|                                                                     |                                                                              |
| Data collection                                                     |                                                                              |
| Diffractometer                                                      | Bruker SMART APEXII CCD                                                      |
| Absorption correction                                               | Multi-scan ( <i>SADABS</i> ; Bruker, 2012)                                   |
| $T_{\min}, T_{\max}$                                                | 0.502, 0.748                                                                 |
| No. of measured, independent and                                    | 19603, 7076, 5872                                                            |
| observed $[I > 2\sigma(I)]$ reflections                             |                                                                              |
| R <sub>int</sub>                                                    | 0.018                                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                | 0.895                                                                        |
|                                                                     |                                                                              |
| Refinement                                                          |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                 | 0.027, 0.070, 1.08                                                           |
| No. of reflections                                                  | 7076                                                                         |
| No. of parameters                                                   | 174                                                                          |
| H-atom treatment                                                    | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å <sup>-3</sup> ) | 0.59, -0.53                                                                  |

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010). anhydrous sodium sulfate and concentrated. The crude compound was purified by column chromatography (silica gel, 20-30% ethyl acetate in hexane) to afford a gummy solid, which solidifies as transparent crystals after 2 d (62%), m.p. 389 K.

### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

### Acknowledgements

MS thanks the academic and administrative authorities of RV College of Engineering for their support and encouragement. The authors are grateful to Dr M. Zeller for the single-crystal X-ray diffraction data.

### References

Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Kusanur, R. & Mahesh, R. (2013). Int. J. Life Pharma. Res. 3, 6–10.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Spek, A. L. (2020). Acta Cryst. E76, 1–11.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

# full crystallographic data

*IUCrData* (2021). 6, x210694 [https://doi.org/10.1107/S2414314621006945]

## tert-Butyl 3-amino-5-bromo-1H-indazole-1-carboxylate

Aravazhi Amalan Thiruvalluvar, Raviraj Kusanur and Makuteswaran Sridharan

tert-Butyl 3-amino-5-bromo-1H-indazole-1-carboxylate

Crystal data

 $C_{12}H_{14}BrN_3O_2$  $M_r = 312.17$ Triclinic,  $P\overline{1}$ a = 5.8281 (2) Å b = 10.5313 (3) Å c = 11.0917 (3) Å  $\alpha = 85.954 (1)^{\circ}$  $\beta = 78.801 \ (2)^{\circ}$  $\gamma = 75.105 (1)^{\circ}$ V = 645.23 (3) Å<sup>3</sup> Z = 2

### Data collection

| Bruker SMART APEXII CCD                |
|----------------------------------------|
| diffractometer                         |
| $\varphi$ and $\omega$ scans           |
| Absorption correction: multi-scan      |
| (SADABS; Bruker, 2012)                 |
| $T_{\min} = 0.502, \ T_{\max} = 0.748$ |
| 19603 measured reflections             |
|                                        |

### Refinement

Refinement on  $F^2$ Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.027$  $wR(F^2) = 0.070$ S = 1.087076 reflections 174 parameters 0 restraints  $(\Delta/\sigma)_{\rm max} = 0.002$  $\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods  $\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$ 

### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 316 $D_{\rm x} = 1.607 {\rm Mg m^{-3}}$ Melting point: 389 K Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 2120 reflections  $\theta = 2.7 - 25.5^{\circ}$  $\mu = 3.18 \text{ mm}^{-1}$ T = 100 KFragment, colourless  $0.45 \times 0.32 \times 0.30$  mm

7076 independent reflections 5872 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.018$  $\theta_{\rm max} = 39.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$  $h = -10 \rightarrow 10$  $k = -18 \rightarrow 18$  $l = -19 \rightarrow 19$ 

Secondary atom site location: difference Fourier Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_0^2) + (0.0327P)^2 + 0.1773P]$ where  $P = (F_0^2 + 2F_c^2)/3$ 

**Refinement**. The amino  $-NH_2$  H atoms were located in a difference Fourier map and their positions were freely refined. The C-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were refined with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ .

|      | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|--------------|-----------------------------|
| C1   | 0.90907 (17) | 0.59306 (9)  | 0.21941 (9)  | 0.01265 (14)                |
| C2   | 1.04771 (18) | 0.62182 (10) | 0.29904 (9)  | 0.01532 (16)                |
| H2   | 1.063744     | 0.574273     | 0.374242     | 0.018*                      |
| C3   | 1.16027 (19) | 0.72288 (10) | 0.26285 (10) | 0.01661 (17)                |
| H3   | 1.255405     | 0.745757     | 0.314333     | 0.020*                      |
| C4   | 1.13572 (18) | 0.79194 (10) | 0.15122 (10) | 0.01534 (16)                |
| C5   | 1.00073 (18) | 0.76403 (10) | 0.07169 (9)  | 0.01467 (16)                |
| Н5   | 0.987132     | 0.811006     | -0.003982    | 0.018*                      |
| C6   | 0.88544 (17) | 0.66311 (9)  | 0.10852 (9)  | 0.01246 (14)                |
| C7   | 0.73941 (17) | 0.60237 (9)  | 0.05102 (9)  | 0.01226 (14)                |
| C8   | 0.76837 (18) | 0.40037 (10) | 0.31328 (9)  | 0.01421 (15)                |
| C9   | 0.61429 (18) | 0.20590 (10) | 0.36754 (9)  | 0.01514 (16)                |
| C10  | 0.5067 (2)   | 0.12827 (12) | 0.29308 (11) | 0.0236 (2)                  |
| H10A | 0.356430     | 0.184090     | 0.272305     | 0.035*                      |
| H10B | 0.472695     | 0.051548     | 0.341495     | 0.035*                      |
| H10C | 0.621570     | 0.099056     | 0.217351     | 0.035*                      |
| C11  | 0.8457 (2)   | 0.11997 (11) | 0.40268 (11) | 0.02108 (19)                |
| H11A | 0.963638     | 0.090441     | 0.328004     | 0.032*                      |
| H11B | 0.810398     | 0.043417     | 0.450934     | 0.032*                      |
| H11C | 0.912110     | 0.170719     | 0.451721     | 0.032*                      |
| C12  | 0.4299 (2)   | 0.26645 (12) | 0.47786 (11) | 0.0218 (2)                  |
| H12A | 0.285095     | 0.320478     | 0.450072     | 0.033*                      |
| H12B | 0.498911     | 0.321461     | 0.521026     | 0.033*                      |
| H12C | 0.386670     | 0.196475     | 0.533695     | 0.033*                      |
| Br1  | 1.30179 (2)  | 0.92671 (2)  | 0.10637 (2)  | 0.01982 (3)                 |
| N1   | 0.78125 (15) | 0.49788 (8)  | 0.22385 (8)  | 0.01335 (13)                |
| N2   | 0.67956 (15) | 0.50413 (8)  | 0.11849 (7)  | 0.01299 (13)                |
| N3   | 0.67793 (17) | 0.63640 (9)  | -0.06185 (8) | 0.01576 (15)                |
| 01   | 0.66674 (15) | 0.31183 (8)  | 0.27930 (7)  | 0.01632 (13)                |
| O2   | 0.84393 (16) | 0.40048 (8)  | 0.40767 (7)  | 0.01973 (15)                |
| H3A  | 0.669 (3)    | 0.7159 (19)  | -0.0811 (17) | 0.029 (5)*                  |
| H3B  | 0.575 (3)    | 0.6006 (17)  | -0.0839 (16) | 0.025 (4)*                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|-------------|-------------|-------------|
| C1 | 0.0122 (4) | 0.0141 (4) | 0.0128 (3) | -0.0042 (3) | -0.0033 (3) | -0.0017 (3) |
| C2 | 0.0155 (4) | 0.0186 (4) | 0.0141 (4) | -0.0059 (3) | -0.0051 (3) | -0.0017 (3) |
| C3 | 0.0160 (4) | 0.0194 (4) | 0.0172 (4) | -0.0068 (3) | -0.0054 (3) | -0.0041 (3) |
| C4 | 0.0148 (4) | 0.0145 (4) | 0.0181 (4) | -0.0059 (3) | -0.0020 (3) | -0.0031 (3) |
| C5 | 0.0160 (4) | 0.0137 (4) | 0.0156 (4) | -0.0059 (3) | -0.0031 (3) | -0.0004 (3) |

| C6  | 0.0123 (4)  | 0.0132 (4)  | 0.0131 (3)  | -0.0039 (3)  | -0.0038 (3)  | -0.0009 (3)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C7  | 0.0119 (3)  | 0.0136 (4)  | 0.0124 (3)  | -0.0042 (3)  | -0.0032 (3)  | -0.0006 (3)  |
| C8  | 0.0144 (4)  | 0.0157 (4)  | 0.0136 (4)  | -0.0049 (3)  | -0.0041 (3)  | 0.0008 (3)   |
| C9  | 0.0158 (4)  | 0.0163 (4)  | 0.0147 (4)  | -0.0065 (3)  | -0.0044 (3)  | 0.0039 (3)   |
| C10 | 0.0311 (6)  | 0.0252 (5)  | 0.0218 (5)  | -0.0178 (4)  | -0.0103 (4)  | 0.0064 (4)   |
| C11 | 0.0169 (4)  | 0.0192 (4)  | 0.0260 (5)  | -0.0022 (3)  | -0.0055 (4)  | 0.0031 (4)   |
| C12 | 0.0161 (4)  | 0.0275 (5)  | 0.0193 (4)  | -0.0035 (4)  | -0.0008 (4)  | 0.0033 (4)   |
| Br1 | 0.01951 (5) | 0.01624 (5) | 0.02640 (6) | -0.00958 (4) | -0.00275 (4) | -0.00328 (4) |
| N1  | 0.0151 (3)  | 0.0157 (3)  | 0.0120 (3)  | -0.0067 (3)  | -0.0058 (3)  | 0.0013 (3)   |
| N2  | 0.0140 (3)  | 0.0156 (3)  | 0.0115 (3)  | -0.0055 (3)  | -0.0052 (3)  | 0.0005 (3)   |
| N3  | 0.0205 (4)  | 0.0166 (4)  | 0.0136 (3)  | -0.0080 (3)  | -0.0077 (3)  | 0.0022 (3)   |
| 01  | 0.0216 (3)  | 0.0177 (3)  | 0.0137 (3)  | -0.0105 (3)  | -0.0069 (3)  | 0.0039 (2)   |
| O2  | 0.0260 (4)  | 0.0218 (4)  | 0.0159 (3)  | -0.0096 (3)  | -0.0111 (3)  | 0.0037 (3)   |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—N1     | 1.3874 (12) | С9—О1         | 1.4835 (12) |
|-----------|-------------|---------------|-------------|
| C1—C6     | 1.4006 (13) | C9—C10        | 1.5177 (15) |
| C1—C2     | 1.4019 (13) | C9—C12        | 1.5185 (16) |
| C2—C3     | 1.3859 (15) | C9—C11        | 1.5222 (15) |
| С2—Н2     | 0.9500      | C10—H10A      | 0.9800      |
| C3—C4     | 1.4039 (15) | C10—H10B      | 0.9800      |
| С3—Н3     | 0.9500      | C10—H10C      | 0.9800      |
| C4—C5     | 1.3815 (14) | C11—H11A      | 0.9800      |
| C4—Br1    | 1.9021 (10) | C11—H11B      | 0.9800      |
| C5—C6     | 1.3954 (13) | C11—H11C      | 0.9800      |
| С5—Н5     | 0.9500      | C12—H12A      | 0.9800      |
| C6—C7     | 1.4453 (13) | C12—H12B      | 0.9800      |
| C7—N2     | 1.3141 (12) | C12—H12C      | 0.9800      |
| C7—N3     | 1.3671 (12) | N1—N2         | 1.3998 (11) |
| C8—O2     | 1.2122 (12) | N3—H3A        | 0.840 (19)  |
| C8—O1     | 1.3351 (12) | N3—H3B        | 0.865 (18)  |
| C8—N1     | 1.3824 (13) |               |             |
| N1—C1—C6  | 106.05 (8)  | C10—C9—C11    | 110.23 (10) |
| N1-C1-C2  | 132.33 (9)  | C12—C9—C11    | 112.91 (9)  |
| C6—C1—C2  | 121.59 (9)  | C9—C10—H10A   | 109.5       |
| C3—C2—C1  | 116.85 (9)  | C9—C10—H10B   | 109.5       |
| С3—С2—Н2  | 121.6       | H10A—C10—H10B | 109.5       |
| C1—C2—H2  | 121.6       | C9—C10—H10C   | 109.5       |
| C2—C3—C4  | 120.95 (9)  | H10A—C10—H10C | 109.5       |
| С2—С3—Н3  | 119.5       | H10B—C10—H10C | 109.5       |
| С4—С3—Н3  | 119.5       | C9—C11—H11A   | 109.5       |
| C5—C4—C3  | 122.74 (9)  | C9—C11—H11B   | 109.5       |
| C5—C4—Br1 | 118.85 (8)  | H11A—C11—H11B | 109.5       |
| C3—C4—Br1 | 118.40 (7)  | C9—C11—H11C   | 109.5       |
| C4—C5—C6  | 116.38 (9)  | H11A—C11—H11C | 109.5       |
| С4—С5—Н5  | 121.8       | H11B—C11—H11C | 109.5       |

| С6—С5—Н5     | 121.8        | C9—C12—H12A   | 109.5        |
|--------------|--------------|---------------|--------------|
| C5—C6—C1     | 121.49 (8)   | C9—C12—H12B   | 109.5        |
| C5—C6—C7     | 133.15 (9)   | H12A—C12—H12B | 109.5        |
| C1—C6—C7     | 105.28 (8)   | C9—C12—H12C   | 109.5        |
| N2—C7—N3     | 122.92 (9)   | H12A—C12—H12C | 109.5        |
| N2—C7—C6     | 111.54 (8)   | H12B—C12—H12C | 109.5        |
| N3—C7—C6     | 125.46 (9)   | C8—N1—C1      | 126.18 (8)   |
| O2—C8—O1     | 127.43 (9)   | C8—N1—N2      | 122.33 (8)   |
| O2—C8—N1     | 121.75 (9)   | C1—N1—N2      | 111.27 (8)   |
| O1—C8—N1     | 110.82 (8)   | C7—N2—N1      | 105.85 (8)   |
| O1—C9—C10    | 102.25 (8)   | C7—N3—H3A     | 113.2 (13)   |
| O1—C9—C12    | 109.28 (9)   | C7—N3—H3B     | 118.0 (12)   |
| C10—C9—C12   | 110.83 (9)   | H3A—N3—H3B    | 117.7 (17)   |
| O1—C9—C11    | 110.84 (8)   | C8—O1—C9      | 119.35 (8)   |
|              |              |               |              |
| N1—C1—C2—C3  | 177.48 (10)  | O2—C8—N1—C1   | 10.52 (16)   |
| C6—C1—C2—C3  | 0.02 (15)    | O1—C8—N1—C1   | -169.07 (9)  |
| C1—C2—C3—C4  | -0.25 (15)   | O2—C8—N1—N2   | -175.37 (10) |
| C2—C3—C4—C5  | -0.10 (16)   | O1—C8—N1—N2   | 5.04 (13)    |
| C2-C3-C4-Br1 | -178.60 (8)  | C6-C1-N1-C8   | 175.41 (9)   |
| C3—C4—C5—C6  | 0.68 (15)    | C2-C1-N1-C8   | -2.34 (17)   |
| Br1-C4-C5-C6 | 179.17 (7)   | C6-C1-N1-N2   | 0.75 (11)    |
| C4—C5—C6—C1  | -0.91 (14)   | C2-C1-N1-N2   | -177.00 (10) |
| C4—C5—C6—C7  | -177.26 (10) | N3—C7—N2—N1   | 177.97 (9)   |
| N1—C1—C6—C5  | -177.46 (9)  | C6—C7—N2—N1   | 0.84 (11)    |
| C2-C1-C6-C5  | 0.59 (15)    | C8—N1—N2—C7   | -175.90 (9)  |
| N1—C1—C6—C7  | -0.22 (10)   | C1—N1—N2—C7   | -1.00 (11)   |
| C2-C1-C6-C7  | 177.83 (9)   | O2—C8—O1—C9   | 6.31 (16)    |
| C5—C6—C7—N2  | 176.37 (10)  | N1—C8—O1—C9   | -174.13 (8)  |
| C1C6C7N2     | -0.41 (11)   | С10—С9—О1—С8  | -179.09 (9)  |
| C5-C6-C7-N3  | -0.68 (18)   | С12—С9—О1—С8  | 63.43 (12)   |
| C1—C6—C7—N3  | -177.45 (9)  | С11—С9—О1—С8  | -61.63 (12)  |

### Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-----------------------------------|-------------|--------------|--------------|------------|
| С2—Н2…О2                          | 0.95        | 2.46         | 2.9609 (13)  | 113        |
| C11—H11 <i>C</i> ···O2            | 0.98        | 2.38         | 2.9559 (15)  | 117        |
| C12—H12 <i>B</i> ···O2            | 0.98        | 2.46         | 3.0475 (15)  | 118        |
| N3—H3 <i>B</i> ···N2 <sup>i</sup> | 0.865 (18)  | 2.165 (19)   | 3.0249 (12)  | 172.8 (16) |
| C2—H2···O2 <sup>ii</sup>          | 0.95        | 2.62         | 3.4133 (12)  | 141        |
| C5—H5···Br1 <sup>iii</sup>        | 0.95        | 3.11         | 3.8871 (10)  | 140        |
| C12—H12A····O2 <sup>iv</sup>      | 0.98        | 2.62         | 3.5582 (14)  | 161        |
|                                   |             |              |              |            |

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z; (iv) x-1, y, z.