

ISSN 2414-3146

Received 1 September 2021 Accepted 13 September 2021

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; methylation; epimerization; structural elucidation.

CCDC reference: 2109383

Structural data: full structural data are available from iucrdata.iucr.org

(2*R*,4*S*,5*S*)-5-Methoxy-4-methyl-3-oxohept-6-en-2-yl benzoate

Ann-Christin Schmidt, Lyuba Iovkova* and Martin Hiersemann

Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Organische Chemie, 44227 Dortmund, Germany. *Correspondence e-mail: lyuba.iovkova@tu-dortmund.de

The title compound, $C_{16}H_{20}O_4$, was synthesized in the course of the total synthesis of fusaequisin A in order to verify and confirm the configurations of the stereogenic centers and to exclude the possibility of epimerization during the methylation process. The crystal structure of the title compound at 100 K has orthorhombic ($P2_12_12_1$) symmetry. The absolute configuration was determined by anomalous dispersion and agrees with the configuration of the allylic alcohol used in the synthesis.

Structure description

The title compound, $C_{16}H_{20}O_4$ (Fig. 1), was obtained during the synthesis of the Western fragment of fusaequisin A. Background to fusaequisin A is given by Shiono *et al.* (2013). The asymmetric synthesis of the Western fragment is based on Paterson's *anti* aldol chemistry (Paterson *et al.*, 1994; Paterson, 1998). In the course of the total synthesis of curvicollide C (Che *et al.*, 2004) the precursor of the title compound (I) was prepared (von Kiedrowski *et al.*, 2017) and provided potential for further investigations regarding the total synthesis of fusaequisin A. The methylation process is shown in Fig. 2.

The title compound crystallizes in the orthorhombic space group $P_{2_12_12_1}$ with four molecules in the unit cell with H1A and H3A almost in plane (H1A-C1···C3-H3A pseudo torsion angle = -1°) and H2A and H3A in an antiperiplanar arrangement (H2A-C2-C3-H3A = 179°), which minimizes 1,3-allylic strain. Furthermore, the C8 methyl group and the O1 atom of the ether group are also in an antiperiplanar arrangement with a C8-C4-C3-O1 torsion angle of 177.32 (10)°. The ester moiety shows the most stable and expected *s*-*cis*-conformation. In the crystal, a weak C-H···O interaction arising from the aromatic C-H grouping *para* to the side chain links the molecules into *C*(10) chains propagating in the [010] direction (Table 1).

data reports

Figure 1 The molecular structure of I showing displacement ellipsoids at the 50% probability level

Synthesis and crystallization

The reaction (Fig. 3) was carried out under an argon atmosphere. To an ice-cooled solution of the allylic alcohol $(C_{15}H_{18}O_4, 262.31 \text{ g mol}^{-1}, 300 \text{ mg}, 1.10 \text{ mmol}, 1 \text{ equiv.})$ in CH₂Cl₂ were successively added dried (0.1 mbar, 250°C, 2 h) 3 Å molecular sieves (200 mg), 1,8-bis(dimethylamino)naphthalene (proton sponge[®], $C_{14}H_{18}N_2$, 214.31 g mol⁻¹, 943 mg, 4.40 mmol, 4 equiv.) and trimethyloxonium tetrafluoroborate (Me₃OBF₄, C₃H₉BF₄O, 147.91 g mol⁻¹, 651 mg, 4.40 mmol, 4 equiv.). The opaque, orange solution was warmed to room temperature. The reaction mixture was stirred at room temperature for 4 h and was then diluted by the addition of aqueous phosphate pH 7 buffer. The phases were separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were dried (MgSO₄) and all volatiles were removed under reduced pressure. The light vellow residue was purified by flash chromatography (cyclohexane-ethyl acetate, 20:1 to 10:1) to afford the title methyl ether (I) ($C_{16}H_{20}O_4$, 276.33 g mol⁻¹, 238 mg, 0.86 mmol, 78%) as a white solid. Colourless crystals of I suitable for X-ray crystallographic analysis were obtained under air by slow evaporation from the mixed solvents of diethyl ether and npentane. $R_f = 0.56$ (cyclohexane–ethyl acetate, 5:1); m.p. = 80– 83°C; $[a]_D^{20} = -8.3^\circ$ (c = 0.5 g ml⁻¹ in CHCl₃); ¹H NMR

Figure 2 Methylation of *O*-desmethylfusaequisin A.

Table 1 Hydrogen-bond geometry (Å, °).							
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$			
$C14-H14A\cdots O2^{i}$	0.95	2.54	3.2838 (18)	135			
Symmetry code: (i) $-x$ -	$+2, y+\frac{1}{2}, -z$	$+\frac{1}{2}$.					
Table 2							
Experimental detail	S.						
Crystal data							
Chemical formula		C ₁₆	$H_{20}O_{4}$				
M _r		276	.32	_			
Crystal system, space	group	Ort	horhombic, $P2_12$	121			
Temperature (K)		100 8 17	007 (4) 11 9222 (6) 15 7212 (0) 			
$V(\mathring{A}^3)$		151	1 12 (14)	0), 15.7215 (9)			
Z		4	1.12 (11)				
Radiation type		Cu	Κα				
$\mu \text{ (mm}^{-1})$		0.71	l				
Crystal size (mm)		0.12	$2 \times 0.10 \times 0.06$				
Data collection							
Diffractometer		Bru	iker APEXII CC	D			
Absorption correction	n	Mu 2	lti-scan (SADAE 016)	S;Bruker,			
T_{\min}, T_{\max}		0.70	00, 0.754				
No. of measured, inde observed $[I > 2\sigma(I)]$	ependent an)] reflections	d 286	27, 3078, 3054				
R _{int}		0.02	27				
$(\sin \theta / \lambda)_{\max} (A^{-1})$		0.62	25				
Refinement							
$R[F^2 > 2\sigma(F^2)], wR(R)$	$(F^{2}), S$	0.02	23, 0.060, 1.07				
No. of reflections		307	8				
No. of parameters		184		a a matura in a d			
$\Lambda_0 \qquad \Lambda_0 \qquad (e^{\Lambda})^{-3}$)	H-8 0.19	a_{10} and a_{12}	constrained			
Absolute structure)	Fla	ck x determined	using 1293			
		q (uotients $[(I^+)-(I^+)]$ Parsons <i>et al.</i> , 20	$[I^{-})]/[(I^{+})+(I^{-})]$ 13)			
Absolute structure pa	arameter	0.03	3 (2)				

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT2014/5* (Sheldrick, 2015*a*), *SHELXL2018/3* (Sheldrick, 2015*b*), *XP* (Sheldrick, 2008) and *OLEX2* (Dolomanov *et al.*, 2009).

(500 MHz, CDCl₃) δ 1.06 (*d*, *J* = 7.1 Hz, 3H, 3-CH₃), 1.55 (*d*, *J* = 7.0 Hz, 3H, 1-CH₃), 2.93 (*dq*, *J* = 9.7, 7.1 Hz, 1H, 3-CH), 3.15 (*s*, 3H, 4-OCH₃), 3.70 (*dd*, *J* = 10.1, 9.3 Hz, 1H, 4-CH), 5.24–5.35 (*m*, 2H, 6-CH₂), 5.41 (*q*, *J* = 7.0 Hz, 1H, 1-CH), 5.56 (*ddd*, *J* = 17.1, 10.1, 8.5 Hz, 1H, 5-CH), 7.43–7.48 (*m*, 2H, aryl-CH), 7.55–7.60 (*m*, 1H, aryl-CH), 8.05–8.12 (*m*, 2H, aryl-CH); ¹³C NMR (126 MHz, CDCl₃) δ 14.1 (3-CH₃), 15.3 (1-CH₃), 47.0 (3-

Figure 3 Reaction conditions for the methylation of the allylic alcohol.

CH), 56.6 (4-OCH₃), 75.5 (1-CH), 85.4 (4-CH), 120.2 (6-CH₂), 128.5 (aryl-CH), 129.8 (aryl-CH), 129.9 (aryl-CH), 133.3 (aryl-CH), 136.0 (5-CH), 166.0 (aryl-C), 210.1 (2-C); **IR** v = 3075(w), 2985 (w), 2935 (w), 2825 (w), 1720 (s), 1065 (w), 1450 (m), 1420 (w), 1375 (m), 1315 (m), 1265 (s), 1205 (w), 1175 (w), 1115 (s), 1090 (s), 1070 (m), 1025 (m), 1010 (m), 965 (m), 935 (m), 715 (s), 685 (w) cm⁻¹; **HRMS (ESI)**: $m/z [M + H]^+$ calculated for C₁₆H₂₁O₄: 277.1434; found: 277.1342.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

The TU Dortmund and the DFG are gratefully acknowledged for financial support.

References

- Bruker (2016). APEX3, SAINT and SADABS (version 2016/2). Bruker AXS Inc., Madison, Wisconsin, USA.
- Che, Y., Gloer, J. B. & Wicklow, D. T. (2004). Org. Lett. 6, 1249-1252.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Kiedrowski, V. von, Quentin, F. & Hiersemann, M. (2017). *Org. Lett.* **19**, 4391–4394.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Paterson, I. (1998). Synthesis, pp. 639-652.
- Paterson, I., Wallace, D. J. & Velázquez, S. M. (1994). *Tetrahedron Lett.* **35**, 9083–9086.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shiono, Y., Shibuya, F., Murayama, T., Koseki, T., Poumale, H. M. P. & Ngadjui, B. T. (2013). Z. Naturfosch. Teil B, 68, 289–292.

full crystallographic data

IUCrData (2021). **6**, x210951 [https://doi.org/10.1107/S2414314621009512]

(2R,4S,5S)-5-Methoxy-4-methyl-3-oxohept-6-en-2-yl benzoate

 $D_{\rm x} = 1.215 {\rm Mg m^{-3}}$

 $\theta = 6.1 - 74.6^{\circ}$ $\mu = 0.71 \text{ mm}^{-1}$

Block, colourless

 $0.12\times0.10\times0.06~mm$

 $\theta_{\text{max}} = 74.5^{\circ}, \ \theta_{\text{min}} = 4.7^{\circ}$

3078 independent reflections 3054 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.027$

 $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $l = -18 \rightarrow 19$

Melting point = 353-356 K

Cu *Ka* radiation, $\lambda = 1.54178$ Å Cell parameters from 9807 reflections

Ann-Christin Schmidt, Lyuba Iovkova and Martin Hiersemann

(2R,4S,5S)-5-Methoxy-4-methyl-3-oxohept-6-en-2-yl benzoate

Crystal data

 $C_{16}H_{20}O_4$ $M_r = 276.32$ Orthorhombic, $P2_12_12_1$ a = 8.1297 (4) Å b = 11.8232 (6) Å c = 15.7213 (9) Å $V = 1511.12 (14) \text{ Å}^3$ Z = 4 F(000) = 592

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS;Bruker, 2016)
$T_{\min} = 0.700, \ T_{\max} = 0.754$
28627 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0308P)^2 + 0.2127P]$
$R[F^2 > 2\sigma(F^2)] = 0.023$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.060$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.07	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
3078 reflections	$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ Å}^{-3}$
184 parameters	Absolute structure: Flack x determined using
0 restraints	1293 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
Primary atom site location: dual	al., 2013)
Hydrogen site location: inferred from	Absolute structure parameter: 0.03 (2)
neighbouring sites	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.09507 (18)	0.29265 (12)	0.39623 (10)	0.0306 (3)	
H1A	0.080921	0.309404	0.337584	0.037*	
H1B	0.010147	0.255322	0.426807	0.037*	
01	0.52090 (11)	0.31350 (8)	0.40027 (6)	0.0257 (2)	
C2	0.23199 (17)	0.32109 (12)	0.43502 (9)	0.0260 (3)	
H2A	0.241816	0.302998	0.493680	0.031*	
O2	0.57315 (12)	0.55222 (8)	0.31396 (6)	0.0257 (2)	
C3	0.37402 (15)	0.38013 (10)	0.39331 (8)	0.0210 (3)	
H3A	0.348192	0.392678	0.331840	0.025*	
O3	0.79670 (11)	0.67523 (7)	0.40634 (6)	0.02254 (19)	
C4	0.41493 (15)	0.49330 (10)	0.43492 (8)	0.0200 (2)	
H4A	0.442788	0.480340	0.496105	0.024*	
O4	0.58296 (11)	0.79534 (7)	0.39300 (6)	0.0255 (2)	
C5	0.56184 (15)	0.54690 (10)	0.39052 (8)	0.0195 (2)	
C6	0.69017 (16)	0.59668 (11)	0.45003 (8)	0.0214 (3)	
H6A	0.633436	0.636762	0.497741	0.026*	
C7	0.5209 (2)	0.22018 (12)	0.34321 (10)	0.0346 (3)	
H7A	0.624899	0.178862	0.348492	0.052*	
H7B	0.508591	0.247754	0.284770	0.052*	
H7C	0.429206	0.169617	0.357046	0.052*	
C8	0.27180 (16)	0.57771 (12)	0.42921 (10)	0.0279 (3)	
H8A	0.180721	0.551481	0.464968	0.042*	
H8B	0.234674	0.583387	0.370058	0.042*	
H8C	0.308649	0.652131	0.448962	0.042*	
C9	0.80093 (17)	0.50522 (12)	0.48637 (10)	0.0298 (3)	
H9A	0.733683	0.448423	0.515567	0.045*	
H9B	0.878182	0.539103	0.526875	0.045*	
H9C	0.862385	0.469110	0.440132	0.045*	
C10	0.72720 (16)	0.77408 (10)	0.38331 (7)	0.0204 (3)	
C11	0.85150 (16)	0.85390 (10)	0.34781 (8)	0.0206 (3)	
C12	0.79937 (18)	0.96224 (11)	0.32518 (8)	0.0237 (3)	
H12A	0.686828	0.982661	0.330513	0.028*	
C13	0.91308 (19)	1.04000 (11)	0.29482 (9)	0.0286 (3)	
H13A	0.878073	1.114116	0.280093	0.034*	
C14	1.07716 (19)	1.01054 (12)	0.28578 (9)	0.0303 (3)	
H14A	1.153904	1.064064	0.264420	0.036*	
C15	1.12937 (17)	0.90223 (13)	0.30810 (9)	0.0294 (3)	
H15A	1.241701	0.881748	0.301761	0.035*	
C16	1.01703 (17)	0.82427 (11)	0.33962 (8)	0.0243 (3)	
H16A	1.052798	0.750788	0.355613	0.029*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0290 (7)	0.0303 (7)	0.0325 (7)	-0.0065 (6)	0.0030 (6)	0.0020 (6)

01	0.0265 (4)	0.0206 (4)	0.0298 (5)	0.0050 (4)	-0.0010 (4)	-0.0022 (4)
C2	0.0284 (7)	0.0248 (6)	0.0249 (6)	-0.0012 (5)	0.0023 (5)	0.0032 (5)
O2	0.0317 (5)	0.0244 (4)	0.0211 (4)	-0.0027 (4)	0.0034 (4)	-0.0001 (3)
C3	0.0220 (6)	0.0199 (6)	0.0210 (6)	0.0009 (5)	0.0000 (5)	0.0011 (5)
O3	0.0210 (4)	0.0178 (4)	0.0289 (5)	-0.0008 (4)	0.0021 (4)	0.0021 (4)
C4	0.0197 (5)	0.0207 (6)	0.0197 (5)	0.0004 (5)	0.0012 (5)	-0.0017 (5)
O4	0.0226 (4)	0.0211 (4)	0.0326 (5)	0.0007 (4)	0.0033 (4)	-0.0017 (4)
C5	0.0215 (6)	0.0146 (5)	0.0224 (6)	0.0040 (5)	0.0012 (5)	0.0001 (5)
C6	0.0210 (6)	0.0199 (6)	0.0234 (6)	-0.0018 (5)	0.0013 (5)	0.0028 (5)
C7	0.0377 (8)	0.0236 (6)	0.0426 (8)	0.0051 (6)	0.0039 (7)	-0.0090 (6)
C8	0.0234 (6)	0.0264 (7)	0.0339 (7)	0.0053 (5)	0.0006 (6)	-0.0059 (5)
C9	0.0233 (6)	0.0279 (7)	0.0382 (7)	-0.0005 (6)	-0.0036 (6)	0.0095 (6)
C10	0.0244 (6)	0.0174 (5)	0.0196 (6)	-0.0006 (5)	-0.0008 (5)	-0.0030 (5)
C11	0.0245 (6)	0.0192 (6)	0.0180 (6)	-0.0020 (5)	0.0002 (5)	-0.0034 (5)
C12	0.0277 (7)	0.0209 (6)	0.0226 (6)	0.0005 (5)	0.0004 (5)	-0.0015 (5)
C13	0.0389 (7)	0.0214 (6)	0.0256 (6)	-0.0034 (6)	0.0022 (6)	0.0009 (5)
C14	0.0354 (7)	0.0296 (7)	0.0260 (6)	-0.0119 (6)	0.0064 (6)	-0.0015 (5)
C15	0.0252 (7)	0.0340 (7)	0.0291 (7)	-0.0038 (6)	0.0038 (5)	-0.0049 (6)
C16	0.0257 (6)	0.0236 (6)	0.0235 (6)	-0.0003 (5)	0.0003 (5)	-0.0026 (5)

Geometric parameters (Å, °)

C1—C2	1.313 (2)	C7—H7B	0.9800
C1—H1A	0.9500	С7—Н7С	0.9800
C1—H1B	0.9500	C8—H8A	0.9800
O1—C7	1.4220 (17)	C8—H8B	0.9800
O1—C3	1.4347 (15)	C8—H8C	0.9800
C2—C3	1.5001 (18)	С9—Н9А	0.9800
C2—H2A	0.9500	С9—Н9В	0.9800
O2—C5	1.2087 (16)	С9—Н9С	0.9800
C3—C4	1.5261 (17)	C10—C11	1.4911 (18)
С3—НЗА	1.0000	C11—C12	1.3953 (18)
O3—C10	1.3477 (15)	C11—C16	1.3965 (19)
O3—C6	1.4438 (15)	C12—C13	1.3883 (19)
C4—C5	1.5215 (17)	C12—H12A	0.9500
C4—C8	1.5357 (17)	C13—C14	1.386 (2)
C4—H4A	1.0000	C13—H13A	0.9500
O4—C10	1.2089 (16)	C14—C15	1.394 (2)
C5—C6	1.5199 (17)	C14—H14A	0.9500
С6—С9	1.5188 (18)	C15—C16	1.389 (2)
С6—Н6А	1.0000	C15—H15A	0.9500
С7—Н7А	0.9800	C16—H16A	0.9500
C2—C1—H1A	120.0	H7B—C7—H7C	109.5
C2C1H1B	120.0	C4—C8—H8A	109.5
H1A—C1—H1B	120.0	C4—C8—H8B	109.5
C7—O1—C3	112.20 (11)	H8A—C8—H8B	109.5
C1—C2—C3	124.65 (12)	C4—C8—H8C	109.5

C1—C2—H2A	1177	H8A—C8—H8C	109 5
C3-C2-H2A	117.7	H8B-C8-H8C	109.5
$01 - C_{3} - C_{2}$	110.60 (10)	C6-C9-H9A	109.5
01 - C3 - C4	105 50 (10)	C6-C9-H9B	109.5
$C_{2} - C_{3} - C_{4}$	112 85 (10)	H9A - C9 - H9B	109.5
01 - C3 - H3A	109.3	C6_C9_H9C	109.5
$C_2 C_3 H_3 \Lambda$	109.3		109.5
C_{4} C_{3} H_{3} Λ	100.3		109.5
$C_1 = C_2 = C_1$	109.3 115.72(10)	$119D - C_{3} - 119C$	109.5 102.58(12)
$C_{10} = 05 = 00$	113.73(10) 100.85(10)	04 - C10 - C11	123.36(12)
C_{5}	109.83(10) 107.20(10)	04-010-011	124.90 (12)
$C_3 = C_4 = C_8$	107.29 (10)		111.42(11)
	112.31 (10)		119.97 (12)
C5—C4—H4A	109.1		118.07 (12)
C3—C4—H4A	109.1	C16—C11—C10	121.92 (12)
C8—C4—H4A	109.1	C13—C12—C11	119.56 (13)
02	122.72 (12)	С13—С12—Н12А	120.2
O2—C5—C4	122.56 (12)	C11—C12—H12A	120.2
C6—C5—C4	114.69 (10)	C14—C13—C12	120.64 (13)
O3—C6—C9	106.34 (10)	C14—C13—H13A	119.7
O3—C6—C5	111.60 (10)	C12—C13—H13A	119.7
C9—C6—C5	111.27 (11)	C13—C14—C15	119.88 (13)
O3—C6—H6A	109.2	C13—C14—H14A	120.1
С9—С6—Н6А	109.2	C15—C14—H14A	120.1
С5—С6—Н6А	109.2	C16—C15—C14	119.95 (13)
O1—C7—H7A	109.5	C16—C15—H15A	120.0
O1—C7—H7B	109.5	C14—C15—H15A	120.0
H7A—C7—H7B	109.5	C15—C16—C11	120.00 (13)
O1—C7—H7C	109.5	C15—C16—H16A	120.0
H7A—C7—H7C	109.5	C11—C16—H16A	120.0
C7—O1—C3—C2	75.42 (14)	O2—C5—C6—C9	-102.56 (14)
C7—O1—C3—C4	-162.25 (11)	C4—C5—C6—C9	79.43 (13)
C1—C2—C3—O1	-121.33 (15)	C6—O3—C10—O4	-4.44 (17)
C1—C2—C3—C4	120.75 (15)	C6-O3-C10-C11	173.50 (10)
O1—C3—C4—C5	58.00 (12)	O4—C10—C11—C12	1.17 (19)
C2—C3—C4—C5	178.86 (10)	O3—C10—C11—C12	-176.74(11)
01-C3-C4-C8	177.32 (10)	O4—C10—C11—C16	178.96 (13)
$C_2 - C_3 - C_4 - C_8$	-61.81(14)	O3-C10-C11-C16	1.06 (16)
C_{3} C_{4} C_{5} O_{2}	46.33 (16)	C_{16} C_{11} C_{12} C_{13}	-0.16(19)
$C_{8} - C_{4} - C_{5} - O_{2}^{2}$	-76.02(15)	C10-C11-C12-C13	177.67(11)
C_{3} C_{4} C_{5} C_{6}	-135.66(10)	$C_{11} - C_{12} - C_{13} - C_{14}$	0.8 (2)
C8 - C4 - C5 - C6	101 99 (12)	C12 - C13 - C14 - C15	-0.6(2)
$C_{10} - C_{3} - C_{6} - C_{9}$	-167.80(11)	C_{13} C_{14} C_{15} C_{16}	-0.2(2)
$C_{10} = 03 = C_{0} = C_{0}$	70.68 (13)	C14 - C15 - C16 - C11	0.2(2)
02-05-00-03	16.05 (17)	C_{12} C_{13} C_{16} C_{15} C_{16} C_{15}	-0.70(10)
$C_{4} = C_{5} = C_{6} = C_{5}^{2}$	-161.06(10)	C_{12} C_{11} C_{16} C_{15}	-178 45 (12)
	101.90 (10)		1/0.43 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C14— $H14A$ ···O2 ⁱ	0.95	2.54	3.2838 (18)	135

Symmetry code: (i) -x+2, y+1/2, -z+1/2.