ISSN 2414-3146

Received 12 October 2021
Accepted 20 October 2021

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; cyanourea salt; tetramethylammonium salt.

CCDC reference: 2116890

Structural data: full structural data are available from iucrdata.iucr.org

Tetramethylammonium (Z)- N^{\prime}-cyanocarbamimidate

Ray J. Butcher ${ }^{\text {a* }}$ and Andrew P. Purdy ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and ${ }^{\mathbf{b}}$ Chemistry Division, Code 6123, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA.
*Correspondence e-mail: rbutcher99@yahoo.com

In the structure of the tetramethyl ammonium salt of cyanourea, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}^{-}$, the $\mathrm{N}-\mathrm{C}$ and $\mathrm{O}-\mathrm{C}$ bond distances in the cyano and keto groups are in the normal range for such a moieties at 1.1641 (18) and 1.2550 (16) \AA. However, the bonds about the central C and N atoms are much shorter than would be expected for single bonds and indicate that there is considerable electron delocalization in the anion as was also found in the silver salt. The NH_{2} group is coplanar with the central $\mathrm{N}_{2} \mathrm{CO}$ core, in contrast with the nitrile group where the dihedral angle between the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ and $\mathrm{N}_{2} \mathrm{CO}$ planes is $36.5(3)^{\circ}$. The packing of the cations and anions in the unit cell involves $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between anions characterized by an $R_{2}^{2}(8)$ motif, as well as $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between anions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between both cations and anions, forming an $R_{3}^{3}(14)$ pattern.

Structure description

Cyanourea and its salts have been the subject of much interest including the use of its derivatives in the study of solid state reaction mechanisms (Lotsch \& Schnick, 2004), as substituents in manipulating the conformation of calix[4]arenes (Ling et al., 2014), in the synthesis of amide-acid chloride adducts in organic synthesis (Harris, 1981), and in modulating the magnetic properties of Mn_{6} clusters (Yang et al., 2009). In spite of this interest there has been very little structural characterization of this moiety and only structures of its ammonium (Lotsch \& Schnick, 2004), silver (Britton, 1987), and potassium salts (Magomedova \& Zvonkova, 1974) have been reported.

In the title compound, $\left[\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right]^{+}\left[\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}\right]^{-}, \mathbf{1}$, the tetramethyl ammonium salt of cyanourea is reported and shown in Fig. 1. The $\mathrm{N}-\mathrm{C}$ and $\mathrm{O}-\mathrm{C}$ bond distances in the cyano and keto groups [1.1641 (18) and 1.2550 (16) Å,respective] are in the normal range for such a moieties and similar to the values found for the silver salt $[1.149$ (6) and

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

O1-C5	$1.2550(16)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.3703(17)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.3464(18)$	$\mathrm{N} 4-\mathrm{C} 6$	$1.1641(18)$
$\mathrm{N} 3-\mathrm{C} 6$	$1.3155(19)$		
C6-N3-C5	$114.79(12)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{N} 3$	$114.95(12)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 2$	$120.31(12)$	$\mathrm{N} 4-\mathrm{C} 6-\mathrm{N} 3$	$174.73(15)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 3$	$124.73(13)$		

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.63	$3.487(2)$	147
$\mathrm{C} 2-\mathrm{H} 2 A \cdots 1^{\mathrm{i}}$	0.98	2.57	$3.447(2)$	149
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.62	$3.484(2)$	147
$\mathrm{C} 3-\mathrm{H} 3 C \cdots \mathrm{O} 1$	0.98	2.30	$3.253(2)$	164
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~N}^{\mathrm{ii}}$	0.98	2.54	$3.450(2)$	155
${\mathrm{C} 4-\mathrm{H} 4 C \cdots \mathrm{~N}^{\text {iii }}}^{\mathrm{N}} 2-\mathrm{H} 2 D \cdots \mathrm{O}^{\text {iv }}$	0.98	2.59	$3.536(2)$	162
N 2.88	2.03	$2.9084(16)$	174	
$\mathrm{~N} 2-\mathrm{H} 2 E \cdots \mathrm{N4}^{\mathrm{v}}$	0.88	2.18	$3.0126(19)$	158

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
1.248 (5) \AA, respectively]. However, the bonds about C5 and N 3 are much shorter than would be expected for single bonds (Table 1) and indicate that there is considerable electron delocalization in the anion, as was also found in the silver salt. In $\mathbf{1}$, the NH_{2} group is coplanar with the central $\mathrm{N}_{2} \mathrm{CO}$ core [dihedral angle between NH_{2} and $\mathrm{N}_{2} \mathrm{CO}$ planes of only $\left.0.54(8)^{\circ}\right]$ in contrast with the nitrile group where the dihedral angle between the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ and $\mathrm{N}_{2} \mathrm{CO}$ planes is 36.5 (3) ${ }^{\circ}$. These values are different to those found in the silver salt where the corresponding angles are 23 (6) and 4.5 (3) ${ }^{\circ}$.

The packing of the cations and anions in the unit cell involves $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) between anions characterized by an $R_{2}^{2}(8)$ motif as well as $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between anions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between both cations and anions forming an $R_{3}^{3}(14)$ pattern as shown in Fig. 2.

Figure 1
Diagram showing the $\left[\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right]^{+}$cation and $\left[\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\right]^{-}$anion linked by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (shown as a dashed line). Atomic displacement parameters are drawn at the 30% probability level.

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}^{-}$
158.21
Monoclinic, $P 2_{1} / n$
100
8.8120 (4), 8.7561 (4), 12.1093 (6)
110.897 (2)
872.88 (7)

4
Mo $K \alpha$
0.09
$0.25 \times 0.12 \times 0.05$

Bruker APEXII CCD
Multi-scan (SADABS; Bruker, 2016)
0.651, 0.747

17548, 4340, 2752
0.156
0.836
$0.081,0.174,1.04$
4340
105
H -atom parameters constrained $0.44,-0.27$

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick 2015a), SHELXL2018/3 (Sheldrick, 2015b), and SHELXTL (Sheldrick 2008).

Figure 2
Diagram showing the packing of the cations and anions in the unit cell, which involves $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between anions characterized by an $R_{2}^{2}(8)$ motif as well as $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between anions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between both cations and anions forming an $R_{3}^{3}(14)$ pattern (all interactions shown with dashed lines).

Synthesis and crystallization

An ion-exchange column packed with Dowex HCR-W2 resin was regenerated with $3 M \mathrm{HCl}$ and washed with water. A solution of 5.00 g of $\mathrm{NaN}(\mathrm{CN})_{2}$ was run through the column and the product was neutralized with $\mathrm{Me}_{4} \mathrm{NOH}$ until alkaline. The solution was roto-vapped to dryness, recrystallized from EtOH , washed with MeOH and recrystallized from EtOH again, and pumped to dryness to afford about 1 g of product. Apparently the dicyanamide was partially hydrolyzed to form cyanourea when in free acid form.

NMR of $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{H}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{NCN}^{-}\left(\mathrm{D}_{2} \mathrm{O}\right){ }^{1} \mathrm{H}: \delta 3.06 ;{ }^{13} \mathrm{C}(\mathrm{DSS}$ ref): $\delta 58.0\left(\mathrm{Me}_{4} \mathrm{~N},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{N}}=4 \mathrm{~Hz}\right), 127.0(\mathrm{C} \equiv \mathrm{N}), 171.1(\mathrm{C}=\mathrm{O})$; ${ }^{15} \mathrm{~N}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right.$ ref): $\delta 22.5\left(\mathrm{Me}_{4} \mathrm{~N}\right), 62.22\left(m, \mathrm{NH}_{2}\right), 72.18(\mathrm{~N})$, $150.45(\mathrm{C} \equiv \mathrm{N})$.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The structure was refined as a twocomponent twin with a fractional contribution of 0.0409 (11) for the minor domain.

Funding information
RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.

References

Britton, D. (1987). Acta Cryst. C43, 2442-2443.
Bruker (2016). APEX3, SAINT and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Harris, R. L. N. (1981). Synthesis, pp. 907-908.
Ling, I., Skelton, B. W., Sobolev, A. N., Alias, Y. \& Raston, C. L. (2014). CrystEngComm, 16, 5159-5164.

Lotsch, B. V. \& Schnick, W. (2004). Z. Naturforsch. Teil B, 59, 12291240.

Magomedova, N. S. \& Zvonkova, Z. V. (1974). J. Struct. Chem. 15, 156-157.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Yang, C.-I., Cheng, K.-H., Nakano, M., Lee, G.-H. \& Tsai, H.-L. (2009). Polyhedron, 28, 1842-1851.

full crystallographic data

IUCrData (2021). 6, x211098 [https://doi.org/10.1107/S2414314621010981]
Tetramethylammonium (Z)- N^{\prime}-cyanocarbamimidate

Ray J. Butcher and Andrew P. Purdy

Tetramethylammonium (Z)- N^{\prime}-cyanocarbamimidate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}^{-}$
$M_{r}=158.21$
Monoclinic, $P 2_{1} / n$
$a=8.8120$ (4) Å
$b=8.7561$ (4) \AA
$c=12.1093(6) \AA$
$\beta=110.897$ (2) ${ }^{\circ}$
$V=872.88(7) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
φ and ω scans
Absorption correction: multi-scan
(Sadabs; Bruker, 2016)
$T_{\text {min }}=0.651, T_{\text {max }}=0.747$
17548 measured reflections

$$
\begin{aligned}
& F(000)=344 \\
& D_{\mathrm{x}}=1.204 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3088 \text { reflections } \\
& \theta=2.9-36.0^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.25 \times 0.12 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

4340 independent reflections

2752 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.156$
$\theta_{\text {max }}=36.4^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-14 \rightarrow 14$
$k=-14 \rightarrow 14$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$
$w R\left(F^{2}\right)=0.174$
$S=1.04$
4340 reflections
105 parameters
0 restraints

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.064 P)^{2}+0.1366 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin. The structure was solved using SHELXT (Sheldrick, 2015a) and refined with SHELXL2018 (Sheldrick, 2015b). The locations of all hydrogen atoms for the major component were located in difference Fourier maps and refined in idealized position using a riding model with atomic displacement parameters of $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})\left[1.5 U_{\mathrm{eq}}(\mathrm{C})\right.$ for $\left.\mathrm{CH}_{3}\right]$, with $\mathrm{N}-\mathrm{H}$ distance of $0.88 \AA$ and $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to 0.99 \AA, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} *_{\text {eq }}$
N1	$0.52001(13)$	$0.39529(14)$	$0.77065(11)$	$0.0155(2)$
C1	$0.65132(18)$	$0.3158(2)$	$0.86761(18)$	$0.0271(3)$
H1A	0.717795	0.391510	0.923711	0.041^{*}
H1B	0.719731	0.257919	0.834033	0.041^{*}
H1C	0.602538	0.245780	0.908689	0.041^{*}
C2	$0.4173(2)$	$0.2805(2)$	$0.68548(17)$	$0.0289(3)$
H2A	0.367659	0.211613	0.726730	0.043^{*}
H2B	0.484911	0.221365	0.651990	0.043^{*}
H2C	0.331794	0.333191	0.621804	0.043^{*}
C3	$0.41712(17)$	$0.4843(2)$	$0.82257(14)$	$0.0215(3)$
H3A	0.484635	0.559198	0.878912	0.032^{*}
H3B	0.367829	0.414567	0.863515	0.032^{*}
H3C	0.331387	0.537379	0.759369	0.032^{*}
C4	$0.5940(2)$	$0.5019(2)$	$0.70750(15)$	$0.0238(3)$
H4A	0.666165	0.573678	0.764306	0.036^{*}
H4B	0.507855	0.558664	0.647290	0.036^{*}
H4C	0.656586	0.443175	0.669525	0.036^{*}
O1	$0.16653(13)$	$0.63130(14)$	$0.57913(9)$	$0.0193(2)$
N2	$0.04603(16)$	$0.59992(17)$	$0.38199(11)$	$0.0232(3)$
H2D	-0.024142	0.534851	0.391904	0.028^{*}
H2E	0.041806	0.623148	0.310245	0.028^{*}
N3	$0.26105(14)$	$0.76503(15)$	$0.45058(11)$	$0.0172(2)$
N4	$0.46972(16)$	$0.89392(18)$	$0.61890(12)$	$0.0230(3)$
C5	$0.15986(15)$	$0.66395(15)$	$0.47658(12)$	$0.0139(2)$
C6	$0.36986(15)$	$0.82986(16)$	$0.54310(12)$	$0.0150(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0151(4)$	$0.0119(4)$	$0.0204(5)$	$-0.0002(4)$	$0.0074(4)$	$0.0002(4)$
C1	$0.0182(6)$	$0.0206(7)$	$0.0386(9)$	$0.0056(5)$	$0.0053(6)$	$0.0070(7)$
C2	$0.0337(7)$	$0.0235(7)$	$0.0285(8)$	$-0.0118(6)$	$0.0099(7)$	$-0.0097(7)$
C3	$0.0202(5)$	$0.0247(7)$	$0.0223(6)$	$0.0058(5)$	$0.0109(5)$	$0.0006(5)$
C4	$0.0322(7)$	$0.0196(7)$	$0.0257(7)$	$-0.0061(5)$	$0.0179(6)$	$-0.0015(5)$
O1	$0.0229(4)$	$0.0226(5)$	$0.0125(4)$	$-0.0056(4)$	$0.0062(4)$	$0.0014(4)$
N2	$0.0280(5)$	$0.0266(6)$	$0.0124(5)$	$-0.0125(5)$	$0.0040(4)$	$-0.0013(5)$
N3	$0.0199(5)$	$0.0182(5)$	$0.0130(4)$	$-0.0040(4)$	$0.0052(4)$	$0.0008(4)$
N4	$0.0232(5)$	$0.0280(7)$	$0.0167(5)$	$-0.0061(5)$	$0.0058(4)$	$-0.0017(5)$
C5	$0.0156(5)$	$0.0121(5)$	$0.0137(5)$	$0.0006(4)$	$0.0047(4)$	$0.0002(4)$
C6	$0.0160(5)$	$0.0155(5)$	$0.0148(5)$	$0.0013(4)$	$0.0069(4)$	$0.0022(4)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 2$	$1.492(2)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 3$	$1.4937(17)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800

N1-C1	1.494 (2)	C4—H4B	0.9800
N1-C4	1.4958 (19)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
C1-H1A	0.9800	O1-C5	1.2550 (16)
C1-H1B	0.9800	N2-C5	1.3464 (18)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800	N2-H2D	0.8800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800	N2-H2E	0.8800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800	N3-C6	1.3155 (19)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800	N3-C5	1.3703 (17)
C3-H3A	0.9800	N4-C6	1.1641 (18)
C3-H3B	0.9800		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	109.42 (12)	N1-C3-H3B	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	109.76 (14)	H3A-C3-H3B	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	109.17 (12)	N1-C3-H3C	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	109.55 (13)	H3A-C3-H3C	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	109.31 (12)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	109.62 (12)	N1-C4-H4A	109.5
N1-C1-H1A	109.5	N1-C4-H4B	109.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	H4A-C4-H4B	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	N1-C4-H4C	109.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	H4A-C4-H4C	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C5-N2-H2D	120.0
N1-C2-H2A	109.5	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{E}$	120.0
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	H2D-N2-H2E	120.0
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C6-N3-C5	114.79 (12)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 2$	120.31 (12)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 3$	124.73 (13)
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	N2-C5-N3	114.95 (12)
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	N4-C6-N3	174.73 (15)
C6-N3-C5-O1	-0.5 (2)	C6-N3-C5-N2	178.60 (13)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O} 1^{\mathrm{i}}$	0.98	2.63	3.487 (2)	147
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.98	2.57	3.447 (2)	149
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.98	2.62	3.484 (2)	147
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}^{\cdots} \mathrm{O} 1$	0.98	2.30	3.253 (2)	164
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 3{ }^{\text {ii }}$	0.98	2.54	3.450 (2)	155
$\mathrm{C} 4-\mathrm{H} 4 C \cdots \mathrm{~N} 3{ }^{\text {iii }}$	0.98	2.59	3.536 (2)	162
$\mathrm{N} 2-\mathrm{H} 2 D \cdots{ }^{\text {iv }}{ }^{\text {iv }}$	0.88	2.03	2.9084 (16)	174
$\mathrm{N} 2-\mathrm{H} 2 E \cdots \mathrm{~N} 4{ }^{\text {v }}$	0.88	2.18	3.0126 (19)	158

[^0]
[^0]: Symmetry codes: (i) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (ii) $x+1 / 2,-y+3 / 2, z+1 / 2$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $x-1 / 2,-y+3 / 2, z-1 / 2$.

