

IUCrData

ISSN 2414-3146

Received 29 December 2021 Accepted 7 February 2022

Edited by J. F. Gallagher, Dublin City University, Ireland

Keywords: crystal structure; nickel bis(dithiolene); 4-chlorophenyl-substituted dithiolene.

CCDC reference: 2150616

Structural data: full structural data are available from iucrdata.iucr.org

Bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1–)]nickel(II)

Sydney Koehne, Bailey Mirmelli, Joel T. Mague and James P. Donahue*

Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA. *Correspondence e-mail: donahue@tulane.edu

The title compound, $[Ni(S_2C_2(C_6H_4-p-Cl)_2)_2]$ or $[Ni(C_{14}H_8Cl_2S_2)_2]$, crystallizes in the triclinic space group $P\overline{1}$ as pairs of molecules disposed about an inversion center at the *bc* face of the cell. Close intermolecular $C-H\cdots S$ (2.884 Å) and $C-H\cdots Ni$ (3.032 Å) contacts that are less than the sum of the van der Waals radii appear to induce slight bowing of the molecular planes toward one another. The angles at which the four *p*-ClC₆H₄- rings join the NiS₂C₂ chelate rings [39.37 (9)– 53.41 (6)°] are similarly influenced by these intermolecular contacts. In the larger packing arrangement, sheets of molecules extend in the direction of the *ac* face diagonal.

Structure description

As seen from a survey of the Cambridge Structural Database, nickel has enjoyed the most extensive development of its coordination chemistry with dithiolene ligands that bear aryl substituents. One reason for the attention given to these nickel complexes is the application they have found as reversibly bleachable Q-switching dyes for near infrared lasers (Mueller-Westerhoff et al., 1991). Their photochemical, thermal, and chemical stability, in conjunction with the relative ease with which they are synthesized, has made such nickel bis(dithiolene) complexes impactful enough that a variety are now sold commercially. Charge-neutral, aryl-substituted nickel dithiolene complexes, $[(R_2C_2S_2)_2N_i]$, that have been structurally characterized include the complexes where R =Ph (Megnamisi-Belombe & Nuber, 1989; Kuramoto & Asao, 1990), p-CH₃C₆H₄- (Miao et al., 2011), p-CH₃OC₆H₄- (Arumugam et al., 2007), p-ⁿBuOC₆H₄- (Perochon et al., 2009), $p-CH_3(CH_2)_{11}C_6H_4-$ (Perochon et al., 2009), and 3,5-(CH₃O)₂-4-ⁿBuOC₆H₂- (Nakazumi et al., 1992).

Compounds of this type are electrochemically rich and typically support two successive ligand-based one-electron reductions that correspond to the transformations depicted as

Figure 1

(a)–(c) Dithiolene-based electron-transfer reactions within nickel(II) bis(dithiolene) complexes whereby the ligands are transformed from radical monoanions to fully reduced ene-1,2-dithiolate dianions. (d)–(e) Resonance forms within the dithiolene radical monoanion.

 $(\mathbf{a}) \rightarrow (\mathbf{b})$ and $(\mathbf{b}) \rightarrow (\mathbf{c})$ in Fig. 1. The redox-active molecular orbital has rather modest metal character and is best described as being delocalized among both dithiolene ligands, which individually may be regarded as radical monoanions but which collectively have their spins paired such that the chargeneutral state is diamagnetic. In structure (c), both dithiolene ligands are in a fully reduced ene-1,2-dithiolate dianionic state. The potentials at which these reductions occur are quite sensitive to the nature and placement of ring substituents. As part of an effort to more fully map the potential range in which the electron transfers in these complexes occur, we have undertaken the synthesis and characterization of aryl-substituted nickel(II) bis(dithiolene) complexes bearing electronwithdrawing groups. Although a known compound, the nickel(II) bis(dithiolene) variant with p-ClC₆H₄- substituents has not been the subject of an X-ray diffraction study, nor has a coordination compound of this ligand with any other metal. We briefly relate here the structural and crystal packing features of $[((p-C|C_6H_4)_2C_2S_2)_2Ni]$.

Bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1-)]nickel(II) crystallizes upon a general position in triclinic space group $P\overline{1}$ (Fig. 2). Its idealized point-group symmetry is D_{2h} if the

Figure 2

Displacement ellipsoid plot (50% probability level) for bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1-)]nickel(II) with complete atom labeling.

phenyl groups are either perfectly perpendicular to, or fully planar with, the $Ni(S_2C_2)_2$ core. However, the four arene rings are canted from the NiS₂C₂ chelate ring to which they are attached by values ranging from $38.39(9) - 53.41(6)^\circ$, the average being 44.87°. A similar description is pertinent to the compounds featuring phenyl, *p*-CH₃C₆H₄-, and p- $CH_3OC_6H_4$ - substituents. The averaged S-C bond length in $[(p-ClC_6H_4)_2C_2S_2)_2Ni]$ is 1.707 (1) Å. This intermediate value between S-C thione (1.63 Å, Rindorf & Carlsen, 1979; Fu et al., 1997a,b, 1998) and vinyl thioether (1.74 Å; Tian et al., 1995; Yu et al., 2011) bond lengths is due to the presence of some thione character to the bond order in the radical monoanion arising from resonance form (e) (Fig. 1), even as the ligands are coordinating to the metal. Similarly, the C-C_{chelate} bond lengths are between the 1.54 and 1.34 Å values that are typical of carbon-carbon sp^3-sp^3 single and sp^2-sp^2 double bonds, respectively (Carey & Sundberg, 2000), further indicating the participation of both resonance forms (d) and (e) in the electronic structure of bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1-)]nickel(II).

The packing arrangement for bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1-)]nickel(II) is such that molecules occur in centrosymmetric pairs around the inversion centers that occur at each *bc* face of the cell (Fig. 3). These pairwise associations juxtapose two molecules in a nearly parallel planar fashion but with an offset that places the phenyl groups of one ligand over the relatively open NiS₄ interior of its partner molecule. Relatively close intermolecular C-H···S (2.884 Å) and C-H···Ni (3.032 Å) contacts are made (Fig. 4), two each that are related by the inversion symmetry. The C-H···S and C-N···Ni close contacts are less than the sum of the hydrogen-sulfur and hydrogen-nickel van der Waals radii (Batsanov, 2001) and appear to be favorable interactions that induce a slight but discernible concave bowing of the mol-

Packing arrangement of molecules of bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1–)]nickel(II) in the unit cell. Ellipsoids are shown at the 50% probability level, and all H atoms are omitted for clarity. Pairs of molecules are related by inversion across the center of symmetry at the center of the *bc* face.

Figure 4

Illustration of the C-H···S and C-H···Ni contacts that occur between closest pairs of bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1-)]-nickel(II) molecules. Ellipsoids are presented at the 50% probability level. Symmetry operation: -x, 1 - y, 1 - z.

Figure 5

Packing diagram for bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1-)]nickel(II) showing the parallel arrangement of molecules in the direction of the *ac* face diagonal. Displacement ellipsoids are depicted at the 50% probability level.

ecules toward one another (Fig. 4). This curvature, defined as the angle between the seven-atom mean planes given by each NiS₂C₂ chelate and the first carbon atom of each aryl ring, is 11.87 (5)°. It is likely that the angled disposition of some of the aryl substituents with respect to the NiS₂C₂ chelate have their origin in these intermolecular interactions. The larger packing arrangement is best described as translations of these centrosymmetric pairs along the *a* axis, the upshot of which is that extended molecular sheets are formed that are oriented in the direction of the *ac* face diagonal (Fig. 5).

Synthesis and crystallization

The title compound was prepared from 4,4'-dichlorobenzil, P_4S_{10} , and NiCl₂·6H₂O according to the literature procedure (Schrauzer & Mayweg, 1965). Yield: 50%. Intense green column-shaped crystals were grown by the diffusion of *tert*-butyl methyl ether vapor into a solution of the title compound in 1,2-dichloroethane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. One reflection affected by the beamstop was omitted from the final refinement.

Acknowledgements

Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility and for publication costs.

Table	1	
Experi	mental details.	

Crystal data	
Chemical formula	$[Ni(C_{14}H_8Cl_2S_2)_2]$
M _r	681.16
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	170
a, b, c (Å)	9.5487 (4), 11.4141 (4), 15.0254 (6)
α, β, γ (°)	107.486 (2), 94.791 (2), 111.423 (2)
$V(Å^3)$	1419.16 (10)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.37
Crystal size (mm)	$0.27 \times 0.15 \times 0.10$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction	Numerical (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.76, 0.88
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	89629, 8009, 5941
R _{int}	0.056
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.696
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.112, 1.03
No. of reflections	8009
No. of parameters	334
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	0.78, -0.45

Computer programs: *APEX3* and *SAINT* (Bruker, 2020), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018/1* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012), and *SHELXTL* (Sheldrick, 2008).

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1836589).

References

- Arumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). *Inorg. Chem.* 46, 3283–3288.
- Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
- Carey, F. A. & Sundberg, R. J. (2000). Advanced Organic Chemistry Part A: Structure and Mechanisms, 4th ed., p. 13. New York: Kluwer Academic/Plenum Publishers.
- Fu, T. Y., Leibovitch, M., Scheffer, J. R. & Trotter, J. (1997a). Acta Cryst. C53, 1255–1256.
- Fu, T. Y., Scheffer, J. R. & Trotter, J. (1997b). Acta Cryst. C53, 1257– 1259.
- Fu, T. Y., Scheffer, J. R. & Trotter, J. (1998). Acta Cryst. C54, 496-497.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kuramoto, N. & Asao, K. (1990). Dyes Pigments, 12, 65-76.
- Megnamisi-Belombe, M. & Nuber, B. (1989). Bull. Chem. Soc. Jpn, 62, 4092–4094.
- Miao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). *Inorg. Chim. Acta*, **376**, 619–627.
- Mueller-Westerhoff, U. T., Vance, B. & Yoon, D. I. (1991). *Tetrahedron*, **47**, 909–932.

- Nakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1–9.
- Perochon, R., Piekara-Sady, L., Jurga, W., Clérac, R. & Fourmigué, M. (2009). *Dalton Trans.* pp. 3052–3061.
- Rindorf, G. & Carlsen, L. (1979). Acta Cryst. B35, 1179–1182.
- Schrauzer, G. N. & Mayweg, V. P. (1965). J. Am. Chem. Soc. 87, 1483– 1489.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tian, Z.-Q., Donahue, J. P. & Holm, R. H. (1995). Inorg. Chem. 34, 5567–5572.
- Yu, C.-X., Zhu, Y.-L., Chen, Z.-X., Lu, M.-Z. & Wang, K. (2011). Acta Cryst. E67, 0821.

full crystallographic data

IUCrData (2022). 7, x220148 [https://doi.org/10.1107/S2414314622001481]

Bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1–)]nickel(II)

Sydney Koehne, Bailey Mirmelli, Joel T. Mague and James P. Donahue

Bis[1,2-bis(4-chlorophenyl)-2-sulfanylideneethane-1-thiolato]nickel(II)

Crystal data

[Ni(C₁₄H₈Cl₂S₂)₂] $M_r = 681.16$ Triclinic, $P\overline{1}$ a = 9.5487 (4) Å b = 11.4141 (4) Å c = 15.0254 (6) Å a = 107.486 (2)° $\beta = 94.791$ (2)° $\gamma = 111.423$ (2)° V = 1419.16 (10) Å³

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.3910 pixels mm⁻¹ φ and ω scans Absorption correction: numerical (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.76, T_{\max} = 0.88$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.112$ S = 1.038009 reflections 334 parameters 0 restraints Primary atom site location: dual Z = 2 F(000) = 688 $D_x = 1.594 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9023 reflections $\theta = 2.4-29.5^{\circ}$ $\mu = 1.37 \text{ mm}^{-1}$ T = 170 KColumn, intense green $0.27 \times 0.15 \times 0.10 \text{ mm}$

89629 measured reflections 8009 independent reflections 5941 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 29.7^\circ, \ \theta_{min} = 2.4^\circ$ $h = -13 \rightarrow 13$ $k = -15 \rightarrow 15$ $l = -20 \rightarrow 20$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0524P)^2 + 1.0724P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.78$ e Å⁻³ $\Delta\rho_{min} = -0.45$ e Å⁻³

Special details

Experimental. The diffraction data were obtained from sets 11 of frames, each of width 0.5° in ω or φ , collected with scan parameters determined by the "strategy" routine in *APEX3*. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

 $U_{\rm iso}*/U_{\rm eq}$ х Ζ v 0.03136 (9) Ni1 0.35173 (3) 0.63386(3)0.56629(2)C11 0.0646(2)1.01198 (10) 0.89129 (9) 1.11457 (5) Cl2 0.44766 (10) 0.05522(7)0.82193(5)0.05315 (18) C13 -0.27660(10)0.36001 (13) 0.00470(6) 0.0866(3)Cl4 0.00224(9)0.05241 (18) 1.14473 (7) 0.34765 (5) **S**1 0.51018(7) 0.75530(5)0.69986 (4) 0.03387(13)0.03250 (13) S2 0.35562 (7) 0.45659 (5) 0.58196 (4) S3 0.19444(7)0.50969(5)0.43335 (4) 0.03449 (13) S4 0.32801 (6) 0.80720 (5) 0.55486 (4) 0.03159 (12) C1 0.6573(3)0.7049(2)0.83698 (16) 0.0316(4)C2 0.6637(3)0.8171 (2) 0.91031 (18) 0.0402(5)0.048* H2 0.591392 0.854176 0.902039 C3 0.8754(3)0.99479 (19) 0.0458 (6) 0.7730(3)0.055* H3 0.952416 0.776586 1.043937 C4 0.8768(3)0.8206(3)1.00694 (18) 0.0423 (6) C5 0.8749(3)0.7106(3)0.9358(2)0.0460 (6) H5 0.947798 0.674405 0.944845 0.055* C6 0.7664(3)0.6533 (3) 0.85115 (18) 0.0392(5)H6 0.765655 0.577825 0.801809 0.047* C7 0.5440(3)0.74536(16) 0.0307(4)0.6456(2)C8 0.4672(3)0.5076(2)0.69248 (16) 0.0314(4)C9 0.0296 (4) 0.4672(2)0.3986(2)0.72654 (16) C10 0.4301(3)0.3963(2)0.81393 (16) 0.0334(5)0.040* H10 0.410317 0.468058 0.853727 C11 0.0353(5)0.4218(3)0.2903(2)0.84348 (17) H11 0.394413 0.902488 0.042* 0.288101 0.4541 (3) 0.1880(2) C12 0.0343 (5) 0.78565 (17) C13 0.4911 (3) 0.1876 (2) 0.69874 (17) 0.0349 (5) H13 0.512544 0.116288 0.659864 0.042* C14 0.4966(3)0.2923(2)0.66892 (17) 0.0325(5)H14 0.520569 0.292032 0.608783 0.039* C15 0.0353(3)0.5525(2)0.29789 (17) 0.0330(5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C16	-0.0885 (3)	0.4265 (3)	0.27169 (19)	0.0409 (5)
H16	-0.106881	0.381348	0.316152	0.049*
C17	-0.1839 (3)	0.3672 (3)	0.1819 (2)	0.0527 (7)
H17	-0.268122	0.281852	0.164421	0.063*
C18	-0.1553 (3)	0.4339 (3)	0.11759 (19)	0.0512 (7)
C19	-0.0334 (3)	0.5563 (3)	0.14068 (19)	0.0475 (6)
H19	-0.015078	0.600008	0.095417	0.057*
C20	0.0625 (3)	0.6152 (3)	0.23024 (18)	0.0395 (5)
H20	0.147957	0.699344	0.246213	0.047*
C21	0.1388 (2)	0.6145 (2)	0.39363 (16)	0.0308 (4)
C22	0.1954 (2)	0.7506 (2)	0.45073 (16)	0.0304 (4)
C23	0.1474 (2)	0.8490 (2)	0.42788 (15)	0.0295 (4)
C24	-0.0076 (3)	0.8158 (2)	0.39296 (17)	0.0343 (5)
H24	-0.082964	0.729787	0.385917	0.041*
C25	-0.0535 (3)	0.9061 (2)	0.36839 (17)	0.0353 (5)
H25	-0.159136	0.882127	0.344000	0.042*
C26	0.0569 (3)	1.0315 (2)	0.37998 (17)	0.0349 (5)
C27	0.2113 (3)	1.0700 (2)	0.41777 (18)	0.0349 (5)
H27	0.285423	1.157701	0.427417	0.042*
C28	0.2555 (3)	0.9781 (2)	0.44116 (17)	0.0319 (4)
H28	0.360993	1.003321	0.466667	0.038*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.03557 (16)	0.02817 (15)	0.03695 (16)	0.01568 (12)	0.01086 (12)	0.01650 (12)
0.0720 (5)	0.0606 (5)	0.0441 (4)	0.0149 (4)	-0.0060(3)	0.0158 (3)
0.0827 (5)	0.0370 (3)	0.0519 (4)	0.0335 (3)	0.0112 (3)	0.0221 (3)
0.0569 (5)	0.1278 (9)	0.0417 (4)	0.0310 (5)	-0.0044 (3)	-0.0022 (5)
0.0681 (4)	0.0482 (4)	0.0639 (4)	0.0402 (3)	0.0187 (3)	0.0293 (3)
0.0401 (3)	0.0266 (3)	0.0392 (3)	0.0155 (2)	0.0100 (2)	0.0150 (2)
0.0382 (3)	0.0270 (3)	0.0364 (3)	0.0152 (2)	0.0095 (2)	0.0143 (2)
0.0407 (3)	0.0255 (3)	0.0398 (3)	0.0148 (2)	0.0085 (2)	0.0136 (2)
0.0346 (3)	0.0263 (3)	0.0358 (3)	0.0140 (2)	0.0065 (2)	0.0121 (2)
0.0365 (11)	0.0275 (10)	0.0344 (11)	0.0145 (9)	0.0131 (9)	0.0126 (9)
0.0494 (14)	0.0340 (12)	0.0426 (13)	0.0231 (11)	0.0139 (11)	0.0126 (10)
0.0614 (17)	0.0352 (13)	0.0393 (13)	0.0203 (12)	0.0158 (12)	0.0095 (11)
0.0470 (14)	0.0411 (13)	0.0370 (12)	0.0132 (11)	0.0078 (11)	0.0183 (11)
0.0453 (14)	0.0478 (15)	0.0491 (15)	0.0244 (12)	0.0081 (12)	0.0169 (12)
0.0429 (13)	0.0389 (13)	0.0388 (12)	0.0226 (11)	0.0115 (10)	0.0100 (10)
0.0331 (11)	0.0318 (11)	0.0379 (11)	0.0182 (9)	0.0162 (9)	0.0186 (9)
0.0366 (11)	0.0325 (11)	0.0360 (11)	0.0201 (9)	0.0160 (9)	0.0171 (9)
0.0310 (10)	0.0260 (10)	0.0358 (11)	0.0143 (8)	0.0100 (9)	0.0125 (9)
0.0403 (12)	0.0303 (11)	0.0365 (11)	0.0199 (10)	0.0137 (9)	0.0131 (9)
0.0448 (13)	0.0326 (11)	0.0346 (11)	0.0197 (10)	0.0103 (10)	0.0151 (9)
0.0384 (12)	0.0292 (11)	0.0386 (12)	0.0163 (9)	0.0027 (9)	0.0149 (9)
0.0378 (12)	0.0283 (11)	0.0408 (12)	0.0180 (9)	0.0081 (10)	0.0099 (9)
0.0341 (11)	0.0297 (11)	0.0369 (11)	0.0159 (9)	0.0122 (9)	0.0117 (9)
	$\begin{array}{c} U^{11} \\ \hline 0.03557(16) \\ 0.0720(5) \\ 0.0827(5) \\ 0.0569(5) \\ 0.0681(4) \\ 0.0401(3) \\ 0.0382(3) \\ 0.0407(3) \\ 0.0346(3) \\ 0.0365(11) \\ 0.0407(14) \\ 0.0614(17) \\ 0.0470(14) \\ 0.0470(14) \\ 0.0453(14) \\ 0.0429(13) \\ 0.0331(11) \\ 0.0366(11) \\ 0.0310(10) \\ 0.0403(12) \\ 0.0448(13) \\ 0.0378(12) \\ 0.0341(11) \\ \end{array}$	U^{11} U^{22} $0.03557(16)$ $0.02817(15)$ $0.0720(5)$ $0.0606(5)$ $0.0827(5)$ $0.0370(3)$ $0.0569(5)$ $0.1278(9)$ $0.0681(4)$ $0.0482(4)$ $0.0401(3)$ $0.0266(3)$ $0.0382(3)$ $0.0270(3)$ $0.0407(3)$ $0.0263(3)$ $0.0365(11)$ $0.0275(10)$ $0.0494(14)$ $0.0340(12)$ $0.0614(17)$ $0.0352(13)$ $0.0470(14)$ $0.0411(13)$ $0.0470(14)$ $0.0478(15)$ $0.0429(13)$ $0.0389(13)$ $0.0310(10)$ $0.0260(10)$ $0.0403(12)$ $0.0303(11)$ $0.0384(12)$ $0.0283(11)$ $0.0378(12)$ $0.0283(11)$ $0.0341(11)$ $0.0297(11)$	U^{11} U^{22} U^{33} 0.03557 (16)0.02817 (15)0.03695 (16)0.0720 (5)0.0606 (5)0.0441 (4)0.0827 (5)0.0370 (3)0.0519 (4)0.0569 (5)0.1278 (9)0.0417 (4)0.0681 (4)0.0482 (4)0.0639 (4)0.0401 (3)0.0266 (3)0.0392 (3)0.0382 (3)0.0270 (3)0.0364 (3)0.0407 (3)0.0255 (3)0.0398 (3)0.0346 (3)0.0275 (10)0.0344 (11)0.0494 (14)0.0340 (12)0.0426 (13)0.0470 (14)0.0411 (13)0.0370 (12)0.0453 (14)0.0478 (15)0.0491 (15)0.0429 (13)0.0389 (13)0.0388 (12)0.0310 (10)0.0260 (10)0.0358 (11)0.0303 (12)0.0303 (11)0.0365 (11)0.0344 (12)0.0426 (13)0.0378 (12)0.0378 (12)0.0303 (11)0.0366 (12)0.0378 (12)0.0283 (11)0.0386 (12)0.0378 (12)0.0283 (11)0.0408 (12)0.0341 (11)0.0297 (11)0.0369 (11)	U^{11} U^{22} U^{33} U^{12} 0.03557 (16)0.02817 (15)0.03695 (16)0.01568 (12)0.0720 (5)0.0606 (5)0.0441 (4)0.0149 (4)0.0827 (5)0.0370 (3)0.0519 (4)0.0335 (3)0.0569 (5)0.1278 (9)0.0417 (4)0.0310 (5)0.0681 (4)0.0482 (4)0.0639 (4)0.0402 (3)0.0401 (3)0.0266 (3)0.0392 (3)0.0155 (2)0.0382 (3)0.0270 (3)0.0364 (3)0.0152 (2)0.0407 (3)0.0255 (3)0.0398 (3)0.0148 (2)0.0346 (3)0.0263 (3)0.0358 (3)0.0140 (2)0.0365 (11)0.0275 (10)0.0344 (11)0.0145 (9)0.0494 (14)0.0340 (12)0.0426 (13)0.0231 (11)0.0614 (17)0.0352 (13)0.0393 (13)0.0203 (12)0.0470 (14)0.0411 (13)0.0370 (12)0.0132 (11)0.0429 (13)0.0389 (13)0.0388 (12)0.0226 (11)0.0331 (11)0.0318 (11)0.0360 (11)0.0201 (9)0.0310 (10)0.0260 (10)0.0358 (11)0.0143 (8)0.0403 (12)0.033 (11)0.0365 (11)0.0199 (10)0.0344 (12)0.0226 (11)0.0366 (11)0.0197 (10)0.0384 (12)0.0226 (11)0.0386 (12)0.0163 (9)0.0378 (12)0.0233 (11)0.0366 (12)0.0163 (9)0.0341 (11)0.0297 (11)0.0369 (11)0.0159 (9)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.03557 (16)0.02817 (15)0.03695 (16)0.01568 (12)0.01086 (12)0.0720 (5)0.0606 (5)0.0441 (4)0.0149 (4) -0.0060 (3)0.0827 (5)0.0370 (3)0.0519 (4)0.0335 (3)0.0112 (3)0.0569 (5)0.1278 (9)0.0417 (4)0.0310 (5) -0.0044 (3)0.0681 (4)0.0482 (4)0.0639 (4)0.0402 (3)0.0187 (3)0.0401 (3)0.0266 (3)0.0392 (3)0.0155 (2)0.0100 (2)0.0382 (3)0.0270 (3)0.0394 (3)0.0148 (2)0.0085 (2)0.0407 (3)0.0255 (3)0.0398 (3)0.0148 (2)0.0085 (2)0.0346 (3)0.0263 (3)0.0358 (3)0.0140 (2)0.0065 (2)0.0365 (11)0.0275 (10)0.0344 (11)0.0145 (9)0.0131 (9)0.0494 (14)0.0340 (12)0.0426 (13)0.0231 (11)0.0139 (11)0.0614 (17)0.0352 (13)0.0393 (13)0.0203 (12)0.0158 (12)0.0470 (14)0.0411 (13)0.0370 (12)0.0132 (11)0.0078 (11)0.0453 (14)0.0478 (15)0.0491 (15)0.0244 (12)0.0081 (12)0.0310 (10)0.0260 (10)0.0358 (11)0.0143 (8)0.0100 (9)0.0310 (10)0.0260 (10)0.0358 (11)0.0199 (10)0.0137 (9)0.0448 (13)0.0326 (11)0.0366 (11)0.0197 (10)0.0103 (10)0.0384 (12)0.0283 (11)0.0366 (12)0.0163 (9)0.0027 (9)0.0378 (1

C15	0.0331 (11)	0.0297 (11)	0.0371 (12)	0.0164 (9)	0.0089 (9)	0.0082 (9)	
C16	0.0363 (12)	0.0365 (12)	0.0449 (14)	0.0140 (10)	0.0136 (10)	0.0079 (11)	
C17	0.0325 (13)	0.0517 (16)	0.0531 (16)	0.0120 (12)	0.0110 (12)	-0.0032 (13)	
C18	0.0410 (14)	0.0702 (19)	0.0369 (13)	0.0308 (14)	0.0056 (11)	0.0028 (13)	
C19	0.0536 (16)	0.0589 (17)	0.0385 (13)	0.0344 (14)	0.0107 (12)	0.0145 (12)	
C20	0.0444 (13)	0.0385 (13)	0.0404 (13)	0.0219 (11)	0.0105 (10)	0.0139 (10)	
C21	0.0303 (10)	0.0281 (10)	0.0397 (12)	0.0141 (9)	0.0116 (9)	0.0161 (9)	
C22	0.0286 (10)	0.0309 (11)	0.0385 (11)	0.0149 (9)	0.0119 (9)	0.0170 (9)	
C23	0.0318 (11)	0.0277 (10)	0.0327 (11)	0.0142 (9)	0.0107 (9)	0.0121 (9)	
C24	0.0307 (11)	0.0293 (11)	0.0458 (13)	0.0127 (9)	0.0127 (10)	0.0157 (10)	
C25	0.0307 (11)	0.0374 (12)	0.0408 (12)	0.0177 (9)	0.0073 (9)	0.0132 (10)	
C26	0.0466 (13)	0.0349 (12)	0.0363 (12)	0.0270 (10)	0.0141 (10)	0.0161 (10)	
C27	0.0372 (12)	0.0255 (10)	0.0453 (13)	0.0128 (9)	0.0168 (10)	0.0152 (9)	
C28	0.0301 (10)	0.0278 (10)	0.0393 (12)	0.0131 (9)	0.0106 (9)	0.0117 (9)	

Geometric parameters (Å, °)

Nil—S2	2.1192 (6)	C11—C12	1.383 (3)
Ni1—S3	2.1207 (7)	C11—H11	0.9500
Ni1—S4	2.1261 (6)	C12—C13	1.380 (3)
Ni1—S1	2.1277 (7)	C13—C14	1.382 (3)
Cl1—C4	1.743 (3)	С13—Н13	0.9500
Cl2—C12	1.741 (2)	C14—H14	0.9500
Cl3—C18	1.740 (3)	C15—C20	1.400 (3)
Cl4—C26	1.733 (2)	C15—C16	1.400 (3)
S1—C7	1.706 (2)	C15—C21	1.479 (3)
S2—C8	1.704 (2)	C16—C17	1.380 (4)
S3—C21	1.706 (2)	C16—H16	0.9500
S4—C22	1.713 (2)	C17—C18	1.387 (5)
C1—C2	1.393 (3)	С17—Н17	0.9500
C1—C6	1.402 (3)	C18—C19	1.371 (4)
C1—C7	1.477 (3)	C19—C20	1.379 (4)
C2—C3	1.381 (4)	С19—Н19	0.9500
С2—Н2	0.9500	С20—Н20	0.9500
C3—C4	1.378 (4)	C21—C22	1.397 (3)
С3—Н3	0.9500	C22—C23	1.473 (3)
C4—C5	1.376 (4)	C23—C24	1.397 (3)
C5—C6	1.379 (4)	C23—C28	1.398 (3)
С5—Н5	0.9500	C24—C25	1.386 (3)
С6—Н6	0.9500	C24—H24	0.9500
C7—C8	1.399 (3)	C25—C26	1.381 (3)
C8—C9	1.480 (3)	С25—Н25	0.9500
C9—C10	1.394 (3)	C26—C27	1.388 (3)
C9—C14	1.400 (3)	C27—C28	1.386 (3)
C10—C11	1.387 (3)	С27—Н27	0.9500
С10—Н10	0.9500	C28—H28	0.9500
S2—Ni1—S3	87.80 (2)	C12—C13—H13	120.4

S2—Ni1—S4	174.64 (3)	C14—C13—H13	120.4
S3—Ni1—S4	91.24 (2)	C13—C14—C9	120.6 (2)
S2—Ni1—S1	91.15 (2)	C13—C14—H14	119.7
S3—Ni1—S1	178.94 (2)	C9—C14—H14	119.7
S4—Ni1—S1	89.82 (2)	C20—C15—C16	118.6 (2)
C7—S1—Ni1	105.72 (8)	C20—C15—C21	121.0 (2)
C8—S2—Ni1	105.67 (8)	C16-C15-C21	120.4(2)
C21—\$3—Ni1	105.66 (8)	C17—C16—C15	120.6(3)
C22—S4—Nil	105.76 (8)	C17—C16—H16	119.7
C_{2} C_{1} C_{6}	1179(2)	C15 - C16 - H16	119.7
$C_{2} - C_{1} - C_{7}$	1213(2)	C16 - C17 - C18	1191(3)
C6-C1-C7	120.7(2)	C16 - C17 - H17	120.5
C_{3} C_{2} C_{1}	120.7(2) 121.3(2)	C18 - C17 - H17	120.5
C_{3} C_{2} H_{2}	119.3	C19 - C18 - C17	120.5 121.6(3)
$C_1 - C_2 - H_2$	119.3	C19 - C18 - C13	121.0(3) 1193(2)
C4 - C3 - C2	119.2 (2)	C17 - C18 - C13	119.3(2) 119.1(2)
C4-C3-H3	119.2 (2)	C18 - C19 - C20	119.1(2) 119.3(3)
$C_2 C_3 H_3$	120.4	$C_{10} = C_{10} = C_{20}$	120.3
$C_2 = C_3 = 115$	120.4 121 1 (2)	$C_{10} = C_{10} = H_{10}$	120.3
$C_{5} = C_{4} = C_{5}$	121.1(2) 110.5(2)	$C_{20} = C_{19} = 1119$	120.3 120.8(2)
$C_3 = C_4 = C_{11}$	119.3(2)	$C_{19} = C_{20} = C_{13}$	120.8 (3)
C_{3}	119.4(2)	$C_{19} = C_{20} = H_{20}$	119.0
C4 - C5 + 5	119.0 (2)	$C_{13} = C_{20} = H_{20}$	119.0
C4—C5—H5	120.2	$C_{22} = C_{21} = C_{13}$	124.79(19)
C6-C5-H3	120.2	$C_{22} = C_{21} = S_{3}$	119.14(17)
	120.9 (2)	C15 - C21 - S3	110.05(10) 124.2(2)
C_{3}	119.6	$C_{21} = C_{22} = C_{23}$	124.3(2)
CI = Cb = Hb	119.6	$C_{21} = C_{22} = S_{4}$	118.07 (16)
	124.84 (19)	$C_{23} = C_{22} = S_{4}$	117.00(17)
$C_8 = C_7 = S_1$	118.29 (17)	$C_{24} = C_{23} = C_{28}$	118.3 (2)
CI = C = SI	116.84 (16)	$C_{24} = C_{23} = C_{22}$	120.7(2)
C/-C8-C9	125.3 (2)	$C_{28} = C_{23} = C_{22}$	120.95 (19)
C/-C8-S2	118.86 (16)	$C_{25} - C_{24} - C_{23}$	121.3 (2)
C9—C8—S2	115.76 (17)	C25—C24—H24	119.4
C10-C9-C14	118.9 (2)	C23—C24—H24	119.4
C10-C9-C8	120.74 (19)	C26—C25—C24	118.9 (2)
C14—C9—C8	120.3 (2)	C26—C25—H25	120.6
C11—C10—C9	120.8 (2)	C24—C25—H25	120.6
C11—C10—H10	119.6	$C_{25} - C_{26} - C_{27}$	121.5 (2)
C9—C10—H10	119.6	C25—C26—C14	119.58 (18)
C12—C11—C10	118.9 (2)	C27—C26—C14	118.88 (18)
C12—C11—H11	120.5	C28—C27—C26	118.8 (2)
C10—C11—H11	120.5	C28—C27—H27	120.6
C13—C12—C11	121.6 (2)	C26—C27—H27	120.6
C13—C12—Cl2	118.56 (18)	C27—C28—C23	121.1 (2)
C11—C12—Cl2	119.87 (18)	C27—C28—H28	119.4
C12—C13—C14	119.3 (2)	C23—C28—H28	119.4
$C(C_1, C_2, C_2)$	-0.5 (4)	C20 C15 C16 C17	-1.7(4)
10 - 1 - 12 - 13	-0.3 (4)	$C_{20} - C_{13} - C_{10} - C_{17}$	-1.7 (4)

C7—C1—C2—C3	-177.8 (2)	C21—C15—C16—C17	-179.0 (2)
C1—C2—C3—C4	-0.6 (4)	C15—C16—C17—C18	0.3 (4)
C2—C3—C4—C5	1.2 (4)	C16—C17—C18—C19	0.9 (4)
C2—C3—C4—Cl1	-178.4 (2)	C16—C17—C18—Cl3	-179.4 (2)
C3—C4—C5—C6	-0.6 (4)	C17—C18—C19—C20	-0.6 (4)
Cl1—C4—C5—C6	179.0 (2)	Cl3—C18—C19—C20	179.73 (19)
C4—C5—C6—C1	-0.5 (4)	C18—C19—C20—C15	-0.9 (4)
C2-C1-C6-C5	1.1 (4)	C16—C15—C20—C19	2.0 (3)
C7—C1—C6—C5	178.4 (2)	C21—C15—C20—C19	179.3 (2)
C2-C1-C7-C8	-142.3 (2)	C20—C15—C21—C22	44.4 (3)
C6-C1-C7-C8	40.5 (3)	C16—C15—C21—C22	-138.4 (2)
C2-C1-C7-S1	39.8 (3)	C20—C15—C21—S3	-133.8 (2)
C6-C1-C7-S1	-137.4 (2)	C16—C15—C21—S3	43.5 (3)
Ni1—S1—C7—C8	-0.78 (19)	Ni1—S3—C21—C22	-2.11 (19)
Ni1—S1—C7—C1	177.20 (14)	Ni1—S3—C21—C15	176.18 (15)
C1—C7—C8—C9	10.5 (3)	C15—C21—C22—C23	6.6 (3)
S1—C7—C8—C9	-171.64 (17)	S3—C21—C22—C23	-175.30 (17)
C1—C7—C8—S2	-172.99 (17)	C15—C21—C22—S4	-174.10 (17)
S1—C7—C8—S2	4.8 (3)	S3—C21—C22—S4	4.0 (3)
Ni1—S2—C8—C7	-6.26 (19)	Ni1—S4—C22—C21	-3.77 (19)
Ni1—S2—C8—C9	170.53 (14)	Ni1—S4—C22—C23	175.60 (14)
C7—C8—C9—C10	51.3 (3)	C21—C22—C23—C24	42.9 (3)
S2-C8-C9-C10	-125.3 (2)	S4—C22—C23—C24	-136.43 (19)
C7—C8—C9—C14	-132.1 (2)	C21—C22—C23—C28	-137.6 (2)
S2—C8—C9—C14	51.3 (3)	S4—C22—C23—C28	43.1 (3)
C14—C9—C10—C11	-0.2 (3)	C28—C23—C24—C25	2.5 (3)
C8—C9—C10—C11	176.4 (2)	C22—C23—C24—C25	-178.0 (2)
C9—C10—C11—C12	1.3 (4)	C23—C24—C25—C26	-0.7 (4)
C10-C11-C12-C13	-1.3 (4)	C24—C25—C26—C27	-1.7 (4)
C10-C11-C12-Cl2	178.92 (18)	C24—C25—C26—Cl4	178.84 (18)
C11—C12—C13—C14	0.2 (4)	C25—C26—C27—C28	2.2 (4)
Cl2—C12—C13—C14	179.98 (18)	Cl4—C26—C27—C28	-178.26 (18)
C12—C13—C14—C9	0.9 (3)	C26—C27—C28—C23	-0.4 (3)
C10-C9-C14-C13	-0.9 (3)	C24—C23—C28—C27	-1.9 (3)
C8—C9—C14—C13	-177.6 (2)	C22—C23—C28—C27	178.5 (2)