

ISSN 2414-3146

Received 12 January 2022 Accepted 31 January 2022

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; 2-hydroxybenzenaminium cation; acetate anion; hydrogen bond.

CCDC reference: 2149479

Structural data: full structural data are available from iucrdata.iucr.org

2-Hydroxybenzenaminium acetate

Nabila Moussa Slimane,^a Nesrine Benarous,^a* Hassiba Bougueria^{a,b} and Aouatef Cherouana^a

data reports

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Département de Chimie, Université des Frères Mentouri, Constantine-1, 25017 Constantine, Algeria, and ^bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria. *Correspondence e-mail: nesrine.benarous@umc.edu.dz, nesrine.benarous@umc.edu.dz

In the title molecular salt, $C_6H_8NO^+ \cdot C_2H_3O_2^-$, the cations and anions are linked by $O-H \cdot \cdot \cdot O$ and $N-H \cdot \cdot \cdot O$ hydrogen bonds, generating a three-dimensional network.

Structure description

In recent years, substituted anilines and their derivatives have been studied extensively for applications as antibacterials and in non-linear optical systems (Vivek & Muruga-koothan, 2014). Aminophenols containing equal stoichiometries of -OH, and $-NH_2$ groups have been widely studied to understand the supramolecular synthons existing in their assemblies (Allen *et al.*, 1997; Dey *et al.*, 2004).

In spite of this interest, there has been very little structural characterization of *ortho*hydroxyanilinium salts. The structures reported include 2-hydroxyanilinium squarate (Yeşilel, 2007), 2-hydroxyanilinium hydrogen phthalate (Jagan & Sivakumar, 2009), 2-hydroxyanilinium 3,5-dinitrosalicylate (Smith *et al.*, 2011), 2-hydroxyanilinium 3,5-dinitrobenzoate (Zhao, 2012), and 2-hydroxyanilinium 2-hydroxy-5-nitrobenzoate and 2-hydroxyanilinium 3,5-dinitrobenzoate (Jin & Wang, 2013).

Here, we report the structure of 2-hydroxybenzenaminium acetate, $C_6H_8NO^+$ ·- $C_2H_3O_2^-$, **1**, obtained from the reaction of 2-hydroxyaniline and acetic acid. The molecular structure of the title compound is shown in Fig.1. The asymmetric unit contains one 2-hydroxybenzenaminium cation and one acetate anion. The cation is protonated at the amine N atom (N1) and linked to the anion by an N-H···O hydrogen bond (Fig. 1 and Table 1).

The best planes through the 2-hydroxybenzenaminium cation and acetate anion are almost perpendicular to each other, subtending a dihedral angle of 79.23 (4) $^{\circ}$. The C-

Figure 1

Diagram showing the $C_6H_8NO^+$ cation and $C_2H_3O_2^-$ anion linked by an $N-H\cdots O$ interaction (shown as a dashed line). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A portion of one corrugated layer viewed along the *b*-axis direction. O–H\···O and N–H···O hydrogen bonds are shown as dashed lines.

Figure 3 View of two layers viewed along the *b*- and *c*-axis directions.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

		,		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots O3^{i}$ $N1 - H1A \cdots O2$ $N1 - H1B \cdots O2^{ii}$ $N1 - H1C \cdots O3^{iii}$ $C6 - H6 \cdots O3^{iii}$	0.894 (14) 0.930 (13) 0.923 (12) 0.935 (12) 0.95	1.709 (14) 1.807 (13) 1.891 (12) 1.834 (12) 2.55	2.6025 (9) 2.7251 (9) 2.8019 (9) 2.7531 (8) 3.2493 (11)	177.8 (16) 168.7 (12) 168.8 (11) 167.2 (12) 131

Symmetry codes: (i) x, y + 1, z; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$C_6H_8NO^+ \cdot C_2H_3O_2^-$
M _r	169.18
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.9150 (2), 7.2523 (2), 11.9573 (3)
β (°)	98.558 (2)
$V(\text{\AA}^3)$	850.23 (4)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.10 \times 0.10 \times 0.08$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur
	Sapphire2 CCD
Absorption correction	Integration (<i>ABSORB</i> ; DeTitta, 1985)
T_{\min}, T_{\max}	0.966, 0.991
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	52913, 3105, 2736
R _{int}	0.038
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.766
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.109, 1.05

$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.109, 1.05
No. of reflections	3105
No. of parameters	122
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.49, -0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

OH bond length (C2-O1) of 1.3520 (9) Å is similar to that observed for structures containing 2-hydroxybenzenaminium as a cation [1.350 (3) Å; Jin & Wang, 2013]. All bond lengths and angles in the 2-hydroxybenzenaminium cation are within normal ranges (Zhao, 2012).

The presence of hydroxyl groups leads to the formation of intermolecular O1-H1···O3 hydrogen bonds. The O1-H1···O3 and N1-H1C···O3 cation-anion hydrogen bonds generate a succession of infinite chains [graph set $C_2^1(7)$] that propagate in a zigzag manner along the *c*-axis direction (Fig. 2 and Table 1). The N1-H1A···O2 hydrogen bonds (Table 1) link the chains into corrugated layers parallel to the *bc* plane, which are formed by a succession of $R_6^5(22)$ rings (Fig. 2). N1-H1B···O2 hydrogen bonds lead to the formation of a three-dimensional network (Fig. 3). No significant π - π stacking interactions were observed, despite the presence of an aromatic ring in the cation.

Synthesis and crystallization

The title compound was prepared by heating of a mixture of 2-aminophenol (Alfa Aesar, purity 98%) and acetic acid. This mixture was obtained by dissolution and agitation under reflux for 3 h of 0.5 g of the 2-aminophenol and 0.27 g of acetic acid in a 1:1 stoichiometric ratio in a hot ethanolic solution (20 ml). After warming for a few minutes using a water bath, the solution was cooled and kept at room temperature. Within a few days, yellow needle-like crystals suitable for the X-ray analysis were obtained (yield 60%) by evaporation of the solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors acknowledge CRM2, Institut Jean Barriol (UMR 7036 CNRS, University de Lorraine, France), for providing access to the experimental crystallographic facilities.

References

- Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480.
- DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.
- Dey, A., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2004). *Chem. Commun.* pp. 2528–2529.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Jagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, 0414-0418.
- Jin, S. & Wang, D. (2013). J. Mol. Struct. 1037, 242-255.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649–1662.
- Vivek, P. & Murugakoothan, P. (2014). Appl. Phys. A, 115, 1139– 1146.
- Yeşilel, O. Z., Paşaoğlub, H., Yılan, O. O. & Büyükgüngör, O. (2007). Z. Naturforsch. Teil B, **62**, 823–828.
- Zhao, Q. (2012). Acta Cryst. E68, 01535.

full crystallographic data

IUCrData (2022). 7, x220112 [https://doi.org/10.1107/S2414314622001122]

2-Hydroxybenzenaminium acetate

Nabila Moussa Slimane, Nesrine Benarous, Hassiba Bougueria and Aouatef Cherouana

2-Hydroxybenzenaminium acetate

Crystal data	
$C_6H_8NO^+ \cdot C_2H_3O_2^-$	F(000) = 360
$M_r = 169.18$	$D_{\rm x} = 1.322 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.9150 (2) Å	Cell parameters from 52927 reflections
b = 7.2523 (2) Å	$\theta = 3.3 - 33.0^{\circ}$
c = 11.9573 (3) Å	$\mu=0.10~\mathrm{mm^{-1}}$
$\beta = 98.558 \ (2)^{\circ}$	T = 100 K
$V = 850.23 (4) Å^3$	Prism, yellow
<i>Z</i> = 4	$0.1 \times 0.1 \times 0.08 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur Sapphire2 CCD	3105 independent reflections
diffractometer	2736 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.038$
Absorption correction: integration	$\theta_{\rm max} = 33.0^\circ, \ \theta_{\rm min} = 3.3^\circ$
(ABSORB; DeTitta, 1985)	$h = -15 \rightarrow 15$
$T_{\min} = 0.966, \ T_{\max} = 0.991$	$k = -11 \rightarrow 11$
52913 measured reflections	$l = -17 \rightarrow 18$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: mixed
$wR(F^2) = 0.109$	H atoms treated by a mixture of independent
S = 1.05	and constrained refinement
3105 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0542P)^2 + 0.320P]$
122 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta ho_{ m max} = 0.49 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. The hydrogen atoms of the NH₃ and hydroxyl groups were localized in the difference-Fourier map and refined with $U_{iso}(H)$ set to $1.5U_{eq}(O)$ or $1.2U_{eq}(N)$. All the other hydrogen atoms were placed in calculated positions with C—H = 0.95 Å for aromatic CH and C—H = 0.96 Å for CH₃ and refined using a riding model with fixed isotropic displacement parameters [$U_{iso}(H) = 1.2U_{eq}(C$ -aromatic) and $U_{iso}(H) = 1.5U_{eq}(C$ -methyl)].

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.12872 (6)	0.83288 (9)	0.65994 (5)	0.01629 (13)	
H1	0.1381 (14)	0.928 (2)	0.6142 (12)	0.024*	
O2	0.09592 (7)	0.29888 (8)	0.65411 (5)	0.01686 (13)	
03	0.15033 (7)	0.10731 (8)	0.52349 (5)	0.01664 (13)	
N1	0.12133 (7)	0.56570 (9)	0.81635 (5)	0.01242 (13)	
H1A	0.1133 (12)	0.4870 (19)	0.7543 (10)	0.015*	
H1B	0.0461 (12)	0.6407 (18)	0.8160 (10)	0.015*	
H1C	0.1280 (12)	0.4909 (18)	0.8806 (10)	0.015*	
C3	0.35594 (9)	0.93249 (12)	0.74235 (7)	0.01774 (16)	
Н3	0.358215	1.025256	0.686567	0.021*	
C5	0.46510 (9)	0.77468 (13)	0.90970 (8)	0.01994 (17)	
Н5	0.540747	0.760726	0.967953	0.024*	
C4	0.46648 (9)	0.91021 (13)	0.82754 (8)	0.02042 (17)	
H4	0.543738	0.988327	0.829677	0.025*	
C2	0.24139 (8)	0.81883 (11)	0.73847 (6)	0.01328 (14)	
C6	0.35205 (8)	0.65957 (12)	0.90596 (7)	0.01606 (15)	
H6	0.350402	0.566114	0.961414	0.019*	
C1	0.24197 (8)	0.68208 (10)	0.82091 (6)	0.01217 (14)	
C8	0.13683 (8)	0.26870 (11)	0.56096 (6)	0.01288 (14)	
C7	0.16938 (9)	0.42886 (12)	0.48900 (8)	0.01940 (16)	
H7A	0.096016	0.443787	0.425025	0.029*	
H7B	0.255531	0.405118	0.460661	0.029*	
H7C	0.177717	0.541719	0.534587	0.029*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0172 (3)	0.0157 (3)	0.0153 (3)	-0.0014 (2)	0.0001 (2)	0.0046 (2)
02	0.0220 (3)	0.0142 (3)	0.0157 (3)	-0.0024(2)	0.0073 (2)	-0.0030(2)
03	0.0255 (3)	0.0124 (3)	0.0124 (2)	0.0019 (2)	0.0041 (2)	-0.00051 (19)
N1	0.0147 (3)	0.0109 (3)	0.0120 (3)	-0.0006(2)	0.0030(2)	0.0005 (2)
C3	0.0180 (3)	0.0161 (3)	0.0198 (4)	-0.0030 (3)	0.0053 (3)	0.0024 (3)
C5	0.0150 (3)	0.0222 (4)	0.0217 (4)	-0.0007(3)	-0.0003(3)	0.0001 (3)
C4	0.0154 (3)	0.0212 (4)	0.0248 (4)	-0.0040 (3)	0.0036 (3)	0.0000 (3)
C2	0.0149 (3)	0.0121 (3)	0.0131 (3)	0.0002 (2)	0.0032 (2)	0.0005 (2)
C6	0.0162 (3)	0.0160 (3)	0.0157 (3)	0.0013 (3)	0.0015 (3)	0.0011 (3)
C1	0.0133 (3)	0.0110 (3)	0.0126 (3)	-0.0001 (2)	0.0033 (2)	0.0000 (2)
C8	0.0128 (3)	0.0123 (3)	0.0135 (3)	0.0001 (2)	0.0019 (2)	0.0007 (2)
C7	0.0213 (4)	0.0154 (3)	0.0229 (4)	0.0008 (3)	0.0078 (3)	0.0063 (3)

Geometric parameters (Å, °)

01—H1	0.892 (14)	С5—Н5	0.9500
O1—C2	1.3520 (9)	C5—C4	1.3912 (13)
O2—C8	1.2600 (9)	C5—C6	1.3930 (12)

O3—C8	1.2675 (9)	C4—H4	0.9500
N1—H1A	0.930 (13)	C2—C1	1.3978 (11)
N1—H1B	0.922 (13)	С6—Н6	0.9500
N1—H1C	0.935 (12)	C6—C1	1.3863 (11)
N1—C1	1.4583 (10)	C8—C7	1.5087 (11)
С3—Н3	0.9500	С7—Н7А	0.9800
C3—C4	1.3903 (12)	С7—Н7В	0.9800
C3—C2	1.3985 (11)	С7—Н7С	0.9800
C2 01 H1	100 / (0)	01 C2 C1	117 36 (7)
	109.4(9) 112.7(11)	$C_1 = C_2 = C_1$	117.30(7)
HIA NI HIC	112.7(11) 106.7(11)	$C_1 - C_2 - C_3$	110.40(7)
HIR NI HIC	100.7(11) 107.7(10)	C_{3}	120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7(10) 110.0(8)	C1 - C6 - U6	119.00 (8)
CI_NI_HIA	110.9 (0)	$C_1 = C_0 = H_0$	120.2
CI_NI_HIC	100.3(0) 110.2(7)	C2-CI-NI	117.84(7)
CI = NI = HIC	110.5 (7)	$C_0 - C_1 - N_1$	120.74(7)
C4—C3—H3	119.9	$C_0 - C_1 - C_2$	121.40(7)
C4 - C3 - C2	120.24 (8)	02 - 03 = 03	122.53 (7)
C2—C3—H3	119.9	02-08-07	119.65 (7)
C4—C5—H5	120.2	03-08-07	117.81 (7)
C4—C5—C6	119.55 (8)	C8—C/—H/A	109.5
C6—C5—H5	120.2	С8—С7—Н7В	109.5
C3—C4—C5	120.66 (8)	C8—C7—H7C	109.5
C3—C4—H4	119.7	H7A—C7—H7B	109.5
C5—C4—H4	119.7	H7A—C7—H7C	109.5
O1—C2—C3	124.17 (7)	Н7В—С7—Н7С	109.5
01—C2—C1—N1	-0.22 (10)	C4—C3—C2—O1	178.84 (8)
O1—C2—C1—C6	-178.85 (7)	C4—C3—C2—C1	-0.83 (12)
C3-C2-C1-N1	179.48 (7)	C4C5C1	-0.39 (13)
C3—C2—C1—C6	0.85 (12)	C2—C3—C4—C5	0.22 (13)
C5—C6—C1—N1	-178.83 (7)	C6—C5—C4—C3	0.40 (14)
C5—C6—C1—C2	-0.24 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
01—H1…O3 ⁱ	0.894 (14)	1.709 (14)	2.6025 (9)	177.8 (16)
N1—H1A···O2	0.930 (13)	1.807 (13)	2.7251 (9)	168.7 (12)
N1—H1 <i>B</i> ····O2 ⁱⁱ	0.923 (12)	1.891 (12)	2.8019 (9)	168.8 (11)
N1—H1 <i>C</i> ···O3 ⁱⁱⁱ	0.935 (12)	1.834 (12)	2.7531 (8)	167.2 (12)
C6—H6···O3 ⁱⁱⁱ	0.95	2.55	3.2493 (11)	131

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*, *y*+1/2, –*z*+3/2; (iii) *x*, –*y*+1/2, *z*+1/2.